THE "VOLUMETTI" BY ETTORE MAJORANA

S. ESPOSITO AND E. RECAMI

ABSTRACT. We report on a careful analysis of the five notebooks ("Volumetti") left unpublished by Ettore Majorana.

Ettore Majorana published only few papers (9 different articles, one of which posthumous) on frontier physics topics, discussed in the years going from the end of the second and the beginning of the third decade of the XX century. His scientific activity, however, was not limited to those papers, and many handwritten notes exist, which record his work on different areas of physics (and applied mathematics). Most of the unpublished manuscripts are deposited at the *Domus Galilaeana* in Pisa (Italy) and have been catalogued [1]; they consist essentially in:

- the thesis for his "laurea" degree;
- 12 folders with first-hand notes;
- 18 booklets (the "Quaderni"),
- 5 notebooks (the "Volumetti").

In the present work, we have analyzed Majorana's notebooks, known as the "Volumetti" [2]. These are 5 small, orderly notebooks written in Rome between 1927 and 1932. Each of them is composed of about 100-150 sequentially numerated pages (making, all together, 587 pages) of approximate size $11 \text{cm} \times 18 \text{cm}$. Each notebook was written during a period of time of about one year, starting from the years (1927 - early 1828) in which Ettore Majorana was completing his studies at the University of Rome. Therefore, the content of these notebooks ranges from typical topics covered in academic courses to frontier research problems, as one can immediately sees by looking at the table of contents reproduced below in the appendix. Note that, in the original manuscripts, the author himself indicated the table of contents for each notebook in its first page. Probably, Majorana used such notebooks as helpers in his studies and researches.

Although some points still remain to be clarified, a careful analysis of the manuscripts reveals in any case the original method adopted by the author in writing the notebooks.

The key observation is that, in some cases, *numerated* blank pages appear between the end of a section and the beginning of the following one. Most likely, this points out that Majorana used to approach the issues treated in the notebooks by following well defined mental schemes. However, we can possibly exclude that the author made an *ab initio* plan of his notebooks (as, for example, for writing a book) since some topics are studied in different (not adjacent) sections. The table of contents for each notebook was written by the author as soon as a particular section was completed. It is remarkable to observe that a date, written by Majorana on the initial blank page of each notebook, records when the notebook was finished. Indeed, the last Volumetto, which is the smallest one, was probably left unfinished and does not contain this explicit information. Nevertheless, we can fix the "closing" date of

S. ESPOSITO AND E. RECAMI

the Volumetti to be in the year 1932. Actually, in this year the word *neutron* was coined to denote the neutral nucleon, and this word has been used by Majorana in the second section of the last notebook, thus establishing a lower limit for that date. Furthermore, an upper limit can be set by looking at Section 8 of the same book, which contains material used by the author in his seventh article published in 1932.

A quick look at the table of contents of the Volumetti shows that a great variety of topics was tackled by Majorana, which range from classical electromagnetism to statistical mechanics, from Earth physics to atomic, molecular and nuclear physics, from relativity to group theory. Despite such a mixing between different arguments (which can be detected by looking at different notebooks, as well as at each single book), the method with which a topic is treated is never obvious.

As an example, one can refer here to the study of the shift of the melting point for a given substance when it is placed in a magnetic field region (see Section 28 of the first notebook) or, more interestingly, to the study of heat propagation in a onedimensional medium (considered in Section 38 of the same notebook). In the latter case it is particularly interesting the first method used by the author to study the problem of heat propagation along a rectilinear, homogenous and isotropic bar of finite, or infinite, length. He considered the two end points of the bar as heat sources of different but fixed temperature, and then developed a "method of sources" analogous to the method of images used in electrostatics.

Also noticeable are the contemporary physics topics faced by Majorana in an original and very clear way, like the Fermi explanation of the electromagnetic mass of the electron (Section 41 of Volumetto I), the Dirac equation with its applications, and the Lorentz group (in Volumetti III and IV), which are an indication, in some cases, of the preferred literature.

As far as frontier research arguments are concerned, we quote here two illuminating examples only: the study of quasi-stationary states in Section 28 of Volumetto IV, anticipating the Fano theory of about 20 years [3], and the Fermi theory of atoms in Section 7 of Volumetto II. In the latter Section, the author set forth (for the first time) analytic solutions to the Thomas-Fermi equation, with boundary conditions appropriate for atoms, in terms of simple quadratures; to our best knowledge, such solutions remain today the only known semi-analytical solutions to the Thomas-Fermi equation. Notice that the interest for these pages, however, is not limited to the exhibition of some particular analytical solutions, but lies also in the very original approach used to obtain them (see Ref. [4]).

The methods used by Majorana in his studies, as they emerge1 from the Volumetti, are those typical of a high-level physicist. He got started from a well-defined physical problem, which is then faced by using all the possible tools. Let us add that even many tables and/or compilations of known mathematical results, as well as several tables of experimental data, appear in the Volumetti. Note also that the strictly mathematical topics present in the notebooks are, almost exclusively, treated by Majorana in view of their applicability to physical problems. Moreover, when the author suggests a new model or obtains new results from well established theories, they have been always compared with the existing experimental results.

As a conclusion, the personality of Ettore Majorana which arises from the analysis of his notebooks can be represented in the form envisaged by Fermi [1]: "... Because, you see, in the world there are various categories of scientists; people of a secondary or tertiary standing, who do their best but do not go very far. There are also those of high standing, who come to discoveries of great importance, fundamental for the development of science. But, then, there are geniuses like Galileo or Newton. Well, Ettore was one of them. Majorana had what no one else in the world had ...".

APPENDIX A. TABLE OF CONTENTS FOR THE "VOLUMETTI"

In the following we give the table of contents for the five notebooks by Ettore Majorana considered in this paper.

VOLUMETTO I

- 1. Electric Potential
- 2. Retarded Potential
- 3. Interaction energy of two electric or magnetic charge distributions
- 4. Skin effect in homogeneous cylindrical electric conductors
- 5. Thermodynamics of thermoelectric cells
- 6. Energy of an isolated conductor
- 7. Attraction between masses which are far apart
- 8. Formulae
- 9. Electric lines
- 10. Density of a spherical mass distribution
- 11. Limit skin effect
- 12. Limit skin effect for simply shaped conductors. Indications for arbitrary shapes
 - 12.1 Elliptic sections
 - 12.2 Effect of the irregularities of the boundary
- 13. Hysteresis in magnetic conductors in limit skin effect regime
- 14. Field produced by a circular and homogeneous distribution of charges in their plane
- 15. Field produced by a circular charge current in its plane
- 16. Weak skin effect in conductors with an elliptic section having the same magnetic permeability as the surrounding medium
- 17. Oscillating discharges in capacitors
- 18. Self-induction in a very long rectilinear circular coil with many turns
- 19. Energy of a uniform circular distribution of electric or magnetic charges
- 20. Self-induction in a rectilinear coil with finite length
- 21. Mean distances of volume, surface or line elements
- 22. Evaluation of some series
- 23. Self-induction of a finite length rectilinear coil with circular section and small winding
- 24. Variation in the self-induction coefficient due to the skin effect
- 25. Mean error in estimating the event probability through a finite number of trials
- 26. Unbalance of a pure three-phase system
- 27. Table for the computation of x!
- 28. Influence of the magnetic field on the melting point
- 29. Specific heat of an oscillator

S. ESPOSITO AND E. RECAMI

- 30. Do children of the same parents tend to be of the same sex ?
- 31. Heat propagation from a localized source in a cross section of an infinite length bar having another cross section at zero heat. Cricket's simile
- 32. Combinations

4

- 33. Energy and specific heat of the rotator
- 34. Gravitational attraction of an ellipsoid
- 35. Special cases: prolate ellipsoid and spheroid
- 36. Equilibrium of a rotating fluid
- 37. Definite integrals
- 38. Heat propagation in an isotropic and homogeneous medium
 - 38.1 One-dimensional propagation
 - 38.1.1 Method of sources
 - $38.1.2 \ {\rm Particular \ solutions}$
- 39. Conformal transformations
- 40. Wave mechanics of a mass point in a conservative field. Variational approach
- 41. Electromagnetic mass of the electron
- 42. Legendre polynomials
- 43. ∇^2 in spherical coordinates

VOLUMETTO II

- 1. ∇^2 in cylindrical coordinates
- 2. Expansion of an harmonic function in the plane
- 3. Quantization of the linear harmonic oscillator
- 4. Diagonalization of a matrix
- 5. Wave Quantization of a point particle which is attracted by a constant force towards a perfectly elastic wall
- 6. Relativistic Hamiltonian for the motion of an electron
- 7. Thomas-Fermi function
- 8. The interatomic potential without statistics
- 9. Application of the Fermi potential
- 10. Statistical curve of the fundamental terms in the neutral atoms
- 11. Numbers to the fifth power
- 12. Bi-atomic molecule having identical nuclei
- 13. Numbers to the sixth power
- 14. Numbers to the seventh power
- 15. Second approximation for the potential inside an atom
- 16. Atomic polarizability
- 17. Fourier expansions and integrals
- 18. Blackbody
- 19. Radiation theory (Part 1)
- 20. Moment of inertia of the Earth
- 21. Radiation theory (Part 2)
- 22. About matrices
- 23. Radiation theory (Part 3)
- 24. Perturbed Keplerian motion in a plane
- 25. Radiation theory (Part 4)

- 26. Definite integrals
- 27. Series expansion
- 28. Radiation theory (Part 5): free electron scattering
- 29. De Broglie waves
- 30. $e^2 \simeq hc$?
- 31. The equation y'' + Py = 0
- 32. Indetermination of the vector and of the scalar potential
- 33. On the spontaneous ionization of an hydrogen atom placed in a high potential region
- 34. Scattering of an α particle with a radioactive nucleus
- 35. Retarded potential
- 36. The equation y'' = xy
- 37. Resonance degeneracy for many-electron atoms
- 38. Various formulas
 - 38.1 Schwarz formula
 - 38.2 Maximum value of random variables
 - 38.3 Binomial coefficients
 - 38.4 Expansion of $1/(1-x)^n$
 - $38.5\,$ Relations between the binomial coefficients
 - 38.6 Mean values of r^n between concentric spherical surfaces

VOLUMETTO III

- 1. Evaluation of some series
- 2. The equation $\Box H = r$
- 3. Equilibrium of a rotating heterogeneous liquid body (Clairaut Problem)
- 4. Determination of a function from its moments
- 5. Probability curves
- 6. Evaluation of the integral $\int_0^{\pi/2} \frac{\sin kx}{\sin x} dx$
- 7. Infinite products
- 8. Bernoulli numbers and polynomials
- 9. Poisson brackets
- 10. Elementary physical quantities
- 11. "Chasing the dog"
- 12. Statistical potential in molecules
- 13. The group of proper unitary transformations in two variables
- 14. Exchange relations for infinitesimal transformations in the representations of continuous groups
- 15. Empirical relations for a two-electron atom
- 16. The Group of Rotations O(3)
- 17. The Lorentz Group
- 18. Dirac matrices and the Lorentz Group
- 19. The spinning electron
- 20. Characters of D_j and reduction of $D_j \times D'_j$
- 21. Intensity and selection rules for a central field
- 22. The anomalous Zeeman effect (according to the Dirac theory)
- 23. Complete sets of first order differential equations

VOLUMETTO IV

- 1. Connection between the susceptibility and the electric moment of an atom in its ground state
- 2. Ionization probability for a hydrogen atom in an electric field
- 3. Legendre polynomials expansion in the interval -1 < x < 1
- 4. Multiplication rules for Legendre polynomials

5. Green functions for the differential equation $y'' + \left(\frac{2}{x} - 1\right)y + \phi(x) = 0$

- 6. On the series expansion of the integral logarithm function
- 7. Fundamental characters of the group of permutations of f objects
- 8. Expansion in spherical harmonics of the plane wave
- 9. The Rutherford formula deduced from Classical Mechanics
- 10. The Rutherford formula deduced as first approximation of the Born method
- 11. The Laplace equation
- 12. Polarization forces between hydrogen atoms
- 13. Integral representation of the Bessel functions
- 14. Cubic symmetry
- 15. Formulae
- 16. Plane waves in the Dirac theory
- 17. Improper operators
- 18. Integral representation of the hydrogen eigenfunctions
- 19. Deflection of an α ray induced by a heavy nucleus (Classical Mechanics)
- 20. Scattering from a potential of the form $\frac{a}{r} \frac{b}{r^2}$ 21. The set of orthogonal functions defined by the equation $y''_a = (x a)y_a$
- 22. Fourier integral expansions
- 23. Circular integrals
- 24. Oscillation frequencies of ammonia
- 25. Spherical functions with spin (s=1)
- 26. Scattering of fast electrons (relativistic Born method)
- 27. Frequently used atomic quantities
- 28. Quasi-stationary states
- 29. Spherical functions with spin (II)

VOLUMETTO V

- 1. Representations of the Lorentz group
- 2. Proton neutron scattering
- 3. Zeros of half order Bessel functions
- 4. Statistics and thermodynamics
 - 4.1 Entropy of a system in equilibrium
 - 4.2 Perfect gases
 - 4.3 Mono-atomic gas
 - 4.4 Bi-atomic gas
 - 4.5 Numerical expressions for the entropy of a gas
 - 4.6 Free energy of bi-atomic gases
- 5. Frequently used polynomials

- 5.1 Legendre polynomials
- 6. Spinor transformations
- 7. Spherical functions with spin (s=1/2)
- 8. Infinite-dimensional unitary representations of the Lorentz group
- 9. The equation $(\Box H + \lambda)A = p$
- 10. Relevant formulas for the atomic eigenfunctions
- 11. Classical theory of multipole radiation
- 12. Hydrogen eigenfunctions

References

- [1] E. Recami, Quaderni di Storia della Fisica 5 (1999) 19-68.
- [2] S. Esposito, E. Majorana jr, A. van der Merwe and E. Recami, Ettore Majorana: Notes on Theoretical Physics (Kluwer, New York, 2003).
- [3] G.F. Bassani, private communication.
- [4] S. Esposito, Am. J. Phys. 70 (2002) 852-856; see also S. Esposito, Int. J. Theor. Phys. 41 (2002) 2417-2426.

S. Esposito: Dipartimento di Scienze Fisiche, Universitá di Napoli "Federico II" and I.N.F.N. Sezione di Napoli, Complesso Universitario di M. S. Angelo, Via Cinthia, I-80126 Napoli, Italy

E-mail address: Salvatore.Esposito@na.infn.it

E. RECAMI: FACOLTÁ DI INGEGNERIA, UNIVERSITÁ STATALE DI BERGAMO, VIALE MARCONI 5, I-24044 DALMINE (BG), ITALY

 $E\text{-}mail\ address:$ Erasmo.Recami@mi.infn.it