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Abstract
In this paper, we propose a game-theoretic so-
lution to the parking problem, by exploiting a
strategic-reasoning approach for multi-agent sys-
tems. Precisely, cars are modeled by agents inter-
acting among them in a multi-player game setting,
whose aim is to get a free slot parking-place satis-
fying their own constraints. The overall assignment
is then given as a Nash equilibrium solution. We
come up with an algorithm (and its implementation
in a tool) that works in quadratic time. We give ev-
idence of the benefits of our approach by running
our tool on a large hospital parking space.

1 Introduction
With the fast development of economy and city modern-
ization, traffic congestion and parking have become seri-
ous social problems. Studies conducted in big cities report
that daily, on average, drivers take more than eight min-
utes to park, causing the 30% of traffic [Ayala et al., 2011;
Shoup, 2005]. Such statistics raise several side effects, among
which a high fuel consumption, high CO2 emissions, but also
a stressful lifestyle for drivers. The growth of Artificial In-
telligence applications to automotive is constantly increasing
the request for smart solutions to parking. This research field
is well identified as smart parking (see [Lin et al., 2017]).

The competitive nature of the parking process, during
which the drivers compete in order to get an available parking
slot for their cars, is the inspiration of this work. Indeed, by
exploiting basic settings of the strategic reasoning for multi-
agent systems, we model the parking process as a competitive
multi-player game in which each car is an agent interacting
with all the other ones, with the ultimate goal of getting an
available slot that satisfies its own constraints. The parking
problem we face concerns parking as many cars as possible,
while satisfying their requirements.

A multi-agent system is made of autonomous entities, with
distributed information, computational capabilities, and pos-
sibly diverging interests. These kind of systems have been ex-
ploited in several fields: electronic [Song et al., 2021] and in-
dustrial process control [Bakliwal et al., 2018], economy [Pal
et al., 2018], home automation [Zouai et al., 2017], open sys-
tem verification [Alur et al., 2002], to name a few.

The way autonomous agents can interact with each other
can be classified into two categories: competitive and coop-
erative. In the former case, there is no a-priori agreement
among agents, as they try to maximize their own objective,
no matter what the objectives of the other agents are. In the
latter case, the agents coordinate among them in order to get
the best outcome possible for everyone [Wooldridge, 2009].

Our contribution. We address the parking problem by
means of a multi-agent strategic-reasoning approach. Specif-
ically, we model the parking problem as a multi-agent game
where cars are competitive agents, moving concurrently and
under perfect information. We assume that each agent comes
with a desired time-limit to accomplish the car parking. Then,
for an agent, the choices are strategies whose payoff reflects
the maximum time he consumes to park his own car (or the
fact that he cannot park at all). Solving the parking problem
corresponds to finding a solution in such a multi-agent game
that minimizes all agents’ payoffs, in a fair way. We impose
such a fairness by means of Nash equilibrium and prove its
effectiveness on real scenarios. We recall that in a game a
Nash equilibrium is reached when each player does not have
any incentive to unilaterally change his strategy.

The contribution of this work is twofold. From one side,
we come up with an effective multi-agent game model for the
parking problem we consider. From the other side, we pro-
vide an algorithm (and its implementation in a tool), working
in quadratic time, that allows a fair allocations of the parch-
ing slots by satisfying a Nash equilibrium. As we prove later
on practical scenarios, this is a valuable compromise with re-
spect to an optimal, but exponential, brute-force solution that
would check all possible distribution of cars over available
slots. Also, as expected, our solution is better than any naive
FIFO approach. Indeed, consider a scenario in which there
are three vehicles, V1, V2, and V3, looking for a parking, and
three slots available A, B, and C. Assume now that V1, V2,
and V3 have up to 7, 5, and 3 minutes to accomplish the park-
ing, respectively. Also, assume that slots A, B, and C re-
quire 2, 3, and 5 minutes to be reached, respectively. Assume
now that V1 picks A and V2 picks B; then, V3 would not have
enough time to reach the remaining slot C. Contrarily, a solu-
tion that allows parking all vehicles by accommodating their
requirements is to assign V1, V2, and V3 to C, B, and A, re-
spectively. This is exactly what our algorithm would return
as a solution.



2 Related Works
Smart parking solutions literature is very reach and diversi-
fied. In [Lin et al., 2017], the authors provide a large survey
on smart parking modeling, solutions, and technologies as
well as identify challenges and open issues. Algorithmic so-
lutions have been also proposed in the VANET research field,
see for example [Senapati and Khilar, 2020; Rad et al., 2017;
Safi et al., 2018; Balzano and Stranieri, 2019; Balzano et al.,
2016; Balzano et al., 2017].

Less common is the use of game-theoretic approaches to
address the parking problem. An exception is [Kokolaki et
al., 2013], which is probably the closest to us. Here the au-
thors also propose a parking solution based on the Nash equi-
librium. However, differently from us, they provide a numer-
ical solution (rather than an algorithm or a tool), and, more
importantly, they consider a scenario with both private and
public parking slots, and the drivers’ payoffs strongly rely on
such a topology; it is not clear to us how to massage their
model to accommodate our setting.

Many other smart parking mechanisms have been proposed
in the literature based on a multi-agent game setting. In
[Małecki, 2018], drivers’ behavior is simulated by model-
ing the environment on the basis of cellular automata. In
[Belkhala et al., 2019] the model is based on the interaction
between the user (driver) and the administrator, but focusing
more on the architecture rather than the model setting and
the strategic reasoning. Similarly, [Jioudi et al., ] provides
an E-parking system, based on multi-agent systems aimed to
optimize several users’ preferences. In [Okoso et al., 2019],
the authors manage the parking problem with a cooperative
multi-agent system, by relying on a priority mechanism. In
[Pereda et al., 2020], the authors also focus on an equilibrium
notion, but they study the Rosenthal equilibrium rather than
the Nash one, which describes a probabilistic choice model.
Finally, in [Lu et al., 2021] the authors also consider a Nash
equilibrium applied to cars, but they only use it to talk about
traffic, rather than parking.

In this work, not only we design the parking process as a
game among agents playing competitively, but also we study
the use of the Nash equilibrium as a fair solution. To the best
of our knowledge, this is the first work addressing the park-
ing problem via multi-player game, whose solution is given
algorithmically by solving a Nash equilibrium.

3 A Real Scenario
As case study, we have focused on the parking area of the
Federico II Hospital Company in Naples, one of the biggest
and most specialized hospital in the South of Italy, whose
construction goes back to the early Sixties.

The Hospital, as it is schematically depicted in Figure 1, is
made of 21 building blocks, distributed over 440.000m2, and
provides in total one thousand of beds for ordinary recovery
and two hundreds of beds for day-hospital use. The parking
space, having 2684 slots in total, consists of 21 independent
areas, and is mainly used by patients and, in turn, by the 3400
employees (doctors, nurses, technicians, administrators, etc.).

The hospital has four guarded gates, one of which is for
pedestrian. The car gates are preceded by a road where cars

line up for the necessary checks. In average, it is estimated
that there are 4.600 car accesses per day. There is no policy
about the allocation of the parking places and, except for few
reserved ones, each driver chooses by its own the slot. This
disorganized solution produces a huge traffic congestion, bot-
tlenecks at the entrance, and an unbalanced distribution of the
cars over the parking area. More importantly, it does not take
into account the specific constraints and some physical limi-
tations of the users, such as walking issues or urgency. In the
most crowded hours, in average, the drivers spend more than
20 minutes to find a parking slot or, even worst, they leave the
parking area by missing available slots.

In order to efficiently apply our tool, we assume that the list
of available slots in every area of the hospital is known at run-
time. Also, we make use of all information the car passengers
have to pass to the hospital before entering, and in particular
their logistics. Finally, we assume that the drivers will be
followed while driving inside the parking area, by means of
tracking devices (GPS, smartphone, videocameras, etc.).

Figure 1: Graphic representation of the A.O.U. Federico II

Having all this information at his disposal, the tool works
as follows: it takes all cars in queue on the roads in front the
car gates, as well as all the specific needs and constraints of
their occupants. Then, it processes the data and following the
algorithm described in the sequel, it opportunely associates
the available slots to the cars. In particular, the tool will ac-
cess both the Employers Data Center and the Online Book-
ing Center of the hospital and, thanks to the latter, the tool
will know which kind of services the patients need, date and
time of their appointments, possible walking limitations and
handicaps, etc. Finally, note that the tool operates in stages,
processing one bunch of cars at the time, as they are in queue.
Someone may criticize this solution and propose an offline
allocation instead. We decide not to follow this solution for
two main reasons: first, the hospital is highly dynamic in slot
requests and, more importantly, slots are very limited in num-
bers, so it is better to allocate slots only when cars show up.

4 Parking Game Structure
In this section we introduce the Parking Game Structure
model, (PGS, for short), that is the game model we will use
along our algorithm to reasoning about the parking problem
we address. The model definition takes inspiration from the
scenario described in Section 3. Thus, in a PGS, the players
are cars with their needs and constraints. Also, the PGS takes
into account all the specification about the slots, in particular



their location, their availability, the time they require to be
reached from the entrance, and so on.

Formally the Parking Game Structure is defined as follows:
Definition 4.1 (Parking Game Structure). The Parking Game
Structure (PGS) is a tuple:

G = (Agt, S,G, g, F, T,R) (1)

where:
• Agt = {a1,..., an} is a set of agents, i.e., the cars,
• S = {s1,..., sm} is a set of parking slots,
• F = {f1,..., fn | fi ∈ [0, 1]} is a set of resilience values,
• G = {g1,..., gl} is a set of gates,
• g : Agt → G is a function associating agents to gates,
• AT = {t1,..., tn} is a set of agent-time values, where ti

is the time limit the car ai has for parking,
• RT = {r(1,1),..., r(m,l)} is a set of reaching-time val-

ues, where r(i,j) is the time needed to reach the parking
slot si from gate gj .

Regarding the set of resilience indexes F , note that each
fi is associated with agent ai and it has a twofold use: first,
it imposes an order among agents; second, it affects the fi-
nal pre-emption order. This will be more clear below. For
simplicity, we assume that all the resilience indexes are dif-
ferent, i.e., fi ̸= fj for every 1 ≤ i < j ≤ n. The indexes
in F can be set manually as input, however we report that,
for the case study we have introduced in Section 3, the values
have been obtained automatically by processing the informa-
tion coming from the Employers Data Center and the Online
Booking Center of the hospital; in particular, for the patients,
the resilience index represents their movement ability, there-
fore, the lower the rate, the more favored the patient.

A strategy for an agent ai consists of choosing a slot sj ∈
S. Formally it is a function Str : Agt → S. A strategy profile
is an n-uple s = (s1,..., sn) of strategies, one for each player.
Formally, in s, for each i, we have Str(ai) = si. It is worth
noting that it may happen that two or more players choose the
same strategy. Next we define the costs associated to s as a
tuple of costs c = (c1,..., cn). Then, a payoff π of a strategy
s is defined as a sum of all such ci, i.e., π(s) =

∑
i ci, and by

πi we denote the i−th cost value of that tuple.
Definition 4.2. Let ai ∈ Agt be an agent with g(ai) = h
and s = (s1,..., sn) be a strategy profile, with si = sj for
an sj ∈ S. We define the costs associated to s as the tuple
c = (c1,..., cn) where each ci =

fi · (ti − r(j,h)) if 1. (ti − r(j,h)) ≥ 0, and
2. there is no ak ̸=i such that
fk < fi, sk = si, and
(tk − r(j,p)) ≥ 0, with g(ak) = p

∞ otherwise

(2)

In words, the value ci is a finite value if the agent ai has
enough time to reach the parking slot sj and such a slot has
not been taken from any other agent ak with a lower resilience
(i. e., fk < fi). Then, the value, when it is finite, reflects how

much time it is left to the agent after he has reached the as-
signed slot (with respect the total time he has at his disposal).
Conversely, the infinity value corresponds to the worst possi-
ble outcome for the agent ai, which reflects the fact that he
cannot park at the slot sj . At this point, it should be intu-
itive that the problem of looking for an optimal strategy pro-
file s can be reduced to the problem of minimize1 the cor-
responding vector of associated costs c. Unfortunately, this
is in general not an easy task. In particular, a brute-force
algorithm checking all the possible strategy profiles is unfea-
sible as it requires exponential-time. Conversely, we suggest
adopting a Nash equilibrium solution which provides, by def-
inition, a fair solution and, along with our setting, it just re-
quires quadratic-time. In the sequel we are going to present
such a solution. Also, we present a solution based on a naive
(greedy) behavior of the players, which reflects the current
behaviour of drivers at the parking of the hospital described in
Section 3: each car takes the first available parking slot which
satisfies its needs. By means of a toy example, we show that
the solution based on the Nash equilibrium over-perform the
one based on the greedy behaviour of the players.

5 The Parking Slot Selection Game
In this section, we first provide a toy example, then we intro-
duce the Parking Slot Selection Game (PSSG, for short) and
propose a solution by means of a Nash equilibrium calcula-
tion. We also comment on the greedy (naive) approach and
compare it with our solution. For a matter of presentation, we
will recall the notion of Nash equilibrium.

W.l.o.g., in the sequel we restrict to parking structures hav-
ing just one gate. This means that we can get rid of g and G
in PGS as given in Definition 4.1, as well as the second index
of the reaching-time values in RT . This also simplifies the
definition of costs associated with strategy profiles.

5.1 A Running Example
Let us consider a parking place with 3 slots available and 3
cars aiming at parking. Let us suppose that the first, the sec-

5 minutes2 minutes4 minutes

2 minutes

3 minutes

4 minutes

Figure 2: 3-players-3-slots Game.

ond, and the third car have respectively 5, 2, and 4 minutes
available to park and that, as associated resilience they have
0.5, 0.1, and 0.009, respectively. Also, suppose that the first,

1Note that the minimization guarantees that the best slots are kept
for future use, so to focus on the continue allocation process rather
than the single stage. At any rate, one can use maximization (in a
finite domain) without affecting the rest of the algorithm.



the second, and the third slot require 2, 3, and 4 minutes to
be reached, respectively. We call such a game the 3-players-
3-slots game and it is reported in Figure 2.

5.2 The Price of Anarchy: a Naive Solution
When a car is approaching to the parking, a naive solution is
to occupy the first slot it can get. This approach leaves to the
car a free will to park in the slot that best fits its constraints,
without paying attention to the other cars requirements. This
easy-to-design solution may lead to a non optimal vehicles
allocation, as it may leave out some cars (not able to park), as
the remaining slots may not satisfy their requirements.

To give an example, let us consider the scenario described
in Section 5.1. In this situation, the first car would choose the
closest slot (the one that requires 2 minutes to be reached).
Then, the second car would not be able to park, because
all the remaining free slots are too expensive in terms of
time. For this reason, we have looked for a better solution
that would exploit the car parking potentialities at the best
by means of a fair distribution of slots among cars, and that
would be computationally easy to be calculated on the fly.

5.3 Nash Equilibrium Based Solution
In game theory, a well-conceived solution concept that en-
sures a robust form of fairness and satisfaction among play-
ers is Nash equilibrium. This concept was deeply investi-
gated and well formalized by John Nash in the fifties, both
under pure and mixed strategies (see [Van Damme, 1991] for
more details). In the basic definition, we say that in a multi-
player game, all players, moving concurrently, reach a Nash
equilibrium if none of them has the incentive to unilaterally
deviate from that equilibrium. By casting this in our park-
ing scenario, we try to reach a situation in which all drivers
are associated to parking slots, by means of an equilibrium
over their constraints. In other words, our goal is to provide a
strategic profile (parking slot assignment) in which no player
wants to change his slot unless some other players want to
change theirs.

Following the model definition given in Definition 4.1 and
the observations made above, we formally introduce the Park-
ing Slot Selection Game we address, as follows.
Definition 5.1 (Parking Slot Selection Game). The Parking
Slot Selection Game (PSSG) has an input and an output de-
fined as follows:

• Input: a PGS G, as given in Definition 4.1.

• Output: a strategic profile (s∗1,..., s
∗
n) providing a Nash

equilibrium for G. A strategy profile (s∗1,..., s
∗
n) is a Nash

equilibrium iff ∀ s1,..., sn ∈ S it holds that:

π1(s
∗
1,..., s

∗
n) ≤ π1(s1, s

∗
2..., s

∗
n)

π2(s
∗
1,..., s

∗
n) ≤ π1(s

∗
1, s2..., s

∗
n)

...
πn(s

∗
1,..., s

∗
n) ≤ π1(s

∗
1, s

∗
2..., sn)

In words, the PSSG consists in looking for a strategy pro-
file that, with respect to the associated costs, no players has
an incentive to unilaterally change his choice.

Similarly to the PSGG, one can define the Naive Parking
Game (NPG, for short). To give some details, first assume
that in an NPG players are ordered, then the strategy pro-
file (s∗1,..., s

∗
n) is such that for each agent ai, it holds that

s∗i is the best choice (in terms of minutes to reach it) over
S \ {s∗1,..., s∗i−1}.

5.4 A Solution to the 3-players-3-slots Game
Let us consider again the 3-players-3-slots game described in
Section 5.1. We now show a solution based on the satisfaction
of a Nash equilibrium. As we will see in a while, such a solu-
tion allows accommodating all cars, while satisfying all their
constraints, contrarily to what we have seen with the naive
solution. Later, we will show that this is true in general and
not just for the case of our specific example. Let us formally
describe the 3-players-3-slots example by means of a PGS G3

whose components are defined as follows:

• Agt = {car1, car2, car3} is the set of cars,

• S = {slot1, slot2, slot3} is the set of parking slots,

• AT = {5, 2, 4} is the set of time-values car1, car2, and
car3 have at at their disposal, respectively,

• RT = {2, 3, 4} is the set of times needed to reach the
slots slot1, slot2, and slot3, respectively,

• F = {0.5, 0.1, 0.009} is the set of cars resilient values,

• The cost function is reported in Table 1, in the last three
rows. For instance, the triple (∞,∞, 0.018) represents
the case in which all cars decide to park in the same slot
slot1; so, car3, which has the lowest resilience value,
gets it at a cost of 0.018 (i.e., (4− 2) · 0.009), while the
other cars leave the process incomplete, as they get ∞.

By a matter of calculation, one can check that there ex-
ists only one Nash equilibrium, which corresponds to s =
(slot2, slot1, slot3), with c = (1, 0, 0) (in bold in Table 1),
and π(s) = 1.

5.5 A Solution to the Parking Slot Selection Game
In this section, we introduce the algorithm for the solution to
the problem described in Definition 4.1. We first provide the
pseudo-code in Algorithm 1, then we describe how it works
and report on its time complexity.

With the first iteration, the car with the lowest resilience in-
dex, actualCar, is selected from the queue, through the func-
tion priorityCar(·), which takes as input the set of cars and
returns the one with the lowest resilience index respect to the
others. The variable cost outcome is associated an infinity
value, the worst possible one. In the second iteration, the al-
gorithm computes the costs resulting from the function c(·),
which takes as input a car and a slot. The value of the outcome
is updated with the value of the best cost computed. Among
the available slots, the one with the best result is assigned to
the actualCar. Once assigned, the slot is remove from the set
of the available ones, with the function setNotAvailable(·).
Theorem 5.1 (Correctness of Algorithm 1). Algorithm 1
computes the Nash equilibrium for the game.



car3
slot1 slot2 slot3
car2 car2 car2

slot1 slot2 slot3 slot1 slot2 slot3 slot1 slot2 slot3

car1

slot1 ∞,∞, 0.018 ∞,∞, 0.018 ∞,∞, 0.018 ∞, 0, 0.009 1.5,∞, 0.009 1.5,∞, 0.009 ∞, 0, 0 1.5,∞, 0 1.5,∞, 0
slot2 1,∞, 0.018 1,∞, 0.018 1,∞, 0.018 ∞, 0, 0.009 ∞,∞, 0.009 ∞,∞, 0.009 1,0,0 1,∞, 0 1,∞, 0
slot3 0.5,∞, 0.018 0.5,∞, 0.018 0.5,∞, 0.018 0.5, 0, 0.009 0.5,∞, 0.009 0.5,∞, 0.009 ∞, 0, 0 ∞,∞, 0 ∞,∞, 0

Table 1: Cost function values for 3-drivers-3-slots instance of the game.

Algorithm 1 Algorithm for the solution of the PSSG.
Input: Queue of ready vehicles
Output: Slot allocation

1: while carQueue ̸= null do
2: actualCar = priorityCar(carQueue).
3: outcome = ∞.
4: for slot ∈ setAvailableSlots do
5: po = c(actualCar, slot).
6: if po ≥ 0 & po < outcome then
7: outcome = po.
8: assignSlot(actualCar, slot)
9: setNotAvailable(slot).

10: end if
11: end for
12: end while

Proof (Sketch). Proving that the algorithm provides a Nash
equilibrium is quite trivial. Assume by contradiction that
s = (s1, .., sn) is the solution provided from our algorithm
and it is not a Nash equilibrium. Then, by definition of Nash
equilibrium, there must exist an agent, let us say agent ai,
whose strategy sj is not the best, while fixed the strategies
for the other players. Hence, there exists another strategy s′j
for the agent ai, such that the payoff of s′j is better than the
one for sj (given the same strategies for the other players).
But if such a strategy s′j exists, then it would be found at row
6 of our algorithm, and it would be chosen as the final strat-
egy for agent ai. But this clearly contradicts the hypothesis
that s = (s1, .., sn) is the solution provided.

Theorem 5.2 (Complexity of Algorithm 1). The complex-
ity of Algorithm 1 is quadratic with respect to the number
of agents involved in the game, in the worst case.

Proof. Consider the worst possible scenario, i.e., no vehicle
obtains a parking slot. Then, let us compute C(PSSG) as the
complexity of the Parking Slot Selection Game. The proof
proceeds by analyzing the complexity of the most expensive
operations, from the inner ones to the outer ones. We use the
notation C(r) to indicate the complexity of the code from the
r-th row of the Algorithm 1.

The function assignSlot(Car, slot) performs simple as-
signments, with a constant complexity C(7) = O(1).

The inner loop does not perform any slot assignment, in
the considered worst case, since none of them satisfies the
constraints of the cars to be allocated. Hence, the inner loop
is repeated as many times as |S|, where S is the set of slots,
according to Definition 4.1. Assuming that |S| = m, we can
deduce that C(3) =

∑m
i=1 C(7) =

∑m
i=1 O(1) = O(m).

The outer loop is performed as many times as the number
of cars, i.e, the agents. Since by Definition 4.1 |Agt| = n, we
have that C(1) =

∑n
j=1 C(3) =

∑n
j=1 O(k) = O(nm).

Assuming that, in the worst case, n and m are of the
same order, we can conclude that the total complexity is
C(PSSG) = O(n2).

6 Evaluation
In this section, we compare the performances between exe-
cuting the naive solution to solve NPGs and Algorithm 1 to
solve PSGGs. We have run 10 times the two approaches on
a growing number of cars and slots. All values and time-
limit needed have been generated randomly. Results have
been collected in Table 2. Each column represents a differ-
ent execution of the two approaches with the corresponding
input parameters, while the rows keep track of the two ana-
lyzed solutions. Each entry contains the number of cars that
have been able to park successfully, over the total number
of cars involved. As one can observe, the Nash equilibrium
based solution is never worse than the naive one. Moreover,
by extending the experiment over 100 and 200 executions,
our approach is strictly better than the naive one in the 89%
and 93% of the cases respectively, and it allocates the same
number of vehicles in the remaining ones.

Since, by construction, a greater number of executions de-
termines a greater number of cars, these experiments also
prove the scalability of our algorithm, which seems to behave
well with high numbers. Such a scalability property will be
explained in more details in the next section.

7 Benchmarks
Here we show some benchmarks regarding Algorithm 1. Pre-
cisely, we have analyzed the behavior of the algorithm in the
management of a growing number of cars waiting for a park-
ing slot, with respect to a fixed number of parking slots. We
have considered the following two scenarios:

• In Table 3, the number of slots is 4.600. Such a number
is not picked at random, but it refers to the number of
slots available inside the structure of our case study.

• In Table 4, the number of slots is 20.000. Also in this
case, the number is not picked at random, but it refers
to the number of available slots in the biggest parking
space of the world (West Edmonton Mall in Canada).

Figures 3 and 4 reflect the quadratic nature of the algo-
rithm: the time is the result of the average between 100 tests.
All tests have been executed on an Intel®Core™i5-7300HQ
CPU processor of 2,50 GHz, with 8 Gb RAM capacity.



E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

3 slots 4 slots 5 slots 6 slots 7 slots 8 slots 9 slots 10 slots 11 slots 12 slots
3 cars 4 cars 5 cars 6 cars 7 cars 8 cars 9 cars 10 cars 11 cars 12 cars

NPG 3/3 3/4 5/5 6/6 7/7 8/8 7/9 8/10 9/11 12/12
PSSG 2/3 3/4 5/5 5/6 6/7 6/8 6/9 7/10 8/11 10/12

Table 2: Resulting vehicle allocations over 10 different simulations applying two solutions to the parking game: the Nash equilibrium based
one, and the naive one.

slots = 4.000
cars seconds
200 0,001
400 0,002
800 0,004

1.600 0,009
3.200 0,027
6.400 0,402

12.800 1,389
25.600 3,415
51.200 10,165

102.400 33,260
204.800 119,718

Table 3: Results on 4.000
slots.

slots = 20.000
cars seconds
200 0,003
400 0,006
800 0,013

1.600 0,026
3.200 0,060
6.400 0,150
12.800 0,430
25.600 5,687
51.200 23,597

102.400 57,769
204.800 166,093

Table 4: Results on 20.000
slots.
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Figure 3: Time and cars variation with 4.000 slots.
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Figure 4: Time and cars variation with 20.000 slots.

To show the good performance of our algorithm, in our
benchmarks we have considered a very large set of cars. The
benchmarks show that our tool can be also used in other
fields, with much higher numbers. For example, it can be
used to accommodate people in a stadium, or, distribute peo-
ple over hospitals, for example, for a massive vaccinations, as
it is required nowadays for the Covid pandemic situation.

8 Conclusions and Future Works
The parking problem is one of the most challenging questions
in the automotive research field. Inspired by the intrinsic in-
teraction among cars that compete among them in order to
get a parking slot complaining with their constraints, in this
paper we have explored a game-based approach. Precisely,
following a real case study, we have formally introduced (i) a
multi-player game structure model, (ii) the problem, and (iii)
a solution algorithm working in quadratic time. The game
model makes use of costs, reflecting the time ability of a car
to park in a specific slot (modulo a resilience grade intrinsi-
cally associated to each car). The core of the algorithm is
then based on a Nash equilibrium solution, which allows fo-
cusing not just on the best choice for a single car, but rather
on one that guarantees a fair slot assignment among all cars.
The proposed solution requires quadratic time.

We have positively tested our tool on a model of the park-
ing space of the Federico II Hospital in Naples, one of the
biggest hospitals in the South of Italy. The construction
of the hospital and the annexed parking space goes back to
early Sixties. Since there, no parking policy have been ever
adopted: excepts for few reserved slots, a car entering the area
can park in any slot. This reflects in a serious traffic conges-
tion and an inefficient use of the slots everyday. Conversely,
our approach provides, for the first time, a valid and promis-
ing solution. In order to put it in practice, we are currently
working on a mobile client application to support the drivers
along the parking task, from the assignment of the slot while
approaching the gate, up to the moment they leave the car.

Our solution is the fruit of a deep analysis of the most
parking-congestion-affected sites in our city, together with
our strategic reasoning background. Despite being amend-
able, the provided solution sets the stage for future essential
improvements not only of health care services offered by the
hospital under exam, but also of facilities from different con-
texts with similar problems. Simulation results show that our
solution improves notably the slot assigning with respect to
the naive parking behavior in which each car is free to select
a slot according only to its own preferences. The simulation
also shows that our tool is scalable and can handle very huge
numbers of slots and cars.
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