
Pushdown Module Checking

Laura Bozzelli, Aniello Murano, and Adriano Peron

Università di Napoli Federico II, Via Cintia, 80126 - Napoli, Italy

Abstract. Model checking is a useful method to verify automatically the
correctness of a system with respect to a desired behavior, by checking
whether a mathematical model of the system satisfies a formal specifi-
cation of this behavior. Many systems of interest are open, in the sense
that their behavior depends on the interaction with their environment.
The model checking problem for finite–state open systems (called module
checking) has been intensively studied in the literature. In this paper,
we focus on open pushdown systems and we study the related model–
checking problem (pushdown module checking, for short) with respect to
properties expressed by CTL and CTL∗ formulas. We show that push-
down module checking against CTL (resp., CTL∗) is 2Exptime-complete
(resp., 3Exptime-complete). Moreover, we prove that for a fixed CTL∗

formula, the problem is Exptime-complete.

1 Introduction

In the last decades significant results have been achieved in the area of formal de-
sign verification of reactive systems. In particular, a meaningful contribution has
been given by algorithmic methods developed in the context of model-checking
([CE81, QS81, VW86]). In this verification method, the behaviour of a system,
formally described by a mathematical model, is checked against a behavioural
constraint specified by a formula in a suitable temporal logic, which enforces
either a linear model of time (formulas are interpreted over linear sequences cor-
responding to single computations of the system) or a branching model of time
(formulas are interpreted over infinite trees, which describe all the possible com-
putations of the system). Traditionally, model checking is applied to finite-state
systems, typically modelled by labelled state-transition graphs.

In system modelling, we distinguish between closed and open systems. For a
closed system, the behavior is completely determined by the state of the system.
For an open system, the behaviour is affected both by its internal state and by
the ongoing interaction with its environment. Thus, while in a closed system all
the nondeterministic choices are internal, and resolved by the system, in an open
system there are also external nondeterministic choices, which are resolved by
the environment [Hoa85]. Model checking algorithms used for the verification of
closed systems are not appropriate for the verification of open systems. In the
latter case, we should check the system with respect to arbitrary environments
and should take into account uncertainty regarding the environment.

In [KVW01], Kupferman, Vardi, and Wolper extend model checking from
closed finite–state systems to open finite-state systems. In such a framework, the

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 504–518, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Pushdown Module Checking 505

open finite-state system is described by a labelled state-transition graph called
module whose set of states is partitioned into a set of system states (where the
system makes a transition) and a set of environment states (where the envi-
ronment makes a transition). The problem of model checking a module (called
module checking) has two inputs: a module M and a temporal formula ψ. The
idea is that an open system should satisfy a specification ψ no matter how the
environment behaves. Let us consider the unwinding of M into an infinite tree,
say TM . Checking whether TM satisfies ψ is the usual model-checking problem
[CE81, QS81]. On the other hand, for an open system, TM describes the in-
teraction of the system with a maximal environment, i.e. an environment that
enables all the external nondeterministic choices. In order to take into account
all the possible behaviours of the environment, we have to consider all the trees
T obtained from TM by pruning subtrees whose root is a successor of an environ-
ment state (pruning these subtrees correspond to disable possible environment
choices). Therefore, a module M satisfies ψ if all these trees T satisfy ψ.

Note that for the linear-time paradigm, module checking coincides with the
usual model checking, since for linear temporal formulas ψ we require that all
the possible interactions of the system with its environment (corresponding to
all computations of M , i.e. to all possible full-paths in TM) have to satisfy ψ.
Therefore, while the complexity of model checking for closed and open finite–
state systems coincide using linear time logics, when using branching time logics,
model checking for open finite–state systems is much harder than model check-
ing for closed finite–state systems. In particular, it is proved in [KVW01], that
the problem is Exptime–complete for specifications in CTL and 2Exptime–
complete for specifications in CTL∗. Moreover, the complexity of this problem
in terms of the size of the module is Ptime-complete.

Recently, the investigation of model-checking techniques has been extended
to infinite-state systems. An active field of research is model-checking of closed
infinite-state sequential systems. These are systems in which each state carries a
finite, but unbounded, amount of information e.g. a pushdown store. The origin
of this research is the result of Muller and Schupp that the monadic second-
order theory of context-free graphs is decidable [MS85]. Concerning pushdown
systems, Walukiewicz [Wal96] has shown that model checking these systems with
respect to modal µ-calculus is Exptime-complete. Even for a fixed formula in the
alternation-free modal µ-calculus, the problem is Exptime-hard in the size of
the pushdown system. The problem remains Exptime-complete also for the logic
CTL [Wal00], which corresponds to a fragment of the alternation-free modal µ-
calculus. However, the exact complexity in the size of the system (for a fixed CTL
formula) is an open problem: it lies somewhere between Pspace and Exptime

[BEM97]. To the best of our knowledge, the pushdown model checking problem
for CTL∗ has not been investigated so far. However, since CTL∗ formulas can be
translated to modal µ-calculus with an exponential blow-up [BC96], we obtain
that the problem is, at worst, in 2Exptime. The situation is quite different for
linear-time logics. Model-checking with LTL and the linear-time µ-calculus is

506 L. Bozzelli, A. Murano, and A. Peron

Exptime-complete [BEM97]. However, the problem is polynomial in the size of
the pushdown system.

In the literature, verification of open systems has been also formulated as two-
players games. For pushdown systems, games with parity winning conditions are
known to be decidable [Wal96]. More recently, in [LMS04], it is shown that
pushdown games against LTL specifications are 3Exptime-complete.

This paper contributes to the investigation of model checking of open infinite-
state systems by introducing Open Pushdown systems (OPD) and considering
model checking with respect to CTL and CTL∗. An OPD is a pushdown system
augmented with finite information that allow to partition the set of configu-
rations (in accordance with the control state and the symbol on the top of the
stack) into a set of system configurations and a set of environment configurations.

As an example of closed and open pushdown systems, we can consider two
drink-dispensing machines (obtained as an extension of the machines defined in
[Hoa85]). The first machine repeatedly boils water for a while, makes an inter-
nal nondeterministic choice and serves either tea or coffee, with the additional
constraint that coffee can be served only if the number of coffees served up to
that time is smaller than that of teas served. Such a machine can be modelled
as a closed pushdown system (the stack is used to guarantee the inequality be-
tween served coffees and teas). The second machine repeatedly boils water for a
while, asks the environment to make a choice between coffee and tea, and deter-
ministically serves a drink according to the external choice, with the additional
constraint that coffee can be served only if the number of coffees served up to
that time is smaller than that of teas served. Such a machine can be modelled
as an open pushdown system. Both machines can be represented by a pushdown
system that induces the same infinite tree of possible executions, nevertheless,
while the behavior of the first machine depends on internal choices solely, the
behavior of the second machine depends also on the interaction with its environ-
ment. Thus, for instance, for the first machine, it is always possible to eventually
serve coffee. On the contrary, for the second machine, this does not hold. Indeed,
if the environment always chooses tea, the second machine will never serve coffee.

We study module checking of (infinite–state) modules induced by OPD w.r.t.
the branching-time logics CTL and CTL∗. As in the case of finite-state sys-
tems, pushdown module checking is much harder than pushdown model checking
for both CTL and CTL∗. Indeed, we show that pushdown module checking is
2Exptime-complete for CTL and 3Exptime-complete for CTL∗. We also show
that for CTL∗, the complexity of pushdown module checking in terms of the size
of the given OPD is Exptime-complete. For the upper bounds of the complexity
results, we exploit the standard automata-theoretic approach. In particular, for
CTL (resp., CTL∗) we propose an exponential time (resp., a double-exponential
time) reduction to the emptiness problem of nondeterministic pushdown tree
automata with parity acceptance conditions. The latter problem is known to be
decidable in exponential time [KPV02]. Finally, the lower bound for CTL (resp.,
CTL∗) is shown by a technically non-trivial reduction from the word problem for
Expspace–bounded (resp., 2Expspace–bounded) alternating Turing Machines.

Pushdown Module Checking 507

2 Preliminaries

2.1 Module Checking for Branching Temporal Logics

In this subsection we define the module checking problem for CTL and CTL∗

[KVW01]. First, we recall syntax and semantics of CTL and CTL∗.
Let N be the set of positive integers. A tree T is a prefix closed subset of N

∗.
The elements of T are called nodes and the empty word ε is the root of T . For
x ∈ T , the set of children of x (in T) is children(T, x) = {x · i ∈ T | i ∈ N}.
For k ≥ 1, the (complete) k-ary tree is the tree {1, . . . , k}∗. For x, y ∈ N

∗,
we write x ≺ y to mean that x is a proper prefix of y. For x ∈ T , a (full)
path π of T from x is a minimal set π ⊆ T such that x ∈ π and for each
y ∈ π such that children(T, y) �= ∅, there is exactly one node in children(T, y)
belonging to π. For y ∈ π, we denote by πy the (suffix) path of T from y given
by {z ∈ π | y � z}. For an alphabet Σ, a Σ-labelled tree is a pair 〈T, V 〉 where
T is a tree and V : T → Σ maps each node of T to a symbol in Σ.

The logic CTL∗ is a branching–time temporal logic [EH86], where a path
quantifier, E (“for some path”) or A (“for all paths”), can be followed by an
arbitrary linear-time formula, allowing boolean combinations and nesting, over
the usual linear temporal operators X (“next”), U (“until”), F (“eventually”),
and G (“always”). There are two types of formulas in CTL∗: state formulas,
whose satisfaction is related to a specific state (or node of a labelled tree), and
path formulas, whose satisfaction is related to a specific path. Formally, for a
finite set AP of proposition names, the class of state formulas ϕ and the class
of path formulas θ are defined by the following syntax:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | A θ | E θ
θ := ϕ | ¬ θ | θ ∧ θ | Xθ | θ U θ

where p ∈ AP . The set of state formulas ϕ forms the language CTL∗. The other
operators can be introduced as abbreviations in the usual way: for instance, Fθ
abbreviates true U θ and Gθ abbreviates ¬F¬θ.

The Computation Tree Logic CTL [CE81] is a restricted subset of CTL∗,
obtained restricting the syntax of path formulas θ as follows: θ := Xϕ | ϕ U ϕ.
This means that X and U must be immediately preceded by a path quantifier.

We define the semantics of CTL∗ (and its fragment CTL) with respect to
2AP -labelled trees 〈T, V 〉. Let x ∈ T and π ⊆ T be a path from x. For a state
(resp., path) formula ϕ (resp. θ), the satisfaction relation (〈T, V 〉, x) |= ϕ (resp.,
(〈T, V 〉, π) |= θ), meaning that ϕ (resp., θ) holds at node x (resp., holds along
path π) in 〈T, V 〉, is defined by induction. The clauses for proposition letters,
negation, and conjunction are standard. For the other constructs we have:

– (〈T, V 〉, x) |= A θ iff for each path π in T from x, (〈T, V 〉, π) |= θ;
– (〈T, V 〉, x) |= E θ iff there exists a path π from x such that (〈T, V 〉, π) |= θ;
– (〈T, V 〉, π) |= ϕ (where π is a path from x) iff (〈T, V 〉, x) |= ϕ;
– (〈T, V 〉, π) |= Xθ iff π \ {x} �= ∅ and (〈T, V 〉, π \ {x}) |= θ;1

1 Note that π \ {x} is a path starting from the unique child of x in π.

508 L. Bozzelli, A. Murano, and A. Peron

– (〈T, V 〉, π) |= θ1 U θ2 iff there exists y ∈ π such that (〈T, V 〉, πy) |= θ2 and
(〈T, V 〉, πz) |= θ1 for all z ∈ π such that z ≺ y.

Given a CTL∗ (state) formula ϕ, we say that 〈T, V 〉 satisfies ϕ if (〈T, V 〉, ε) |= ϕ.
In this paper we consider open systems, i.e. systems that interact with their

environment and whose behavior depends on this interaction. The (global) be-
havior of such a system is described by an open Kripke structure (called also
module [KVW01]) M = 〈AP, Ws, We, R, w0, µ〉 where AP is a finite set of atomic
propositions, Ws ∪ We is a countable set of (global) states partitioned into a set
Ws of system states and a set We of environment states (we use W to denote
Ws∪We), R ⊆ W ×W is a (global) transition relation, w0 ∈ W is an initial state,
and µ : W → 2AP maps each state w to the set of atomic propositions that hold
in w. For (w, w′) ∈ R, we say that w′ is a successor of w. We assume that the
states in M are ordered and the number of successors of each state w, denoted
by bd(w), is finite. For each state w ∈ W , we denote by succ(w) the ordered
tuple (possibly empty) of w’s successors. We say that a state w is terminal if
it has no successor. When the module M is in a non-terminal system state ws,
then all the states in succ(ws) are possible next states. On the other hand, when
M is in a non-terminal environment state we, then the possible next states (that
are in succ(we)) depend on the current environment. Since the behavior of the
environment is not predictable, we have to consider all the possible sub-tuples
of succ(we). The only constraint, since we consider environments that cannot
block the system, is that not all the transitions from we are disabled.

The set of all (maximal) computations of M starting from the initial state
w0 is described by a W -labelled tree 〈TM , VM 〉, called computation tree, which is
obtained by unwinding M in the usual way. The problem of deciding, for a given
branching-time formula ψ over AP , whether 〈TM , µ ◦ VM 〉 satisfies ψ, denoted
M |= ψ, is the usual model-checking problem [CE81, QS81]. On the other hand,
for an open system, 〈TM , VM 〉 corresponds to a very specific environment, i.e.
a maximal environment that never restricts the set of its next states. There-
fore, when we examine a branching-time specification ψ w.r.t. a module M , ψ
should hold not only in 〈TM , VM 〉, but in all the trees obtained by pruning from
〈TM , VM 〉 subtrees whose root is a child (successor) of a node corresponding to an
environment state. The set of these trees is denoted by exec(M), and is formally
defined as follows. 〈T, V 〉 ∈ exec(M) iff V (ε) = w0 and the following holds:

– For x ∈ T with V (x) = w ∈ Ws and succ(w) = 〈w1, . . . , wn〉, it holds that
children(T, x) = {x · 1, . . . , x · n} and for 1 ≤ i ≤ n, V (x · i) = wi.

– For x ∈ T with V (x) = w ∈ We and succ(w) = 〈w1, . . . , wn〉, there exists a
sub-tuple 〈wi1 , . . . , wip〉 of succ(w) such that p ≥ 1 if succ(w) is not empty,
children(T, x) = {x · i1, . . . , x · ip} and for 1 ≤ j ≤ p, V (x · ij) = wij .

Intuitively, each tree in exec(M) corresponds to a different behavior of the
environment. In the following, we consider the trees in exec(M) as 2AP -labelled
trees, i.e. taking the label of a node x to be µ(V (x)).

For a module M and a CTL∗ (resp., CTL) formula ψ, we say that M satisfies
ψ, denoted M |=r ψ, if all the trees in exec(M) satisfy ψ. The problem of deciding

Pushdown Module Checking 509

whether M satisfies ψ is called module checking [KVW01]. Note that M |=r ψ
implies M |= ψ (since 〈TM , VM 〉 ∈ exec(M)), but the converse in general does
not hold. Also, note that M �|=r ψ is not equivalent to M |=r ¬ψ. Indeed,
M �|=r ψ just states that there is some tree 〈T, V 〉 ∈ exec(M) satisfying ¬ψ.

2.2 Pushdown Module Checking

In this paper we consider Modules induced by Open Pushdown Systems (OPD,
for short), i.e., Pushdown systems where the set of configurations is partitioned
(in accordance with the control state and the symbol on the top of the stack) in
a set of environment configurations and a set of system configurations.

An OPD is a tuple S = 〈AP, Γ, P, p0, α0, ∆, L, Env〉, where AP is a finite
set of propositions, Γ is a finite stack alphabet, P is a finite set of (control)
states, p0 ∈ P is an initial state, α0 ∈ Γ ∗ · γ0 is an initial stack content (where
γ0 �∈ Γ is the stack bottom symbol), ∆ ⊆ (P × (Γ ∪ {γ0})) × (P × Γ ∗) is a
finite set of transitions, L : P × (Γ ∪ {γ0}) → 2AP is a labelling function, and
Env ⊆ P × (Γ ∪ {γ0}) is used to specify the set of environment configurations.
A configuration is a pair (p, α) where p ∈ P is a control state and α ∈ Γ ∗ · γ0
is a stack content. We assume that the set P × Γ ∗ is ordered and for each
(p, A) ∈ P × (Γ ∪ {γ0}), we denote by nextS(p, A) the ordered tuple (possibly
empty) of the pairs (q, β) such that ((p, A), (q, β)) ∈ ∆.

The size |S| of S is |P | + |Γ | + |α0| + |∆|, with |∆| =
∑

((p,A),(q,β))∈∆ |β|.
An OPD S induces a module MS = 〈AP, Ws, We, R, w0, µ〉, where:

– Ws ∪ We = P × Γ ∗ · γ0 is the set of pushdown configurations;
– We is the set of configurations (p, A · α) such that (p, A) ∈ Env;
– w0 = (p0, α0);
– ((p, A ·α), (q, β)) ∈ R iff there is ((p, A), (q, β′)) ∈ ∆ such that either A ∈ Γ

and β = β′ · α, or A = γ0 (in this case α = ε) and β = β′ · γ0 (note that
every transition that removes the bottom symbol γ0 also pushes it back);

– For all (p, A · β) ∈ Ws ∪ We, µ(p, A · β) = L(p, A).

The pushdown module checking problem for CTL (resp., CTL∗) is to decide,
for a given OPD S and a CTL (resp., CTL∗) formula ψ, whether MS |=r ψ.

3 Tree Automata

In order to solve the pushdown module checking problem for CTL and CTL∗,
we use an automata theoretic approach; in particular, we exploit the formalisms
of Nondeterministic (finite–state) Tree Automata (NTA for short) [Buc62] and
Nondeterministic Pushdown Tree Automata (PD-NTA for short) [KPV02].

Nondeterministic (finite–state) Tree Automata (NTA). Here we describe
NTA over (complete) k-ary trees for a given k ≥ 1. Formally, an NTA is a tuple
A = 〈Σ, Q, q0, δ, F 〉, where Σ is a finite input alphabet, Q is a finite set of states,
q0 ∈ Q is an initial state, δ : Q × Σ → 2Qk

is a transition function, and F is an

510 L. Bozzelli, A. Murano, and A. Peron

acceptance condition. We consider here Büchi and parity acceptance conditions
[Buc62, EJ91]. In the case of a parity condition, F = {F1, . . . , Fm} is a finite
sequence of subsets of Q, where F1 ⊆ F2 ⊆ . . . ⊆ Fm = Q (m is called the index
of A). In the case of a Büchi condition, F ⊆ Q.

A run of A on a Σ-labelled k-ary tree 〈T, V 〉 (where T = {1, . . . , k}∗) is a
Q-labelled tree 〈T, r〉 such that r(ε) = q0 and for each x ∈ T , we have that
〈r(x · 1), . . . , r(x · k)〉 ∈ δ(r(x), V (x)). For a path π ⊆ T , let infr(π) ⊆ Q be
the set of states that appear as the labels of infinitely many nodes in π. For a
parity acceptance condition F = {F1, . . . , Fm}, π is accepting if there is an even
1 ≤ i ≤ m such that infr(π) ∩ Fi �= ∅ and for all j < i, infr(π) ∩ Fj = ∅. For
a Büchi condition F ⊆ Q, π is accepting if infr(π) ∩ F �= ∅. A run 〈T, r〉 is
accepting if all its paths are accepting. The automaton A accepts an input tree
〈T, V 〉 iff there is an accepting run of A over 〈T, V 〉. The language of A, denoted
L(A), is the set of Σ-labelled (complete) k-ary trees accepted by A.

The size|A| of an NTA A is |Q| + |δ| + |F | with |δ| =
∑

(q,σ)∈Q×Σ |δ(q, σ)|.
It is well-known that formulas of CTL and CTL∗ can be translated to tree

automata (accepting the models of the given formula). In particular, we are in-
terested in optimal translations to parity NTA. Concerning a CTL (resp., CTL∗)
formula ψ, given k ≥ 1, first we build according to [KVW00] a Büchi (resp., par-
ity2) alternating tree automata A with O(|ψ|) (resp., O(2|ψ|)) states and size
O(k · |ψ|) (resp., size O(k ·2|ψ|) and index O(|ψ|)) accepting exactly the complete
k-ary trees satisfying ψ. Then, according to [Var98], we can translate A into an
equivalent parity NTA whose size is O(k ·2O(|ψ| log |ψ|)) (resp., O(k ·22O(|ψ|)

)) and
whose index is O(|ψ|) (resp., O(2|ψ|)).

Lemma 1 ([KVW00,Var98]). Given a CTL (resp., CTL∗) formula ψ over
AP and k ≥ 1, we can construct a parity NTA of size O(k · 2O(|ψ| log |ψ|)) (resp.,
O(k · 22O(|ψ|)

)) and index O(|ψ|) (resp., O(2|ψ|)) that accepts exactly the set of
2AP -labelled complete k-ary trees that satisfy ψ.

Remark 1. Vardi in [Var98] gives a translation from (two-way) alternating par-
ity tree automata A to parity NTA A′. Note that the size of the parity NTA A′ is
exponential in k. This depends on the fact that Vardi considers arbitrary mem-
oryless strategies of the form τ : {1, . . . , k}∗ → 2Q×{1,...,k}×Q where Q is the set
of states of A. On the other hand, if A corresponds to a CTL or CTL∗ formula,
then any formula of B+({1, . . . , k} × Q) occurring in the transition function of
A (see [KVW00,Var98] for the definition of the transition function of an alter-
nating tree automata) is a positive boolean combination of sub-formulas either of
the form

∧i=k
i=1(i, q) or of the form

∨i=k
i=1(i, q) for some q ∈ Q. This means that

we can limit ourselves to consider strategies τ such that the following holds for
each x ∈ {1, . . . , k}∗ and (q, i, p) ∈ τ(x): either (q, j, p) /∈ τ(x) for each j �= i
or (q, j, p) ∈ τ(x) for each 1 ≤ j ≤ k. This simple observation applied to the
algorithm in [Var98] provides the desired complexity linear in k. This is impor-
tant, since, as we will see in the next section, k depends on the size of the given
2 [KVW00] gives a translation from CTL∗ to Hesitant alternating tree automata which

are a special case of parity alternating tree automata.

Pushdown Module Checking 511

pushdown system. Moreover, note that classical translations [VW86, EJ88] from
CTL and CTL∗ to NTA lead to NTA whose sizes are exponential in k.

Nondeterministic Pushdown Tree Automata (PD-NTA). Here we de-
scribe PD-NTA (without ε-transitions) over complete k-ary labelled trees. For-
mally, an PD-NTA is a tuple P = 〈Σ, Γ, P, p0, α0, ρ, F 〉, where Σ is a finite input
alphabet, Γ is a finite stack alphabet, P is a finite set of (control) states, p0 ∈ P
is an initial state, α0 ∈ Γ ∗ ·γ0 is an initial stack content, ρ : P ×Σ×(Γ ∪{γ0}) →
2(P×Γ ∗)k

is a transition function, and F is an acceptance condition over P . In-
tuitively, when the automaton is in state p, reading an input node x labelled
by σ ∈ Σ, and the stack contains a word A · α in Γ ∗.γ0, then the automaton
chooses a tuple 〈(p1, β1), . . . , (pk, βk)〉 ∈ ρ(p, σ, A) and splits in k copies such that
for each 1 ≤ i ≤ k, a copy in state pi, and stack content obtained by removing
A and pushing βi, is sent to the node x · i in the input tree.

A run of the PD-NTA P on a Σ-labelled k-ary tree 〈T, V 〉 (with T={1, . . . , k}∗)
is a (P ×Γ ∗.γ0)-labelled tree 〈T, r〉 such that r(ε) = (p0, α0) and for each x ∈ T
with r(x) = (p, A · α), there is 〈(p1, β1), . . . , (pk, βk)〉 ∈ ρ(p, V (x), A) such that
for all 1 ≤ i ≤ k, r(x · i) = (pi, βi · α) if A �= γ0, and r(x · i) = (pi, βi · γ0)
otherwise (note that in this case α = ε).

As with NTA, we consider Büchi and parity acceptance conditions over P .
The notion of accepting path π is defined as for NTA with infr(π) defined as
follows: infr(π) ⊆ P is the set such that p ∈ infr(π) iff there are infinitely many
x ∈ π for which r(x) ∈ {p} × Γ ∗ · γ0. A run 〈T, r〉 is accepting if every path
π ⊆ T is accepting. The PD-NTA P accepts an input tree 〈T, V 〉 iff there is
an accepting run of P over 〈T, V 〉. The language of P , denoted L(P), contains
all trees accepted by P . The emptiness problem for PD-NTA is to decide, for a
given PD-NTA P , whether L(P) = ∅.

Proposition 1 ([KPV02]). The emptiness problem for a parity PD-NTA of
index m with n states, and transition function ρ can be solved in time exponential
in n · m · |ρ| with |ρ| =

∑
〈(p1,β1),...,(pk,βk)〉∈ρ(p,σ,A) |β1| + . . . + |βk|.

PD-NTA are closed under intersection with NTA.

Proposition 2. For a Büchi PD-NTA P = 〈Σ, Γ, P, p0, α0, ρ, F 〉 with F = P
and a parity NTA A = 〈Σ, Q, q0, δ, F

′〉, there is a parity PD-NTA P ′ such that
L(P ′) = L(P) ∩ L(A). Moreover, P ′ has |P | · |Q| states, the same index of A,
and the size of the transition relation is bounded by |ρ| · |δ|.

4 Deciding Pushdown Module Checking

In this section we solve Pushdown Module Checking for CTL and CTL∗.

4.1 Upper Bounds

We fix an OPD S = 〈AP, Γ, P, p0, α0, ∆, L, Env〉 and a formula ψ. We decide
pushdown module-checking for S against ψ using an automata-theoretic ap-
proach: we construct a parity PD-NTA PS×¬ψ as the intersection of two tree

512 L. Bozzelli, A. Murano, and A. Peron

automata. Essentially, the first automaton, denoted by PS , is a Büchi PD-NTA
that accepts the trees in exec(MS), and the second automaton is a parity NTA
that accepts the set of trees that do not satisfy ψ. Thus, MS |=r ψ iff L(PS×¬ψ)
is empty. The construction proposed here follows (and extends) that given in
[KVW01] for solving the module-checking problem for finite-state open systems.
The extensions concern the handling of terminal states and the use of pushdown
tree automata.

In order to define PS , we consider an equivalent representation of exec(MS)
by complete k-ary trees with k = max{bd(w) | w ∈ Ws ∪ We} (note that
for a pushdown system S, k is finite and can be trivially computed from the
transition relation ∆ of S). Recall that each tree in exec(MS) is a 2AP -labelled
tree that is obtained from 〈TMS , VMS 〉 by suitably pruning some of its subtrees.
We can encode the tree 〈TMS , VMS 〉 as a 2AP∪{t} ∪ {⊥}-labelled complete k-
ary tree (where ⊥ and t are fresh proposition names not belonging to AP) in
the following way: first, we add the proposition t to the label of all leaf nodes
(corresponding to terminal global states) of the tree TMS ; second, for each node
x ∈ TMS with p children x ·1, . . . , x ·p (note that 0 ≤ p ≤ k), we add the children
x · (p + 1), . . . , x · k and label these new nodes with ⊥; finally, for each node x
labelled by ⊥ we add recursively k-children labelled by ⊥. Let 〈{1, . . . , k}∗, V ′〉
be the tree thus obtained. Then, we can encode a tree 〈T, V 〉 ∈ exec(MS) as
the 2AP∪{t} ∪ {⊥}-labelled complete k-ary tree obtained from 〈{1, . . . , k}∗, V ′〉
preserving all the labels of nodes of 〈{1, . . . , k}∗, V ′〉 that either are labelled
by ⊥ or belong to T , and replacing all the labels of nodes (together with the
labels of the corresponding subtrees) pruned in 〈T, V 〉 with the label ⊥. In this
way, all the trees in exec(MS) have the same structure (they all coincide with
{1, . . . , k}∗), and they differ only in their labelling. Thus, the proposition ⊥ is
used to denote both “disabled” states and “completion” states. Moreover, since
we consider environments that do not block the system, for each node associated
with an enabled non-terminal environment state, at least one successor is not
labelled by ⊥. Let us denote by êxec(MS) the set of all 2AP∪{t} ∪ {⊥}-labelled
k-ary trees obtained from 〈{1, . . . , k}∗, V ′〉 in the above described manner. The
Büchi PD-NTA PS = 〈Σ, Γ, P ′, (p0, �), α0, ρ, P ′〉, which accepts all and only the
trees in êxec(MS), is defined as follows:

– Σ = 2AP∪{t} ∪ {⊥};
– P ′ = P×{⊥, �, �}. From (control) states of the form (p, ⊥), PS can read only

the letter ⊥, from states of the form (p, �), it can read only letters in 2AP∪{t}.
Finally, when PS is in state (p, �), then it can read both letters in 2AP∪{t}

and the letter ⊥. In this last case, it is left to the environment to decide
whether the transition to a configuration of the form ((p, �), α) is enabled.
The three types of (control) states are used to ensure that the environment
enables all transitions from enabled system configurations, enables at least
one transition from each enabled non-terminal environment configuration,
and disables transitions from disabled configurations.

– The transition function ρ : P ′ × Σ × (Γ ∪{γ0}) → 2(P ′×Γ)k

is defined as fol-
lows. Let p ∈ P and A ∈ Γ ∪{γ0} with nextS(p, A) = 〈(p1, β1), . . . , (pd, βd)〉

Pushdown Module Checking 513

(where 0 ≤ d ≤ k). Then, for m ∈ {�, �, ⊥} and σ ∈ Σ, ρ((p, m), σ, A) �= ∅
iff one of the following holds (where α = A if A ∈ Γ , and α = ε otherwise):

• σ = ⊥ and m ∈ {�, ⊥}. In this case we have

ρ((p, m), ⊥, A) = {〈 ((p, ⊥), α), . . . , ((p, ⊥), α)
︸ ︷︷ ︸

k pairs

〉}

That is, ρ((p, m), ⊥, A) contains exactly one k-tuple. In this case all the
successors of the current configuration are disabled.

• σ �= ⊥, m ∈ {�, �}, and nextS(p, A) is empty (i.e., d = 0). In this case
σ = L(p, A) ∪ {t} (i.e., the current configuration is terminal) and

ρ((p, m), L(p, A) ∪ {t}, A) = {〈((p, ⊥), α), . . . , ((p, ⊥), α) 〉}

• σ �= ⊥, (p, A) /∈ Env, m ∈ {�, �}, and nextS(p, A) is not empty (i.e.,
d ≥ 1). In this case σ = L(p, A) and ρ((p, m), L(p, A), A) is given by

{〈((p1, �), β1), . . . , ((pd, �), βd), ((p, ⊥), α), . . . , ((p, ⊥), α)
︸ ︷︷ ︸

k−d pairs

〉}

• σ �= ⊥, (p, A) ∈ Env, m ∈ {�, �}, and nextS(p, A) is not empty (i.e.,
d ≥ 1). In this case σ = L(p, A) and ρ((p, m), L(p, A), A) is given by

{ 〈((p1, �), β1), ((p2, �), β1), . . . , ((pd, �), βd), ((p, ⊥), α), . . . , ((p, ⊥), α)〉,
〈((p1, �), β1), ((p2, �), β1), . . . , ((pd, �), βd), ((p, ⊥), α), . . . , ((p, ⊥), α)〉,

...
〈((p1, �), β1), ((p2, �), β1), . . . , ((pd, �), βd), ((p, ⊥), α), . . . , ((p, ⊥), α) 〉}.

That is, ρ((p, m), L(p, A), A) contains d k-tuples. When the automa-
ton proceeds according to the ith tuple, the environment can disable
the transitions to all successors of the current configuration, except the
transition associated with the pair (pi, βi), which must be enabled.

Note that PS has 3 · |P | states, and |ρ| is bounded by k(|P | · |Γ |+ |∆|). Assuming
that |P | · |Γ | ≤ |∆|, we have that |ρ| ≤ k · |∆|.

We recall that a node labelled by ⊥ stands for a node that actually does not
exist. Thus, we have to take this into account when we interpret CTL∗ or CTL
formulas over trees 〈T, V 〉 ∈ êxec(MS) (where T = {1, . . . , k}∗). This means that
we have to consider only the paths in 〈T, V 〉 (that we call “legal” paths) that
either never visit a node labelled by ⊥ or contain a terminal node (i.e. a node
labelled by t). Note that a path is not “legal” iff it satisfies the formula ¬t U ⊥.
In order to achieve this, as in [KVW01] we define a function f : CTL∗ formulas
→ CTL∗ formulas such that f(ϕ) restricts path quantification to only “legal”
paths (the function f we consider extends that given in [KVW01], since we have
to consider also paths that lead to terminal configurations). The function f is
inductively defined as follows:

• f(p) = p for any proposition p ∈ AP ;
• f(¬ϕ) = ¬f(ϕ);
• f(ϕ1 ∧ ϕ2) = f(ϕ1) ∧ f(ϕ2);

514 L. Bozzelli, A. Murano, and A. Peron

• f(Eϕ) = E((G¬⊥) ∧ f(ϕ)) ∨ E((F t) ∧ f(ϕ));
• f(Aϕ) = A((¬t U ⊥) ∨ f(ϕ));
• f(Xϕ) = X(f(ϕ) ∧ ¬⊥);
• f(ϕ1 U ϕ2) = (f(ϕ1) ∧ ¬⊥) U (f(ϕ2) ∧ ¬⊥).

When ϕ is a CTL formula, the formula f(ϕ) is not necessarily a CTL formula,
but it has a restricted syntax: its path formulas have either a single linear-
time operator or two linear-time operators connected by a Boolean operator. By
[KG96], such formulas have a linear translation to CTL.

By definition of f , it follows that for each formula ϕ and 〈T, V 〉 ∈ êxec(MS),
〈T, V 〉 satisfies f(ϕ) iff the 2AP -labelled tree obtained from 〈T, V 〉 removing
all the nodes labelled by ⊥ (and removing the label t) satisfies ϕ. Therefore,
module–checking S against formula ψ is reduced to check the existence of a tree
〈T, V 〉 ∈ êxec(MS) = L(PS) satisfying f(¬ψ) (note that |f(¬ψ)| = O(|¬ψ|)).
We reduce the latter to check the emptiness of a parity PD-NTA PS×¬ψ that is
defined as the intersection of the Büchi PD-NTA PS with a parity NTA A¬ψ =
〈Σ, Q, q0, δ, F 〉 accepting exactly the Σ-labelled complete k-ary trees that are
models of f(¬ψ) (recall that Σ = 2AP∪{t} ∪ {⊥}). By Lemma 1, if ψ is a CTL
(resp., CTL∗) formula, then A¬ψ has size O(k·2O(|ψ| log |ψ|)) (resp., O(k·22O(|ψ|)

))
and index O(|ψ|) (resp., O(2|ψ|)). Therefore, by Proposition 2 the following holds:

– If ψ is a CTL formula, then PS×¬ψ has O(k · |P | · 2O(|ψ| log |ψ|)) states, index
O(|ψ|), and transition relation bounded by O(k2 · |∆| · 2O(|ψ| log |ψ|)).

– If ψ is a CTL∗ formula, then PS×¬ψ has O(k · |P | · 22O(|ψ|)
) states, index

O(2|ψ|), and transition relation bounded by O(k2 · |∆| · 22O(|ψ|)
).

Therefore, by Proposition 1 we obtain the main result of this subsection.

Theorem 1.
(1) The pushdown module-checking problem for CTL is in 2Exptime.
(2) The pushdown module-checking problem for CTL∗ is in 3Exptime.
(3) For a fixed CTL or CTL∗ formula, the pushdown module-checking problem

is in Exptime.

4.2 Lower Bounds

In this section we give lower bounds for the considered problems that match the
upper bounds of the algorithm proposed in the previous subsection. The lower
bound for CTL (resp., CTL∗) is shown by a reduction from the word problem for
Expspace–bounded (resp., 2Expspace–bounded) alternating Turing Machines.
Without loss of generality, we consider a model of alternation with a binary
branching degree. Formally, an alternating Turing Machine (TM, for short) is
a tuple M = 〈Σ, Q, Q∀, Q∃, q0, δ, F 〉, where Σ is the input alphabet, which
contains the blank symbol #, Q is the finite set of states, which is partitioned
into Q = Q∀∪Q∃, Q∃ (resp., Q∀) is the set of existential (resp., universal) states,
q0 is the initial state, F ⊆ Q is the set of accepting states, and the transition
function δ is a mapping δ : Q × Σ → (Q × Σ × {L, R})2.

Pushdown Module Checking 515

Configurations of M are words in Σ∗ ·(Q×Σ)·Σ∗. A configuration η ·(q, σ)·η′

denotes that the tape content is ηση′, the current state is q, and the reading
head is at position |η| + 1. When M is in state q and reads an input σ ∈ Σ
in the current tape cell, then it nondeterministically chooses a triple (q′, σ′, dir)
in δ(q, σ) = 〈(ql, σl, dirl), (qr, σr , dirr)〉, and then moves to state q′, writes σ′ in
the current tape cell, and its reading head moves one cell to the left or to the
right, according to dir. For a configuration c, we denote by succl(c) and succr(c)
the successors of c obtained choosing respectively the left and the right triple
in 〈(ql, σl, dirl), (qr , σr, dirr)〉. The configuration c is accepting if the associated
state q belongs to F . Given an input x ∈ Σ∗, a computation tree of M on x is a
tree in which each node corresponds to a configuration. The root of the tree cor-
responds to the initial configuration associated with x. A node that corresponds
to a universal configuration (i.e. the associated state is in Q∀) has two succes-
sors, corresponding to succl(c) and succr(c), while a node that corresponds to
an existential configuration (i.e. the associated state is in Q∃) has a single suc-
cessor, corresponding to either succl(c) or succr(c). The tree is accepting iff all
its paths (from the root) reach an accepting configuration. An input x ∈ Σ∗ is
accepted by M iff there exists an accepting computation tree of M on x.

If M is Expspace–bounded (resp., 2Expspace–bounded), then there is a
constant k ≥ 1 such that for each x ∈ Σ∗, the space needed by M on input x is
bounded by 2k·|x| (resp., 22k·|x|

). It is well-known [CKS81] that 2Exptime (resp.,
3Exptime) coincides with the class of all languages accepted by Expspace–
bounded (resp., 2Expspace–bounded) alternating Turing Machines.

In the following we fix an input word x and let n = k · |x|.
Theorem 2.
(1) The pushdown module checking problem for CTL is 2Exptime–hard.
(2) The pushdown module checking problem for CTL∗ is 3Exptime–hard.

Proof. Here we sketch the proof for CTL. Given the Expspace–bounded alter-
nating Turing Machine M = 〈Σ, Q, Q∀, Q∃, q0, δ, F 〉 and the input x, we build
an OPD S and a CTL formula ϕ whose sizes are polynomial in n and in |M|
such that M accepts x iff there is a tree 〈T, V 〉 ∈ exec(MS) such that 〈T, V 〉
satisfies ϕ, i.e. iff MS �|=r ¬ϕ. Some ideas in the proposed reduction are taken
from [KTMV00], where there are given lower bounds for the satisfiability of
extensions of CTL and CTL∗.

Note that any reachable configuration of M over x can be seen as a word in
Σ∗ · (Q × Σ) · Σ∗ of length exactly 2n. If x = σ1 . . . σr (where r = |x|), then the
initial configuration is given by (q0, σ1)σ2 . . . σr ## . . . #

︸ ︷︷ ︸
2n−r

.

Each cell of a TM configuration is coded using a block of n symbols of the
stack alphabet of S. The whole block is used to encode both the content of the
cell and the location (the number of cell) on the TM tape (note that the number
of cell is in the range [0, 2n − 1] and can be encoded using n bits). The stack
alphabet is given by (Σ∪(Q×Σ))×2{b,fc,e,cn,l} where b is used to mark the first
element of a TM block, fc to mark the initial TM configuration, e to mark the
first element of the first block of a TM configuration, cn to encode the number

516 L. Bozzelli, A. Murano, and A. Peron

of cell, and l to mark a left TM successor. Moreover, Σ ∪ (Q × Σ) is used to
encode the cell content. The pushdown system S proceeds in two phases.

Phase 1. Starting from the initial configuration (with empty stack content), S
generates nondeterministically by push transitions a sequence of TM configura-
tions on the stack. S ensures that the first TM configuration is the initial TM
configuration (corresponding to the input x). Moreover, the following conditions
are satisfied for any generated TM configuration c:
– S ensures that the symbols b, fc, and e are used properly. Moreover, S

ensures that the last block of c is the unique block in c that has number of
cell 2n − 1 (i.e, all its elements are marked by the proposition cn).

– All global states of S associated with all elements of c except the last element
are environment states. S keeps track of the TM state q associated with c
by its finite control. If c is not accepting (i.e., q /∈ F), then the global state s
associated with the last element of c is a system state if c is a TM universal
configuration (i.e., q ∈ Q∀), and it is an environment state otherwise. In
such a state s, S without modifying the stack content chooses a letter 0/1 to
encode the choice of the transition. According to such a choice all elements
of the next TM configuration will be marked by the corresponding choice
symbol. In particular, we use the proposition l to mark all elements of a TM
left successor (this means that ¬l is associated with right TM successors).

Note that S does not ensure that the number of blocks of any generated TM con-
figuration is exactly 2n, that the cell numbers are updated correctly, and the gen-
erated configuration sequence is consistent with the transition function of M.

Phase 2. When S finishes to generate an accepting configuration, it reaches
a system global state in which chooses between two possible options opt1 and
opt2 (without changing the stack content). When S selects opt1, then it sim-
ply empties deterministically the stack by a sequence of pop transitions. The
corresponding subtree of the computation tree of MS reduces to a finite linear
path that corresponds to the sequence ν of “pseudo” TM configurations gener-
ated in the first phase in reversed order. We use this subtree together with a
CTL formula ϕopt1 to check that the cell numbers of the sequence ν are encoded
correctly (this also implies that each configuration of ν has exactly length 2n).

When S selects opt2, then it empties the stack by a sequence of pop transitions
with the additional ability to generate at most at one block (corresponding to
a TM cell) the symbol check1 and successively at most at one block the symbol
check2. Therefore, a computation in this phase corresponds to the sequence ν of
“pseudo” TM configurations generated in the first phase in reversed order with
at most one block marked by check1 and with at most one block marked by
check2. Any global state of S in this phase is an environment state and has at
most two successors. Let 〈T, V 〉 be the corresponding subtree of the computation
tree of MS . We use this subtree 〈T, V 〉 together with a CTL formula ϕopt2 in
order to check that ν is faithful to the evolution of M.

In order to understand how this can be done, let c = a1 . . . a2n be a TM
configuration. For any 1 ≤ i ≤ 2n, the value a′

i of the i-th cell of succl(c) (resp.,

Pushdown Module Checking 517

succr(c)) is completely determined by the values ai−1, ai and ai+1 (taking a2n+1
for i = 2n and a0 for i = 1 to be some special symbol). As in [KTMV00], we de-
note by nextl(ai−1, ai, ai+1) (resp., nextr(ai−1, ai, ai+1)) our expectation for a′

i

(these functions can be trivially obtained from the transition function of M).
Let exec(〈T, V 〉) be the set of the trees obtained by pruning from 〈T, V 〉

subtrees whose root is a child of a node corresponding to an environment state.
Then, ϕopt2 will capture all trees 〈T ′, V ′〉 ∈ exec(〈T, V 〉) satisfying the following:

– For each block bl of ν, there is a path in T ′ (from the root) such that the
sequence of nodes associated with bl is labelled by check1.

– For each u ∈ T ′ labelled by check1, there is exactly one path in T ′ from u.
– Each path π of T ′ from a node u labelled by check1 (and such that u cor-

responds to some element of a block bl1 of ν not belonging to the first TM
configuration) contains a block bl2 marked by check2 having the same num-
ber of cell of bl1 and belonging to the previous TM configuration w.r.t. ν
(we use the proposition e that marks the first element of the first block
of a TM configuration to check this last condition). Moreover, denoting by
σ(bl) the Σ ∪ (Q × Σ)-value of a block bl, ϕopt2 will check that σ(bl1) is
consistent with nexts(σ(blsucc), σ(bl2), σ(blprec)), where s ∈ {l, r}, blsucc

and blprec represent the blocks soon after and soon before bl2 along π,
and s = l iff the TM configuration associated with bl1 is a left successor
(i.e. all nodes of bl1 are labelled by proposition l).
It is clear that assuming that the cell numbers of ν are encoded correctly
(this is guaranteed by formula ϕopt1), then ν is a legal sequence of TM con-
figurations iff there is 〈T ′, V ′〉 ∈ exec(〈T, V 〉) satisfying ϕopt2 .

By considerations above, it is clear that M accepts x iff there is 〈T, V 〉 ∈
exec(MS) such that each path of T (from the root) reaches a node u corre-
sponding to the last element of an accepting TM configuration and the following
holds: the subtree associated with the opt1-child (resp., opt2-child) of u satisfies
formula ϕopt1 (resp., ϕopt2). Therefore, formula ϕ is defined as follows:

AF
(
EX(opt1 ∧ ϕopt1) ∧ EX(opt2 ∧ ϕopt2)

)
�

Now, we can prove the main result of this paper.

Theorem 3.
(1) The pushdown module-checking problem for CTL is 2Exptime-complete.
(2) The pushdown module-checking problem for CTL∗ is 3Exptime-complete.
(3) The pushdown module-checking problem for CTL∗ is Exptime-complete in

the size of the given OPD.

Proof. Claims 1 and 2 directly follow from Theorems 1 and 2. Now, let us con-
sider Claim 3. First, we note that model checking pushdown systems corresponds
to module checking the class of OPD in which there are not environment configu-
rations. Moreover, pushdown model checking against alternation-free µ-calculus
is known to be Exptime-complete also for a fixed formula [Wal96]. Since CTL∗

subsumes the alternation-free mu-calculus, Claim 3 follows from Theorem 1.

518 L. Bozzelli, A. Murano, and A. Peron

References

[BC96] E. Bhat and R. Cleaveland. Efficient model checking via the equational
µ-calculus. In LICS’96, pages 304–312, 1996.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Push-
down Automata: Application to Model-Checking. In CONCUR’97, LNCS
1243, pages 135–150. Springer-Verlag, 1997.

[Buc62] J.R. Buchi. On a decision method in restricted second order arithmetic. In
Proc. Internat. Congr. Logic, Method. and Philos. Sci. 1960, pages 1–12,
Stanford, 1962.

[CE81] E.M. Clarke and E.A. Emerson. Design and verification of synchronization
skeletons using branching time temporal logic. In Proceedings of Workshop
on Logic of Programs, LNCS 131, pages 52–71. Springer-Verlag, 1981.

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal
of the ACM, 28(1):114–133, 1981.

[EH86] E.A. Emerson and J.Y. Halpern. Sometimes and not never revisited: On
branching versus linear time. Journal of the ACM, 33(1):151–178, 1986.

[EJ88] E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics
of programs. In FOCS’88, pages 328–337, 1988.

[EJ91] E.A. Emerson and C.S. Jutla. Tree automata, µ-calculus and determinacy.
In FOCS’91, pages 368–377, 1991.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[KG96] O. Kupferman and O. Grumberg. Buy one, get one free!!! Journal of

Logic and Computation, 6(4):523–539, 1996.
[KPV02] O. Kupferman, N. Piterman, and M.Y. Vardi. Pushdown specifications.

In LPAR’02, LNCS 2514, pages 262–277. Springer-Verlag, 2002.
[KTMV00] O. Kupferman, P.S. Thiagarajan, P. Madhusudan, and M.Y. Vardi. Open

systems in reactive environments: Control and Synthesis. In CONCUR’00,
LNCS 1877, pages 92–107. Springer-Verlag, 2000.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata-Theoretic
Approach to Branching-Time Model Checking. Journal of the ACM,
47(2):312–360, 2000.

[KVW01] O. Kupferman, M.Y. Vardi, and P. Wolper. Module Checking. Informa-
tion and Computation, 164(2):322–344, 2001.

[LMS04] C. Loding, P. Madhusudan, and O. Serre. Visibly pushdown games. In
FSTTCS’04, pages 408–420. Springer-Verlag, 2004.

[MS85] D.E. Muller and P.E. Shupp. The theory of ends, pushdown automata,
and second-order logic. Theoretical Computer Science, 37:51–75, 1985.

[QS81] J.P. Queille and J. Sifakis. Specification and verification of concurrent
programs in Cesar. In Proceedings of the Fifth International Symposium
on Programming, LNCS 137, pages 337–351. Springer-Verlag, 1981.

[Var98] M.Y. Vardi. Reasoning about the past with two-way automata. In
ICALP’98, LNCS 1443, pages 628–641. Springer-Verlag, 1998.

[VW86] M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal
logics of programs. J. of Computer and System Sciences, 32(2):182–221,
1986.

[Wal96] I. Walukiewicz. Pushdown processes: Games and Model Checking. In
CAV’96, LNCS 1102, pages 62–74. Springer-Verlag, 1996.

[Wal00] I. Walukiewicz. Model checking CTL properties of pushdown systems. In
FSTTCS’00, LNCS 1974, pages 127–138. Springer-Verlag, 2000.

	Introduction
	Preliminaries
	Module Checking for Branching Temporal Logics
	Pushdown Module Checking

	Tree Automata
	Deciding Pushdown Module Checking
	Upper Bounds
	Lower Bounds

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

