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Abstract
Model checking is a useful method to verify automatically the correctness
of a system with respect to a desired behavior, by checking whether a math-
ematical model of the system satisfies a formal specification of this behavior.
Many systems of interest are open, in the sense that their behavior depends on
the interaction with their environment. The model checking problem for finite—
state open systems (called module checking) has been intensively studied in the
literature. In this paper, we focus on open pushdown systems and we study the
related model-checking problem (pushdown module checking, for short) with
respect to properties expressed by CTL and CTL"* formulas. We show that
pushdown module checking against CTL (resp., CTL") is 2EXPTIME-complete
(resp., SEXPTIME-complete). Moreover, we prove that for a fixed CTL or CTL"

formula, the problem is EXPTIME-complete.

1 Introduction

In the last decades significant results have been achieved in the area of formal design
verification of reactive systems. In particular, a meaningful contribution has been
given by algorithmic methods developed in the context of model-checking ([8, 22,
24]). In this verification method, the behavior of a system, formally described by
a mathematical model, is checked against a behavioral constraint specified by a
formula in a suitable temporal logic, which enforces either a linear model of time
(formulas are interpreted over linear sequences corresponding to single computations
of the system) or a branching model of time (formulas are interpreted over infinite
trees, which describe all the possible computations of the system). Traditionally,
model checking is applied to finite-state systems, typically modeled by labeled state-
transition graphs.
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In system modeling, we distinguish between closed and open systems. For a
closed system, the behavior is completely determined by the state of the system.
For an open system, the behavior is affected both by its internal state and by the
ongoing interaction with its environment. Thus, while in a closed system all the non-
deterministic choices are internal, and resolved by the system, in an open system
there are also external nondeterministic choices, which are resolved by the environ-
ment [14]. Model checking algorithms used for the verification of closed systems are
not, appropriate for the verification of open systems. In the latter case, we should
check the system with respect to arbitrary environments and should take into ac-
count uncertainty regarding the environment.

Kupferman, Vardi, and Wolper [19] extend model checking from closed finite
state systems to open finite-state systems. In such a framework, the open finite-state
system is described by a labeled state-transition graph called module, whose set of
states is partitioned into a set of system states (where the system makes a transi-
tion) and a set of environment states (where the environment makes a transition).
The problem of model checking a module (called module checking) has two inputs:
a module M and a temporal formula 1. The idea is that an open system should
satisfy a specification ¢ no matter how the environment behaves. Let us consider
the unwinding of M into an infinite tree, say Ths. Checking whether T}, satisfies ¥
is the usual model-checking problem [8, 22]. On the other hand, for an open system,
Ty describes the interaction of the system with a maximal environment, i.e. an en-
vironment that enables all the external nondeterministic choices. In order to take
into account all the possible behaviors of the environment, we have to consider all
the trees T' obtained from T}, by pruning subtrees whose root is a successor of an en-
vironment state (pruning these subtrees correspond to disable possible environment
choices). Therefore, a module M satisfies ¢ if all these trees T satisfy 1.

Note that for the linear-time paradigm, module checking coincides with the usual
model checking, since using linear temporal formulas i, we require that all the pos-
sible interactions of the system with its environment (corresponding to all computa-
tions of M, i.e. to all possible full-paths in T;) have to satisfy ¢. Therefore, while
the complexity of model checking for closed and open finite—state systems coincide
using linear time logics, when using branching time logics, model checking for open
finite-state systems is much harder than model checking for closed finite-state sys-
tems. In particular, the problem is EXPTIME-complete for specifications in CTL
and 2ExXpPTIME—complete for specifications in CTL* [19]. Moreover, the complexity
of this problem in terms of the size of the module

is PTIME-complete.

Recently, the investigation of model-checking techniques has been extended to
infinite-state systems. An active field of research is model-checking of closed infinite-
state sequential systems. These are systems in which each state carries a finite,
but unbounded, amount of information e.g. a pushdown store. The origin of this
research is the result of Muller and Schupp that the monadic second-order (MSO)
theory of graphs induced by pushdown systems is decidable [21]. More recently,
Walukiewicz [25] has shown that model checking pushdown systems with respect to
modal p-calculus is EXPTIME-complete. Even for a fixed formula in the alternation-



free modal p-calculus, the problem is EXPTIME-hard in the size of the pushdown
system. The problem remains EXPTIME-complete also for the logic CTL [26], which
corresponds to a fragment of the alternation-free modal p-calculus. Recently, in
[3], it is showed that even for a fixed CTL formula, the problem remains EXPTIME-
hard. For the logic CTL* (which subsumes both LTL and CTL), the problem is
still harder, since it is 2EXPTIME-complete [3]. The situation is quite different
for linear-time logics. Model-checking with LTL and the linear-time p-calculus is
ExpTIME-complete [2]. However, the problem is polynomial-time solvable in the size
of the pushdown system.

In the literature, verification of open systems has been also formulated as two-
players games. For pushdown systems, games with parity winning conditions are
known to be decidable [25].

More recently, in [20], it is shown that pushdown games against LTL specifica-
tions are 3EXPTIME-complete.

This paper contributes to the investigation of model checking of open infinite-
state systems by introducing Open Pushdown systems (OPD, for short) and con-
sidering model checking with respect to CTL and CTL*. An OPD is a pushdown
system

in which the set of configurations is partitioned (in accordance with the control
state and the symbol on the top of the stack) into a set of system configurations and
a set of environment configurations.

As an example of closed and open pushdown systems, we can consider two drink-
dispensing machines (obtained as an extension of the machines defined in [14]). The
first machine repeatedly boils water for a while, makes an internal nondeterministic
choice and serves either tea or coffee, with the additional constraint that coffee can
be served only if the number of coffees served up to that time is smaller than that
of teas served. Such a machine can be modeled as a closed pushdown system (the
stack is used to guarantee the inequality between served coffees and teas). The
second machine repeatedly boils water for a while, asks the environment to make a
choice between coffee and tea, and deterministically serves a drink according to the
external choice, with the additional constraint that coffee can be served only if the
number of coffees served up to that time is smaller than that of teas served. Such
a machine can be modeled as an open pushdown system. Both machines can be
represented by a pushdown system that induces the same infinite tree of possible
executions, nevertheless, while the behavior of the first machine depends on internal
choices solely, the behavior of the second machine depends also on the interaction
with its environment. Thus, for instance, for the first machine, it is always possible
to eventually serve coffee.

On the contrary, for the second machine, this does not hold. Indeed, if the
environment always chooses tea, the second machine will never serve coffee.

We study module checking of (infinite-state) modules induced by OPD w.r.t.
the branching-time logics CTL and CTL*. First, we note that by results in [21, 27]
it easily follows that the considered problems are decidable. Indeed, since pushdown
graphs have a decidable MSO theory [21] and the unfolding of a graph from a
given vertex preserves MSO decidability [27], it follows that the tree unfolding of



a pushdown system has a decidable MSO theory. Now, given a MSO specification
@ over the tree unfolding Ts of a pushdown system S, it is easy to construct an
other MSO specification ¢ over Ts such that Ts satisfies ¢ iff the pushdown module
checking of § against ¢ has a positive answer. Thus, since CTL and CTL* can be
effectively translated into MSO, the decidability result follows.

In this paper, we establish the exact complexity of pushdown module check-
ing against CTL and CTL* specifications. As in the case of finite-state systems,
pushdown module checking is much harder than pushdown model checking for both
CTL and CTL*. Indeed, we show that pushdown module checking is 2EXPTIME-
complete for CTL and 3EXPTIME-complete for CTL*. We also show that for both
CTL and CTL*, the complexity of the problem in terms of the size of the given
OPD is ExpTIME-complete. For the upper bounds of the complexity results, we
exploit the standard automata-theoretic approach. In particular, for CTL (resp.,
CTL*) we propose an exponential time (resp., a double-exponential time) reduction
to the emptiness problem of nondeterministic pushdown tree automata with parity
acceptance conditions. The latter problem is known to be decidable in exponential
time [16]. Finally, the lower bound for CTL (resp., CTL*) is shown by a techni-
cally non-trivial reduction from the word problem for EXPSPACE-bounded (resp.,
2EXPSPACE-bounded) alternating Turing Machines.

Outline of the paper. In Section 2, we recall the module checking problem as
defined in [19] for both CTL and CTL* and define open pushdown systems. In
Section 3, we recall the framework of nondeterministic (finite-state) tree automata
and nondeterministic pushdown tree automata, which are exploited in Section 4 to
solve the pushdown module checking problem against CTL and CTL*. In Section 4,
we describe algorithms to solve the above mentioned problems, and in Section 5, we
give lower bounds that match the upper bounds of the proposed algorithms. We
conclude in Section 6.

2 Preliminaries

2.1 Module checking for Branching Temporal Logics

In this subsection we define the module checking problem for CTL and CTL* [19].
First, we recall syntax and semantics of CTL and CTL*.

Let N be the set of positive integers. A tree T is a prefix closed subset of N*. The
elements of T" are called nodes and the empty word ¢ is the root of T. For x € T,
the set of children of x (in T) is children(T,z) = {z -1 €T |i € N}. For k > 1, the
(complete) k-ary tree is the tree {1,...,k}*. For z,y € N*, we write z < y to mean
that 2 is a proper prefix of y. For z € T, a (full) path 7 of T from x is a minimal
set m C T such that = € 7 and for each y € 7 such that children(T,y) # 0, there is
exactly one node in children(T,y) belonging to 7. For y € 7, we denote by 7¥ the
(suffix) path of T from y given by {z € w | y < z}. In the following, for a path of T,
we mean a path of T' from the root €. For an alphabet X, a X-labeled tree is a pair
(T, V), where T is a tree and V : T — ¥ maps each node of T' to a symbol in .



The logic CTL* is a branching—time temporal logic [9], where a path quantifier, £
(“for some path”) or A (“for all paths”), can be followed by an arbitrary linear-time
formula, allowing boolean combinations and nesting, over the usual linear temporal
operators X (“next”), U (“until”), F' (“eventually”), and G (“always”).

There are two types of formulas in CTL*: state formulas, whose satisfaction
is related to a specific state (or node of a labeled tree), and path formulas, whose
satisfaction is related to a specific path. Formally, for a finite set AP of proposition
names, the class of state formulas ¢ and the class of path formulas 6 are defined as
follows:

pi=prop |~y |eNp| AG|E0
O:=¢|-0|0AN0| XO0|0UO

where prop € AP. The set of state formulas ¢ forms the language CTL*. The other
operators can be introduced as abbreviations in the usual way: for instance, F0
abbreviates true U 6 and GO abbreviates =F—6. The size || of a CTL* formula ¢
is the number of distinct subformulas of .

The Computation Tree Logic CTL [8] is a restricted subset of CTL*, obtained
restricting the syntax of path formulas 6 as follows: 6 := X¢ | U . This means
that X and & must be immediately preceded by a path quantifier.

We define the semantics of CTL* (and its fragment CTL) with respect to 24F-
labeled trees (T, V).

Let z € T and m C T be a path from z. For a state formula ¢ and a path
formula 6, the satisfaction relations ((T,V),z) = ¢ and ((T,V),n) |= 6, meaning
that ¢ holds at node z and 6 holds along the path 7 in (T, V), respectively, are
defined by induction. The clauses for proposition letters, negation, and conjunction
are standard. For the other constructs, we have the following:

T, E A 0 iff for each path 7 in T from z, ((T, V), ) E 6;
(T,
(T,

)

x)
x) = F 0 iff there exists a path 7 from z such that ((T, V), n) | 6,
( 7) E ¢ (where 7 is a path from z) iff ((T,V),z) | ¢;

(T, V), m) = X0
iff @\{xz} #0and (T,V), 7\ {z}) |= 6;'

(T,V),m) = 01 U s iff there exists y € 7 such that ((T,V),nY) = 63 and
(T, V), 7%) |= 6, for all z € w such that z < y.

V)
V),
V),
V),

Given a CTL* (state) formula ¢, we say that (T, V) satisfies o if ((T,V),¢) = .
In this paper we consider open systems, i.e. systems that interact with their
environment and whose behavior depends on this interaction. The (global) behavior
of such a system is described by an open Kripke structure (called also module [19])
= (AP, Wy, W,, —, wq, i), where AP is a finite set of atomic propositions, W,UW,
is a countable set of (global) states partitioned into a set W of system states and
a set W, of environment states (we use W to denote Wy U W,), -=C W x W is a
(global) transition relation, wy € W is an initial state, and p : W — 247 maps

Inote that 7 \ {z} is a path starting from the unique child of = in =.



each state w to the set of atomic propositions that hold in w. For w — w’, we say
that w’ is a successor of w. We assume that the states in M are ordered and the
number of successors of each state w, denoted by bd(w), is finite. For each state
w € W, we denote by succ(w) the ordered tuple (possibly empty) of w’s successors.
We say that a state w is terminal if it has no successor. When the module M is
in a non-terminal system state ws, then all the states in succ(ws) are possible next
states. On the other hand, when M is in a non-terminal environment state w., then
the possible next states (that are in succ(w.)) depend on the current environment.
Since the behavior of the environment is not predictable, we have to consider all the
possible sub-tuples of succ(w.). The only constraint, since we consider environments
that cannot block the system, is that not all the transitions from w, are disabled.

The set of all (maximal) computations of M starting from the initial state wy is
described by a W-labeled tree (T, Var), called computation tree, which is obtained
by unwinding M in the usual way. The problem of deciding, for a given branching-
time formula v over AP, whether (Th, o Vi) satisfies ¢, denoted M | 9, is
the usual model-checking problem [8, 22]. On the other hand, for an open sys-
tem, (T, V) corresponds to a very specific environment, i.e. a maximal environ-
ment that never restricts the set of its next states. Therefore, when we examine
a branching-time specification ¢ w.r.t. a module M, 1 should hold not only in
(Thi, V), but in all the trees obtained by pruning from (T, Vas) subtrees whose
root is a child (successor) of a node corresponding to an environment state. The
set of these labeled trees is denoted by exec(M), and is formally defined as follows.
(T,V) € exec(M) iff T C Ty, V is the restriction of Vjs to the tree T, and for all
x € T the following holds:

o if Viy(z) = w € W, and succ(w) = (wy,...,wy), then children(T,z) = {z -
1,...,2-n} (note that for 1 <i<n, V(z-i) = Vi (z-i) = w);

o if Viy(z) = w € W, and succ(w) = (wy,...,wy), then there is a sub-tuple
(wiy,...,ws,) of succ(w) such that children(T,z) = {z -i1,...,z -1i,} (note
that for 1 < j <p, V(x-i;) = Va(x - i;) = wy;), and p > 1 if succ(w) is not
empty.

Intuitively, each labeled tree (T, V) in exec(M) corresponds to a different be-
havior of the environment. In the following, we consider the trees in ezec(M) as
24P _labeled trees, i.e. taking the label of a node z to be u(V(z)).

For a module M and a CTL* (resp., CTL) formula 1, we say that M satisfies
¥, denoted M =, 1, if all the trees in exec(M) satisfy 1. The problem of deciding
whether M satisfies v is called module checking [19]. Note that M =, ¢ implies
M = 4 (since (Tar, Vi) € exec(M)), but the converse in general does not hold.
Also, note that M 4, 1 is not equivalent to M =, —. Indeed, M [~, ¢ just
states that there is some tree (T, V) € exec(M) satisfying —p.

2.2 Pushdown Module Checking

In this paper we consider Modules induced by Open Pushdown Systems (OPD, for
short), i.e., Pushdown systems where the set of configurations is partitioned (in



accordance with the control state and the symbol on the top of the stack) into a set
of environment configurations and a set of system configurations.

An OPD is a tuple S = (AP, T, P,pg, A, L, Env), where AP is a finite set of
propositions, I' is a finite stack alphabet, P is a finite set of (control) states, py € P
is an initial state, A C (P x (T U{79})) x (P x T'*) is a finite set of transition rules
(where o & T is the stack bottom symbol), L : P x (T U {y}) — 24% is a labeling
function, and Env C P x (I' U {70}) is used to specify the set of environment
configurations. A configuration is a pair (p,a) where p € P is a control state and
a € T* - v is a stack content. We assume that the set P x I'* is ordered and for
each (p,A) € P x (T U{y0}), we denote by nexts(p, A) the ordered tuple (possibly
empty) of the pairs (g, 3) such that ((p, A), (¢, 08)) € A.

The size |S| of S is | P+ |T'| + |A[, with [A] =37, 4y (.anea |6l

An OPD S induces a module Mg = (AP, W, W., —, wo, ), where:
o Wy, UW, =P xTI'*. g is the set of pushdown configurations;
o W, is the set of configurations (p, A - &) such that (p, A) € Enwv;

e wo = (po, 7o) (initially, the stack is empty);

(p, A-a) — (q,0) iff there is ((p, A),(q, ")) € A such that either A € T" and
B =0 a or A=~y (in this case « = ¢) and § = 3 - 79 (note that every
transition that removes the bottom symbol 7g also pushes it back);

e Forall (p,A-B) € WoUW,, u(p,A-B) = L(p, A).

The pushdown module checking problem for CTL (resp., CTL*) is to decide, for
a given OPD S and a CTL (resp., CTL*) formula v, whether Mg |=, ¥.

3 Tree Automata

In order to solve the pushdown module checking problem for CTL and CTL*, we use
an automata theoretic approach; in particular, we exploit the formalisms of Nonde-
terministic (finite-state) Tree Automata (NTA, for short) [5] and Nondeterministic
Pushdown Tree Automata (PD-NTA, for short) [16].

Nondeterministic (finite—state) Tree Automata (NTA). Here we describe
NTA over (complete) k-ary trees for a given k > 1. Formally, an NTA is a tuple
A =(2,Q,q0,9, F), where X is a finite input alphabet, @ is a finite set of states,
go € Q is an initial state, § : Q x ¥ — 29" is a transition function, and F' is an
acceptance condition. We consider here Biichi and parity acceptance conditions
[5, 11]. In the case of a parity condition, F' = {Fy,..., F},} is a finite sequence of
subsets of @, where F} C F» C ... C F,,, = Q (m is called the index of A). In the
case of a Biichi condition, F' C Q.

A run of A on a X-labeled k-ary tree (T',V) (where T = {1,...,k}*) is a Q-
labeled tree (T,r) such that r(¢) = ¢qo and for each € T, we have that (r(z -
1),...,r(z-k)) € 6(r(x),V(x)). For a path m C T, let inf,(r) C Q be the set of



states that appear as the labels of infinitely many nodes in 7. For a parity acceptance
condition F' = {Fy,..., F,}, 7 is accepting if there is an even 1 < i < m such that
inf,(m) N F; # 0 and for all j < ¢, inf .(7m) N F; = 0. For a Biichi condition ' C Q, 7
is accepting if inf, . (m)NF # (. A run (T, r) is accepting if all its paths are accepting.
The automaton A accepts an input tree (T, V) iff there is an accepting run of A
over (T,V). The language of A, denoted L(A), is the set of 3-labeled (complete)
k-ary trees accepted by A.

The size |A| of an NTA A'is [Q|+[0] + |F| with |6] = >=, ;)coxx 10(q,0)|. Note
that |§] is at most || - |Q|* 1.

It is well-known that formulas of CTL and CTL* can be translated into equivalent
tree automata (accepting the models of the given formula). In particular, we are
interested in optimal translations into parity NTA. These translations are obtained
in two steps. Fix k£ > 1. In the first step, for the case of CTL formulas v, one can
construct according to [18] a Biichi alternating (one-way) tree automaton (Biichi
ATA, for short) Ay over complete k-ary trees with O(|y)|) states and size O(k -
|1]) accepting exactly the complete k-ary trees satisfying ¢. For the case of CTL*
formulas, one can construct [18] for a given formula ¢, an equivalent parity ATA
Ay over complete k-ary trees with O(21¥!) states, size O(k - 2/¥!), and index 3.2
In the second step, we translate the ATA A, into an equivalent parity NTA. In
particular, in [23] (see also [6] for a detailed construction) it is shown that given a
parity (one-way) ATA A over k-ary trees of index m, set of states ), and transition
function 6, one can construct in single exponential time an equivalent parity NTA
AN over k-ary trees having index O(m - |Q|), number of states (independent on
k) 20(m:|Qlog(m-|QD)  and size 20Kk m1QIlog(m QD) - Since Biichi ATA correspond to
parity ATA of index 2, we obtain the following result.

Lemma 1 ([18, 23]). e Given a CTL formula ¢ over AP and k > 1, one can
construct a parity NTA Ay, of size 200 1¥110819D “index O(|4)]), and number
of states 20¥1og|¥]) (independent on k) that accepts exactly the set of 247 -

labeled complete k-ary trees that satisfy 1. Moreover, Ay can be constructed
in time 20k 1¥|log|4])

e Given a CTL* formula 1 over AP and k > 1, we can construct a parity NTA
Ay of size QO(k'QO(M)), index O(21¥1), and number of states 9201vD (indepen-
dent on k) that accepts exactly the set of 247 -labeled complete k-ary trees that

satisfy 1. Moreover, Ay can be constructed in time 20(k:270¥D)

Nondeterministic Pushdown Tree Automata (PD-NTA).

Here, we describe PD-NTA (without e-transitions) over complete k-ary labeled
trees.

Formally, an PD-NTA is a tuple P = (X,T', P, pg, p, F'), where ¥ is a finite input
alphabet, I" is a finite stack alphabet, P is a finite set of (control) states, pg € P

is an initial state, p : P x X x (T U {v}) — 2(PXT)" s a transition function

2[18] gives a translation from CTL* to Hesitant alternating tree automata which are a special
case of parity ATA of index 3.



(where o € T is the stack bottom symbol), and F is an acceptance condition over
P. Intuitively, when the automaton is in state p, reading an input node = labeled
by o € 3, and the stack contains a word A -« in I'*.g, then the automaton chooses
a tuple {(p1,01),--., Pk, Br)) € p(p,o,A) and splits in k copies such that for each
1 <i <k, a copy in state p;, and stack content obtained by removing A and pushing
0i, is sent to the node x - ¢ in the input tree.

Formally, a run of the PD-NTA P on a X-labeled k-ary tree (T, V) (with T' =
{1,...,k}*) is a (P x I'*.yp)-labeled tree (T,r) such that r(¢) = (po,70) (ini-
tially, the stack is empty) and for each z € T with r(z) = (p, A - a), there is
((p1,61),---, (Pr, Br)) € p(p,V(x),A) such that for all 1 <i <k, r(z-i) = (p;, Bi - @)
if A=, and r(x i) = (pi, Bi - Y0) otherwise (note that in this case a = ¢).

As with NTA, we consider Btichi and parity acceptance conditions over P. The
notion of accepting path 7 is defined as for NTA with inf,(7) defined as follows:
inf,.(m) C P is the set such that p € inf,(w) iff there are infinitely many = € 7 for
which r(z) € {p} x T'* - 7.

A run (T,r) is accepting if every path # C T is accepting. The PD-NTA P
accepts an input tree (T, V) iff there is an accepting run of P over (T,V). The
language L£(P) of P contains all and only the trees accepted by P. The emptiness
problem for PD-NTA is to decide, for a given PD-NTA P, whether L(P) = 0.

For a PD-NTA P = (X,T', P, py, p, F') with transition function p, let pg be the set
of words 3 € I'*.7y occurring in the transition function p, i.e., such that there are
(p,o,A) € PxXx (T U{y}) and ((p1,061),---, Pk, Br)) € p(p, 0, A) with 8 = §3; for
some 1 < ¢ < k. For complexity analysis, we consider the following two parameters:
the size [p[ of p given by [p| = 3=/, 1), (pr.Br)ep(poa) [B1] -+« & |Bk| and the
size |po| of po given by |po| = ZﬂEpo 18]

Kupferman et al. in [16] showed that the emptiness problem for a parity PD-NTA
P = (X,T,P,po,p, F) over k-ary trees can be reduced in polynomial time to the
emptiness problem for a parity two-way ATA over |I'|-ary trees having the same
index as P, number of states O(|P| - |po|) and transition function of size O(|p|).
Since a parity two-way ATA A over h-ary trees of index m, number of states n,
and transition function 0 can be converted in time O(|d] - 20 (hn®-mlog ™)) into an
equivalent parity NTA Ay over h-ary trees of index O(m - n), number of states
20(n*-mlog ™) and size 90(h-n?-mlog m) [23], and since the emptiness problem for a
parity NTA Ay of index m can be solved in time |Ax|9(™ [10], we obtain the
following result.

Proposition 1 ([16]). The emptiness problem for a parity PD-NTA of index m
with n states, stack alphabet T', and transition function p can be solved in time
O(|p| . 20(|F|-|p0|2-77,2-7n2 log'm))

PD-NTA are closed under intersection with NTA.

Proposition 2. For a Biichi PD-NTA P = (X,T, P,po,p, F) with F = P and a
parity NTA A = (3,Q,q0,9, F'), there is a parity PD-NTA P’ such that L(P') =
L(P)NL(A). Moreover, P’ has |P|-|Q| states, the same index as A, the same stack
alphabet as P, and its transition function p’ satisfies: |p’| = O(|p| - |9]) and pf = po-



Proof. The PD-NTA P’ is defined as P’ = (X,T,Q X P, (qo,p0),p", F"') such that
<((QI7p1)761)7 teey ((qupk)7ﬁk)> € p/((qap)707 A) iﬁ<(p1aﬂ1)7 L) (pkv/@k)> € p(p’ g, A)
and {(q1,...,q%) € 6(q,0). Moreover, if F/ = {Fy,...,F,}, then F"" = {F} x
P,...,F, x P}. O

4 Upper bounds

In this section, we describe algorithms to solve the pushdown module checking
against CTL and CTL* which are based on an automata-theoretic approach. As
we will see in Section 5, the proposed algorithms are asimptotically optimal.

Fix an OPD § = (AP, T, P,py, A, L, Env) and a CTL (resp., CTL*) formula .
We solve the pushdown module-checking problem for S against ¢ by reducing it
to the emptiness of a parity PD-NTA Psy -y, which is obtained as the intersection
of two tree automata. Essentially, the first automaton, denoted by Pgs, is a Biichi
PD-NTA that accepts the trees in exec(Ms), and the second automaton is a parity
NTA that accepts the set of trees that do not satisfy 1. Thus, Ms =, ¢ iff L(Psx—y)
is empty. The construction proposed here follows (and extends) that given in [19] for
solving the module-checking problem for finite-state open systems. The extensions
concern the handling of terminal states and the use of pushdown tree automata.

In order to define Ps, we consider an equivalent representation of exec(Mg) by
complete k-ary trees with k = maxz{bd(w) | w € W;UW,} (note that for a pushdown
system S, k is finite and can be trivially computed from the transition relation A
of S). Recall that each tree in ezec(Ms) is a 247-labeled tree that is obtained
from (Tns,Vas) by suitably pruning some of its subtrees. We can encode the tree
(Thrs, Vars) as a 24791 U { 1 }-1abeled complete k-ary tree (where | and ¢ are fresh
proposition names not belonging to AP) in the following way: first, we add the
proposition ¢ to the label of all leaf nodes (corresponding to terminal global states)
of the tree T4 ; second, for each node x € Ty, with p children x - 1,...,2 - p (note
that 0 < p < k), we add the children z - (p+1),...,z - k and label these new nodes
with ©; finally, for each node x labeled by 1 we add recursively k-children labeled
by L. Let ({1,...,k}*, V') be the tree thus obtained. Then, we can encode a tree
(T, V) € exec(Ms) as the 24PY{tH U { L }-labeled complete k-ary tree obtained from
({1,...,k}*, V') preserving all the labels of nodes of ({1,...,k}*, V') that either are
labeled by L or belong to T', and replacing all the labels of nodes (together with
the labels of the corresponding subtrees) pruned in (7', V) with the label L. In
this way, all the trees in exec(Mg) have the same structure (they all coincide with
{1,...,k}*), and they differ only in their labeling. Thus, the proposition L is used
to denote both “disabled” states and “completion” states, while the proposition ¢ is
used to delimitate the prefix of a path, which visits a terminal state, consisting of
all and only the nodes which are not labeled by L.

Moreover, since we consider environments that do not block the system, for
each node associated with an enabled non-terminal environment state, at least one
successor is not labeled by L. Let us denote by ézec(Ms) the set of all 2471ty { 1 }-
labeled k-ary trees obtained from ({1,...,k}*, V') in the above described manner.
The Biichi PD-NTA Ps = (X,T', P’, (po, T), p, P'), which accepts all and only the
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trees in ézec(Mg), is defined as follows:
o X =24PUt y {1},

e P'=Px{L,T,F}. From (control) states of the form (p, L), Ps can read only
the letter L, from states of the form (p, T), it can read only letters in 247V{t},
Finally, when Pgs is in state (p,F), then it can read both letters in 247V{t}
and the letter L. In this last case, it is left to the environment to decide
whether the transition to a configuration of the form ((p,F),«) is enabled.
The three types of (control) states are used to ensure that the environment
enables all transitions from enabled system configurations, enables at least
one transition from each enabled non-terminal environment configuration, and
disables transitions from disabled configurations.

e The transition function p: P’ x X x (T'U{v}) — 2(P'xD)" i5 defined as follows.
Let p € P and A € I'U {v} with nextg(p, A) = ((p1,61), - .-, (Pa, Ba)) (Where
0 <d<k). Then, form € {T,F, L} and 0 € X, p((p,m), 0, A) # @ iff one of
the following holds (where « = A if A € T, and « = € otherwise):

— o= _1and m e {F, L}. In this case we have

p((p,m), L, A) ={(((p, L), @),...,((p, 1), a) )}

k pairs

That is, p((p, m), L, A) contains exactly one k-tuple. In this case all the
successors of the current configuration are disabled.

—o0# 1, me{ T}, and nexts(p, A) is empty (i.e., d = 0). In this case
o= L(p, A) U{t} (i.e., the current configuration is terminal) and

p((p,m), L(p, A) U{t}, A) = {{((p, L), @), ..., ((p, L), @) )}

-0 # 1, (p,A) ¢ Env, m € {F, T}, and nexts(p, A) is not empty (i.e.,
d > 1). In this case 0 = L(p, A) and p((p, m), L(p, A), A) is given by

{1, 7). B1)s -5 ((Pa, T), Ba)s (s L); @), -, ((py L), @) )}

k—d pairs

is not empty (i.e
A) is given by

) is
);
),a), ., ((p, L), a)),
),a), . ((p, L), a)),

# 1, (p,A) € Env, m € {F, T}, and nexts(p, A
>1). In thls case 0 = L(p, A) and p((p,m), L(p, A
1
1

<((p17T)7ﬁ1)’ ((an'_)aﬂl)V"?((pdv ) ) ((pa
<((p17|_)7ﬁ1)a ((pZaT)aﬂl)v"'v((pdv ) ) ((pa

i
{

<((p17|_)7ﬁ1)a ((an'_)aﬂl)w"v((bm ) ﬁd) (( b, )’ ) "'7((p’J~)’O‘) >}

That is, p((p,m), L(p, A), A) contains d k-tuples. When the automaton
proceeds according to the ith tuple, the environment can disable the tran-
sitions to all successors of the current configuration, except the transition
associated with the pair (p;, 8;), which must be enabled.

11



Note that Ps has 3 - | P| states,

|p| is bounded by k(|P|-|T'|+]Al), and |pg| is bounded by |A| (recall that pg is the
set of words 3 € I'".7p occurring in the transition function p and [po| = >_5c, 18])-
Assuming that |P| - |T'| < |A|, we have that |[p| < k- |A]|.

We recall that a node labeled by L stands for a node that actually does not exist.
Thus, we have to take this into account when we interpret CTL* or CTL formulas
over trees (T, V) € éxec(Ms) (where T = {1,...,k}*). This means that we have
to consider only the paths in (T, V') (which we call “legal” paths) that either never
visit a node labeled by L or contain a terminal node (i.e. a node labeled by t). Note
that a path is not “legal” iff it satisfies the formula -t ¢/ L. In order to achieve
this, as in [19] we define a function f: CTL* formulas — CTL* formulas such that
f(¢) restricts path quantification to only “legal” paths (the function f we consider
extends that given in [19], since we have to consider also paths that lead to terminal
configurations). The function f is inductively defined as follows:

e f(prop) = prop for any proposition prop € AP;

) = f(p); o flp1 Ap2) = f(p1) A fp2);

(
I
f(EO) = E((G-L) A f(0)) Vv E((F 1) A f(0));
f(A8) = A((~t U L) v [(8));

I

X0) = X(f(0) A =1L); o f(0L U b2) = (f(0) A—L) U (f(B2) A—L).

When ¢ is a CTL formula, the formula f(y) is not necessarily a CTL formula,
but it has a restricted syntax: its path formulas have either a single linear-time
operator or two linear-time operators connected by a Boolean operator. By [15],
such formulas have a linear translation to CTL.

By definition of f, it follows that for each formula ¢ and (T, V) € ézec(Ms),
(T, V) satisfies f(¢) iff the 24P-labeled tree obtained from (T, V) removing all the
nodes labeled by | (and removing the label t) satisfies ¢. Therefore, module-
checking

S against formula 1 is reduced to check the existence of a tree (T, V) € éxec(Mg) =
L(Ps) satistying f(—)) (note that |f(—)| = O(]=¢])). We reduce the latter to
check the emptiness of a parity PD-NTA Psy- that is defined as the intersec-
tion of the Biichi PD-NTA Ps with a parity NTA A, = (X, Q, g, 0, F) accepting
exactly the X-labeled complete k-ary trees that are models of f(—1)) (recall that
¥ = 24PVt y {1}). By Lemma 1, if ¢ is a CTL (resp., CTL*) formula, then
A_, has size 2019118 1¥]) (resp., QO(k‘QOWI))), index O(|¢)]) (resp., O(2/*1)), and
number of states 2011081 (resp., 22 (IM) Therefore, by Proposition 2, Psx -y
has the same stack alphabet as & and the following holds:

e If ¢ is a CTL formula, then Psy—, has O(|P| - 20U¥I0el¥D)) states, index
O(|th]), and transition function p’ such that |p’| = O(|A| - 20k 1¥1log[¥D)) and
|pp| is bounded by |A].
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o If ¢ is a CTL* formula, then Psx—y has O(| P -220(‘W|)) states, index O(2!%),

and transition function p’ such that |p'| = |A| L0 (k2171

by |A].

and |pg| is bounded

Thus, by Proposition 1 we obtain the following result.

Theorem 1.

(1) The pushdown module-checking problem for CTL is in 2EXPTIME.
(2) The pushdown module-checking problem for CTL* is in 3EXPTIME.

(38) For a fixed CTL or CTL* formula, the pushdown module-checking problem is
1 EXPTIME.

5 Lower Bounds

In this section we give lower bounds for the considered problems that match the up-
per bounds of the algorithm proposed in Section 4. The lower bound for CTL (resp.,
CTL*) is shown by a reduction from the word problem for ExpPsSPACE-bounded
(resp., 2EXPSPACE-bounded) alternating Turing Machines. Without loss of general-
ity, we consider a model of alternation with a binary branching degree. Formally, an
alternating Turing Machine (TM, for short) is a tuple M = (3, Q, Qv, @3, qo, 6, F),
where ¥ is the input alphabet, which contains the blank symbol #, @ is the finite
set of states, which is partitioned into @ = Qv U Q3, Q3 (resp., Qv) is the set of ex-
istential (resp., universal) states, qo is the initial state, F' C @ is the set of accepting
states, and the transition function § is a mapping § : Q@ x X — (Q x X x {L, R})?.

Configurations of M are words in ¥* - (Q x X) - £*. A configuration 7 - (¢,0) -
7’ denotes that the tape content is non’, the current state is ¢, and the reading
head is at position || + 1. When M is in state ¢ and reads an input ¢ € X
in the current tape cell, then it nondeterministically chooses a triple (¢’,0’, dir)
in 6(q,0) = {(q,01,diry), (g, 0, dir,)), and then moves to state ¢’, writes ¢’ in
the current tape cell, and its reading head moves one cell to the left or to the
right, according to dir. For a configuration C, we denote by succ;(C) and suce,.(C)
the successors of C' obtained choosing respectively the left and the right triple in
((qi, 01, diry), (qr, op, dir,)). The configuration C' is accepting if the associated state
q is in F. Given an input o € ¥*, a (finite) computation tree of M over « is a
finite tree in which each node is labeled by a configuration. The root of the tree
corresponds to the initial configuration associated with a.> An internal node that
is labeled by a universal configuration C' (i.e. the associated state is in Qy) has two
children, corresponding to succ;(C) and suce,(C'), while an internal node labeled by
an existential configuration C (i.e. the associated state is in (J3) has a single child,
corresponding to either succ;(C) or suce,(C). The tree is accepting iff each its leaf
is labeled by an accepting configuration. An input a € X* is accepted by M iff there
exists an accepting computation tree of M over «.

3We assume that initially M’s reading head is scanning the first cell of the tape
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If M is ExpsPACE-bounded (resp., 2EXPSPACE-bounded), then there is a con-
stant k£ > 1 such that for each a € ¥*, the space needed by M on input « is bounded
g ol
by glal® (resp., 92°! ). It is well-known [7] that
2EXPTIME (resp., 3EXPTIME) coincides with the class of all languages accepted
by ExPSPACE-bounded (resp., 2EXPSPACE-bounded) alternating Turing Machines.

Theorem 2. Pushdown module checking against CTL is 2EXPTIME-hard.

Proof. Fix an EXPSPACE-bounded alternating Turing Machine M = (X, Q, Qv, Q3,
do, 0, F') and let k > 1 be a constant such that for each input 8 € ¥*, the space
needed by M on input § is bounded by 2l8l*, Moreover, fix an input a € X*.
We construct an OPD S and a CTL formula ¢ over a finite set AP of atomic
propositions of sizes polynomial in n = |a|¥ and in | M| such that M accepts « iff
there is a tree in ezec(Mg) that satisfies ¢, i.e. iff Ms f~, —p. Some ideas in the
proposed reduction are taken from [17], where there are given lower bounds for the
satisfiability of extensions of CTL and CTL*.

Note that any reachable configuration of M over o can be seen as a word in
¥* . (Q x X) - % of length exactly 2. If &« = 071...0, (where r = |a|), then the
initial configuration is given by (qo,01)02 ...0r ## ... #.

jir_/

First, we describe the encoding of TM configurations by finite words over 247,
Each cell of a TM configuration is coded using a block of n + 1 symbols. The first
symbol is used to encode the content of the cell and the remaining n symbols are
used to encode the location (the number of cell) on the TM tape (note that the
number of cell is in the range [0,2" — 1] and can be encoded using n bits).

Formally, AP =X U (Q x X)U{0,1,V,3,b,1,r, f, opt, opt,, opty, checky, checka},
where 0 and 1 are used to encode the cell number, and the meaning of the letters in
{¥,3,b,1,r, f, opt, opt,, opt,, checky, checks} will be explained later. For a TM con-
figuration C' = ujus ... u (note that here we do not require that k = 2™), a pseudo
code of C'is a word w over 24F of the form {tag; }{b, us }wi {b, us}ws . .. {b, us }wi{tags},
where w; € {{0},{1}}" for each 1 < i <k, tagy € {l,r, f}, and tags = 3 if C' is an
existential configuration, and tags = V otherwise. Intuitively, the symbol b is used
to mark a TM block, the symbol f is used to mark the initial configuration, while
the symbols [ and r are used to mark a left and a right TM successor, respectively.
If K = 2", then we say that w is a code of C' if for each 1 <14 < 2™ w; corresponds
to the binary code of i — 1. Given a finite sequence v = Ci,...,C), of TM config-
urations, a pseudo code of v is a finite word w, = we, ...wg, such that for each
1 <i < p, we, is a pseudo code of C;, we, is marked by f (i.e., the first symbol of
we, is {f}) and each we, with ¢ # 1 is marked by [ or r. The word w, is a code of
v if for each i, we, is a code of C; (note that this implies that C; has length 2").
Moreover, we say that w,, is faithful the evolution of M if for each 1 < i < p, either
we,,, is marked by symbol [ and Cj; 1 = suce(C;), or we,,, is marked by symbol
r and Ci11 = suce, (C;).

Now, we describe the encoding of accepting (finite) computation trees of M over
«. In the following, a minimal 24 -labeled tree is a 24F-labeled tree such that
the children of each node have distinct labels. Moreover, for the ease of presen-
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tation, a 24P-labeled tree (T, V) is denoted simply by 7. A pseudo tree-code is

a finite minimal 247-labeled tree T such that for each path 7 of T, the associ-

ated sequence of labels w, = wc, ... wc, is the pseudo code of some finite sequence

Cy,...,Cp of TM configurations. Moreover, we require that (1) Cy has the form

(qo,01)02 . ..0n #4 ... # (thus, Cy corresponds to the initial TM configuration as-
—_———

sociated with «a witkh the exception that the number of blanks # to the right of
o, can be different from 2" —r), (2) C), is accepting and for 1 < i < p, C; is not
accepting, and (3) for each 1 < i < p such that C; is an universal configuration,
denoted by x the node of m corresponding to the V-symbol of w¢,, there is a path
7w of T which visits node 2 and whose associated sequence of labels has the form
Wrr = Wey .. WoLWey, - - - (note that wer = we, for j < 7) such that wer, is
marked by [ if wg,,, is marked by r, and wer, is marked by r otherwise. We say
that T is a tree-code if for each its path m, w, is a code of some sequence of TM
configurations. Finally, we say that T is fair iff for each its path 7, w, is faithful
to the evolution of M. Evidently, each fair tree-code corresponds to some accepting
(finite) computation tree of M over a.. Moreover, there is a fair tree-code iff there
is an accepting computation tree of M over «.

The main idea in the construction of the OPD S and the CTL formula ¢ is that
the set of finite trees in ezec(Ms) should be the set of pseudo tree-codes, ¢ should be
satisfied only by finite trees, and given a pseudo tree-code T', ¢ should be satisfied
by T if and only if T is a fair tree-code. However, in order to construct a CTL
formula of polynomial size ensuring the above requirement, we need to extend a
pseudo tree-code with extra-nodes which provide additional information. Moreover,
we have also to guarantee that this additional information can be computed by an
OPD of polynomial size. This leads us to define a suitable extension of the notion
of pseudo tree-code. First, we need the following definition.

Let w, = wc¢, ... we, be a pseudo code of some sequence v = C,...,C, of TM
configurations. We associate to w, a set of 24F-labeled trees called check-trees of
w,, which intuitively, represent tree-encodings of w,. The goal is to define a CTL
formula of polynomial size in n and | M| such that for each check-tree T associated
with some pseudo code w,, T is satisfied by this formula if and and only if w, is
a code faithful to the evolution of M and T satisfies some additional properties.
Formally, a check tree of w, is a minimal finite 24”-labeled tree T, satisfying the
following: the root of the tree is labeled by {opt} and has two children, one labeled
by {opt,} and the other one labeled by {opt,} such that the subtree rooted at the
opty-child reduces to a unique path whose sequence of labels (excluded the first
symbol) is the reverse of w,, and the subtree Topt, rooted at the opt, child satisfies
the following requirements:

o for each path 7 of T,,;,, the associated sequence of labels (excluded the first
symbol) corresponds to the reverse of w, with the unique difference that there
is exactly one TM block bl; which is additionally marked by the proposition
checky (i.e., it is of the form {b, checky,u}wy, where {b, u}w; is the correspond-
ing TM block of w,) and there is at most one block bly which is additionally
marked by the proposition checky. Moreover, the checka-block bls exists iff bly
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does not belong to the first TM configuration of w,, and in this case, bl; and
bl belong to two consecutive TM configurations, and bl precedes bl along 7;

e for each TM block bl of w,, there is a path 7 of T}, such the sequence of
nodes associated with bl is marked by check;.

The check-tree Ty, is good if additionally the following holds:

e for each path 7 of Topt, which visits a checkz-node, the checky and checks TM
blocks of 7 have the same cell number;

e the subtree rooted at a checki-node reduces to a unique path.

Intuitively, the subtree Ty, of a good check-tree of w, allows to select for each
TM block bl non belonging to the first TM configuration of w,,, the TM block having
the same cell number as bl and belonging to the previous TM configuration w.r.t.
wy,. Thus, Ty, is used to ensure that w, is faithful to the evolution of M, while the
subtree Ty, is used to ensure that w, is a in fact a code (i.e. each TM configuration
occurring in w, has length exactly 2™ and in particular, the cell numbers are encoded
correctly).

An extended pseudo tree-code is a minimal finite 247 -labeled tree T, defined as
follows: there is a pseudo tree-code T" such that T, is obtained from T by adding
to each leaf x of T a child whose subtree is a check-tree for the sequence of labels
associated with the path of 7" leading to x. If T is a (fair) tree-code, we say that T,
is a (fair) extended tree-code. Moreover, we say that T, is good if each check-subtree
in T, is good. Thus, there is a good fair extended tree-code iff there is an accepting
computation tree of M over a.

Now, we are ready to construct an OPD S and a CTL formula ¢ such that the set
of finite trees in exec(Mg) is the set of extended pseudo tree-codes,  is satisfied only
by finite trees, and given an extended pseudo tree-code T', ¢ is satisfied by T if and
only if T'is a good fair extended tree-code. Hence, there is an accepting computation
tree of M over « if and only if there is a tree in ezxec(Mg) which satisfies ¢, i.e., if
and only if Mg W, —p.

First, we describe the construction of the OPD S ensuring that the the set of
finite trees in exec(Msg) is the set of extended pseudo tree-codes. Here, we describe
the main aspects of the behavior of S. The formal definition of S easily follows. In
the following, for state of S, we mean a pushdown configuration of S (i.e., a state of
the associated module Mg). The OPD S proceeds in three phases.

Phase 1 (generation of the pseudo-code of the initial TM configuration):

Starting from the initial control state with empty stack content, the OPD S generates

by external nondeterminism (i.e., the choices are made by the environment) a pseudo

code we of some TM configuration C pushing it onto the stack (in particular, each

transition pushes a symbol of we onto the stack) with the additional constraint

that C has the form (qo,01)as ... #...# (thus, C corresponds to the initial TM
——

k
configuration associated with a with the exception that the number of blanks # to
the right of o, can be different from 2" —r). Thus, in this phase, each state reached
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by S is an environment state. Moreover, the label of each state (p, 8) coincides with
the top symbol of the stack content §. Whenever, S terminates to generate a TM
block associated with a blank symbol # to the right of o,-, S can choose (by external
nondeterminism) to continue to generate an other #-block, or to push onto the stack
the symbol tag € {{3}, {V}} moving to state s, where tag = {V} and s is a system
state if go € Qv (i.e., the guessed first TM configuration is universal), and tag = {3}
and s is an environment state otherwise (i.e., the guessed first TM configuration is
existential). From state s, assuming without loss of generality that o ¢ F, S moves
nondeterministically to an environment state pushing onto the stack a symbol in
{{l},{r}} and switch to phase 2. Thus, in state s, S simulates the choice of the TM
M from the current guessed first TM configuration.

Phase 2 (generation of pseudo-codes of TM configurations): In this phase, S
generates by push transitions pseudo codes of TM configurations as follows: when-
ever the symbol on the top of the stack is in {{l},{r}}, S starts to generate re-
peatedly by external nondeterminism (i.e., the states in this phase are environment
states) TM blocks bl pushing them onto the stack (in particular, each transition
pushes a symbol of bl onto the stack). Moreover, S keeps track by its finite control if
a TM block of the current guessed TM configuration with content in @ x X has been
already generated. This ensures that at most a block with content in @ x X will be
generated in this phase. Whenever, S terminates to generate a TM block and the
@ x X-block bl has been already generated, S can choose by external nondetermin-
ism to terminate the generation of the current guessed TM configuration by pushing
on the stack the symbol tag € {{3},{V}} and moving to state s; = (pq,5), where
tag = {V} and s, is a system state if the Q-state q of bl is in Qv (i.e., the guessed TM
configuration is universal), and tag = {3} and s, is an environment state otherwise
(i.e., the guessed TM configuration is existential). Moreover, depending on whether
q € F, S proceeds as follows:

e ¢ ¢ F: from state s;, moves nondeterministically to an environment state
pushing onto the stack a symbol in {{l},{r}} and repeats phase 2. Thus, in
state sq, S simulates the choice of the TM M from the current guessed TM
configuration. In particular, system choices (s, is a system state) correspond
to universal choices of M, while environment choices (s, is an environment
state) correspond to existential choices of M.

e g € F: from state s, = (pq, 3), S without changing the stack content 3 moves
deterministically to the system state (opt, 3) (whose label is {opt}) and switch
to phase 3. Note that the reverse of 3 is the pseudo code of a sequence of TM
configurations.

Thus, in phases 1 and 2, a state of S is a system state iff the top symbol in the
associated stack content is {V} (note that in these states, S simulates an universal
choice of the TM M). Moreover, the label of each state (p, 3) with p # opt coincides
with the top symbol of 5. By construction, it follows that if we consider a tree T" in
exec(Mg) and removes all the subtrees rooted at opt-nodes, then the obtained tree
is finite if and only if it is a pseudo tree-code. Moreover, each pseudo tree-code can
be obtained in this way.
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Phase 3 (generation of check-trees): Assume that S is in the system state
(opt, 3). By phases 1 and 2, we can also assume that the reverse 31 of the stack
content [ is the pseudo code of some sequence of TM configurations. Then, from
this state S can choose to move either to the system state (opt;,3) (whose label
is {opt;}) or to the system state (opty,3) (whose label is {opt,}), in both cases
without changing the stack content.

By selecting opty, S simply empties deterministically the stack by a sequence of
pop transitions. The corresponding subtree of the computation tree of Mg reduces
to a finite path whose sequence of labels (excluded the first symbol) is 3.

By selecting opt,, S empties the stack by a sequence of pop transitions with the
additional ability to generate by internal nondeterminism (i.e., in this phase, each
state of S is a system state) exactly at one TM block bl; of § the symbol check;
(more precisely, S keeps track of this symbol by its finite control) and successively,
in case bl; does not belong to the first TM configuration along 3~ !,* to generate by
external nondeterminism (i.e., after the generation of the checki-symbol, each state
of § is an environment state) exactly at one TM block bls the symbol checky with
the constraint that bl; and bly belong to two consecutive TM configurations of 3.°

Thus, S ensures that the subtree T' of the computation tree of S rooted at the
node associated with (opt, 3) satisfies the following: the set of trees obtained from
T by disabling some environment choices (without blocking the system) corresponds
to the set of check-trees associated with the reverse of 3.

By construction, it follows that the set of finite trees in exec(Mg) coincides
exactly with the set of extended pseudo tree-codes.

Finally, we construct the CTL formula . The main step in the definition of ¢
is the construction of a CTL formula ¢ peer, satisfying the following requirement:
for each check tree T', T satisfies @ peck iff T is good and is associated with a code
faithful to the evolution of M. Assume that we have defined @ peck- Then, ¢ is
given by

p:=(AF - EX true) A AF(opt A @check)

where the subformula (AF — EX true) ensures that each model of ¢ is a finite tree,
and for any extended pseudo tree-code T, the subformula AF (opt A peheck) requires
that T is in fact a good fair extended tree-code. The formula @ pecr is given by

Pcheck = EX(OPt1 A @nc) A EX(OPtz A Pgood A Spfair)

Fix a check tree Tipecr of a pseudo code w, of some sequence v = C1,...,C, of
TM configurations. Then, ¢, requires that the block numbers in w, are encoded
correctly (hence, w, is a code), Yg00a requires that T is good, and ¢yq; requires that
w,, is faithful to the evolution of M.

Now, we formally define the CTL formulas @nc, ©goods and Qfair. Let Topy, and
Topt, be the subtrees rooted at the opt,-child and opt,-child of the root of Tipeck,

4note that S can check whether this condition is satisfied or not
5In order to ensure that the symbol check; is generated at least once, we assume that the first
TM block of 31, which is pushed onto the stack in phase 1, is marked by some special symbol
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respectively. By definition of @ peck, we can assume that ¢, is asserted at the root
of Topt,, and Ygo0a and @rqsr are asserted at the root of Thpy,.

First, let us consider the CTL formula ¢,.. We have to require that w, is in
fact a code. Recall that Ty, reduces to a unique path 7, whose sequence of labels
(excluded the first symbol) is the reverse of w,. Let us consider two consecutive
blocks bl = cont{bit1}...{bit,} and bl' = cont’{bit}}...{bit,} along w, which
belong to the same TM configuration (note that these two blocks appear in reversed
order along the unique path 7, of T,y ), and let &k (resp., k) be the number of cell
of the first block bl (resp., the second block bl’), i.e., the integer whose binary code
is given by bity ... bit,, (resp., bity ... bit))®. Then, in order to ensure that w, is a
code, it suffices to require that k' = (k + 1) mod 2", k = 0 if and only if bl is the
first block of the associated TM configuration (i.e., cont is followed along 7, by a
symbol in {{l},{r},{f}}), and &' = 2™ if bl is the last block of the associated TM
configuration (i.e., bit/, is preceded along , by a symbol in {{3},{V}}). Therefore,
formula ¢, is defined as follows:

AG { [((AX)"8) = (A=) (AX)70) = (AX)™1(@ v 1 v f))] A
(Vv 3) = Al (AX)71] A

/\i>j(AX)i (0 A (AX)"FE1) A

Nics (AX) (1 (AX)+11) )]

Now, we define the formula ¢g,04 Which ensures that Tipecr is a good check-tree
of wy,. Thus, Ygood = Punique N P=, Where Qynique Tequires that any subtree of T, 4,
rooted at a checki-node reduces to a unique path, and ¢— requires that for each path
7, of Topt, which visits a checkz-node, the checki-block bly and the checka-block
bly of m, have the same cell number. Recall that by definition of check-tree, bl; and
bly belong to two consecutive TM configurations of w,, and bly precedes bly along
m,. Moreover, a path m, of T,,, visits a checke-node iff the check:-block of 7, does
not belong to the first TM configuration of w, (which is marked by f). Also, note
that the definition of check-tree (which is in particular a minimal 24"-labeled tree)
ensures that for each node z of Topt, which has two children and is a descendant of
a checki-node, a child of = is marked by checks and the other one is not marked by
checks. Thus, @unique and p— are defined as follows:

Ounique ‘= AG (checky — AG((AX checks) V (AX = checks)))

o= AG ( (AX)"(b A checky A AF(L V 1)) —
NiZo Veerony (AX) ¢ A AF(e A (AX)"I(b A checks))) )

Note that the correctness in the construction of ¢— is ensured by the formula @ynigue-

Swe assume that the first bit is the least significant one
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It remains to define the CTL formula ¢, which ensures that the sequence of
TM configurations v = (1, ..., C, pseudo-encoded by w, = wc, ...wc, is faithful
to the evolution of M and, in particular, for each 1 < ¢ < p, Ci11 = suce(C;) if we,
is marked by [, and C;11 = succ,(C;) otherwise. By definition of the CTL formulas
©ne and @go0d, We can assume that each C; has length exactly 2" (and in particular,
the cell numbers of the blocks occurring in w, are encoded correctly) and Tepeck iS
a good check-tree associated with w,,.

Let C' = ujy ... ugn be a TM configuration. For each 1 < ¢ < 2™, the value u} of the
i-th cell of succ;(C) (resp., suce,.(C)) is completely determined by the values w;_1,
u; and w41 (taking w41 for ¢ = 2" and u;—; for i = 1 to be some special symbol).
We denote by newxt;(u;—1, ui, wir1) (resp., next,(u;—1,u;, ui+1)) our expectation for
u} (these functions can be trivially obtained from the transition function of M).

Since Tepeck is good check-tree and in particular, for each block of w,, there is a
path m, in Ty, such that the sequence of nodes associated with this block is marked
by checky, in order to ensure that w, is faithful to the evolution of M, it suffices to
require the following: for each path m, of T,y:, containing a checks-node, it holds
that v’ = nextq(up, u, us), where v’ is the cell content of the checkq-block bly of m,,
u is the cell content of the checks-block bls of 7, d = [ iff the TM configuration
associated with bl; is marked by I, and us (resp., up) is the cell content of the TM
block — if any — that precedes (resp., follows) bls along m, and belongs to the same
TM configuration as bls.

Thus, Qfair := Pfirst N Plast N Pron—ext, Where Qargy manages the case in which
bl; is the first block of the associated TM configuration, ¢;,s+ manages the case
in which bl; is the last TM block, and ¢,,on— ezt manages the remaining cases. For
simplicity, we define only @,on— ezt (the other two formulas can be defined similarly).
Such a formula is defined as follows where ¥ = X U (Q xX):

AG( [b A checky A AX(0V 1) A AF(b A (AX)™*! checks)] —
vu,,,u,usei \/de{l,r} [nextd(up, u,us) AN AF(d N AF (ug A
(AX)"L(u A checky A (AX)"+u)))] )

Correctness in the construction of ¢,y — eyt derives from the fact that since Teopeck
is a good check-tree, each subtree rooted at a checki-node reduces to a unique path.
This concludes the proof. O

Theorem 3. Pushdown module checking against CTL* is 3EXPTIME-hard.

Proof. Let M = (¥,Q, Qv, @3, qo, 9, F) be a 2EXPSPACE-bounded alternating Tur-
ing Machine, and let k& be a constant such that for each input 5 € ¥*, the space

needed by M on input ( is bounded by 22|6|k. Fix an input o € ¥*. We build
an OPD S and a CTL* formula ¢ over a set AP of atomic propositions of sizes
polynomial in n = |a|* and in |M| such that M accepts a iff there is a tree in
exec(Mg) that satisfies ¢, i.e. iff Mg [, —o.

Note that any reachable configuration of M over a can be seen as a word in
Y (Q x X) - ¥* of length exactly 22". If a = 0y ...0, (where r = |a), then the

20



initial configuration is given by (qo,01)02 ... 0 ## ... #.
22" —p

As in the proof of Theorem 2, first we describe the encoding of TM configurations
by finite words over 247, As in [17] we use two counters to encode the number of a
TM cell. Since the number of cell is in the range [0, 22" — 1], it can be encoded using
a 2"-bit counter. Moreover, we also use an n-bit counter in order to keep track of
the position (index) of each bit of our 2"-bit counter. Therefore, each cell of a TM
configuration is coded using a block of 2 + (n + 1) - 2", where the first symbol is
used to encode the content of the cell, the last symbol is used as separator, and the
remaining (n+1)-2" symbols are used to encode the cell number. In particular, this
block of (n+ 1) -2" symbols is a sequence of 2" sub-blocks of length n + 1, where for
each 1 <4 < 2", the i-th sub-block is used to encode the value (which is maintained
in the first element of the sub-block) and the position (which is given by 7 — 1) of
the i-th bit of the 2"-bit counter.

Formally, AP = XU (Q x ) U {0,1,V,3,b,1,r, f,end, $, opt, checky, checka} U
U:;jlk{opti}, where 0 and 1 are used to encode the cell number, and the meaning of
the letters in {V, 3,b,1,r, f, end, $, opt, check, checkz}uuzj{opti} will be explained
later. A TM sub-block is a word sb of the form sb = {$, bit}{bit,}...{bit,} such
that bit, bity, ..., bit, € {0,1}. The content CON(sb) of sb is given by bit (note
that the proposition $ is used to mark the content of sb) and the sub-block number
NUM (sb) of sb is the integer in [0, 2" — 1] whose binary code is given by bity ... bity,.
A pseudo TM block is a word bl of the form bl = {b,u}sb; ...sby{end} such that
u € XX (QxX) and for each 1 <4 < k, sb; is a TM sub-block. The content CON (bl)
is given by u (note that the proposition b is used to mark the content of bl and end
is used as separator). If k = 2" and for each 1 < i < 2" NUM/(sb;) =i — 1, we say
that bl is a TM block. In this case, the block number NUM (bl) of bl is the integer
in [0,22"] whose binary code is given by CON(sby) ... CON (sbyn).

For a TM configuration C = ujug ... ux (note that here we do not require that
k= 22"), a pseudo code of C is a word w¢ of the form {tagi}bl; ...blx{tag.} such
that for each 1 < i < k, bl; is a pseudo TM block with CON (b;) = u,, tagr € {l,r, f},
and tags = 3 if C is an existential configuration, and tags = V otherwise. As in the
proof of Theorem 2, the symbol f is used to mark the initial configuration, while
the symbols [ and r are used to mark a left and a right TM successor, respectively.
If k = 22" and for each 1 < i < k, bl; is a TM block such that NUM(bl) =i—1,
then we say that we is a code of C. The notions of pseudo code and code (faithful
to the evolution of M) of a finite sequence of TM configurations are defined as in
the proof of Theorem 2, and analogously the notions of pseudo tree-code, tree-code,
and fair tree-code. The unique difference is that now we have a different notion of
pseudo code or code of a TM configuration. In particular, there is a fair tree-code if
and only if there is an accepting computation tree of M over a.

The notion of check-tree is instead different from that given in the proof of
Theorem 2 and is defined as follows. Let w, = w¢, ... wc, be a pseudo code of
some sequence v = C1,...,C), of TM configurations. Intuitively, as in the proof of
Theorem 2, a check tree T of w, represents a tree-encoding of w,. The goal is to
define a CTL* formula of polynomial size in n and | M| such that for each check-tree
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T associated with some pseudo code w,, T is satisfied by this formula if and and
only if w, is a code faithful to the evolution of M and T satisfies some additional
properties. Formally, a check tree of w, is a minimal” finite 247 -labeled tree T,
such that the root of the tree is labeled by {opt} and has three children, labeled by
{opt}, {opty}, and {opts}, respectively. Moreover, the subtree rooted at the opt,-
child reduced to a unique path whose sequence of labels (excluded the first symbol)
is the reverse of w,, and the subtrees T,,;, and Topt, rooted at the opty-child and
opts-child of the root, respectively, satisfy the following requirements:

e Properties of T,,,: for each path 7 of T,,,, the associated sequence of
labels (excluded the first symbol) corresponds to the reverse of w, with the
unique difference that there is exactly one pseudo TM block bly of w, which is
additionally marked by the proposition check; (in particular, each symbol in
the pseudo block is marked by check;) and there is at most one TM sub-block
sba which is additionally marked by the proposition checks. The checks-sub-
block sby exists iff bl; is not the first pseudo TM block of w,,, and in this case,
bly and the pseudo block of sby are consecutive, and bl; precedes sby along 7.
Moreover, the following holds:

— for each pseudo TM block bl of w,, there is a path 7 of T,,;, such that
the sequence of nodes associated with bl is marked by check;

— let T1 be a subtree rooted at a checki-node associated with a pseudo
block bly. If bly is preceded by the pseudo block bls along w,, then for
each sub-block sby of bly, there is a path in T} such that the sequence of
nodes associated with sbs is marked by checks.

Note that Ty, is uniquely determined unless tree isomorphisms.

e Properties of T, : for each path m of T;,,, the associated sequence of
labels (excluded the first symbol) corresponds to the reverse of w, with the
unique difference that there is exactly one pseudo TM block bly of w, which is
additionally marked by the proposition check; (in particular, each symbol in
the pseudo block is marked by check;) and there is at most one TM pseudo-
block bly such that the last symbol {end} of bly is additionally marked by
proposition opt, and there is exactly one sub-block of bly which is additionally
marked by proposition checky. Moreover, the opt,-pseudo-block bly exists iff
bly does not belong to the first TM configuration of w,,, and in this case, bl; and
bly belong to two consecutive TM configurations, and bly precedes bls along 7.
Moreover, the following holds:

— for each pseudo TM block bl of w,, there is a path 7 of Ty, such the
sequence of nodes associated with bl is marked by check;

— let 17 be a subtree rooted at a opt,-node, associated with the last symbol
of a pseudo block bly (recall that bly appears in reversed order along a

"Recall that a minimal 24P -labeled tree is a 24P-labeled tree such that the children of each
node have distinct labels
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path of Topt,). Then, for each sub-block sby of bla, there is a path in T}
such that the sequence of nodes associated with sby is marked by checks.

The check-tree T, is good if additionally each pseudo TM block in w, is in fact
a TM block and T,p¢ 5 satisfies the following:

e for each checki-node x of Ty, (associated with a symbol of a TM block bl),
the subtree rooted at x contain at most one opt,-node. Moreover, if such
opt,-node exists (note that this holds iff bl does not belong to the first TM
configuration of w, ), then the TM block associated with the opt,-node has the
same block-number as bl.

Intuitively, the subtree Ty, of a check-tree T, is used to ensure that each
pseudo TM block in w, is a in fact a TM block, while the subtree T,,;, is used
to ensure that w, is a code (i.e. each TM configuration occurring in w, has length
exactly 22" and in particular, the block numbers are encoded correctly). Finally, the
subtree Ty, of a good check-tree of w, allows to select for each TM block bl non
belonging to the first TM configuration of w,,, the TM block having the same block
number as bl and belonging to the previous TM configuration w.r.t. w,. Thus, Tppt,
is used to ensure that w, is faithful to the evolution of M.

An extended pseudo tree-code is a minimal finite 247 -labeled tree T, defined as
follows: there is a pseudo tree-code T such that T, is obtained from 7" by adding
to each leaf = of T a child whose subtree is a check-tree for the sequence of labels
associated with the path of T leading to x (recall that this sequence of labels is the
pseudo code of some sequence of TM configurations). If T is a (fair) tree-code, we
say that T, is a (fair) extended tree-code. Moreover, we say that T, is good if each
check-subtree in T, is good. Thus, there is a good fair extended tree-code iff there
is an accepting computation tree of M over a.

Now, we are ready to construct an OPD § and a CTL* formula ¢ such that the
set of finite trees in exec(Ms) is the set of extended pseudo tree-codes, ¢ is satisfied
only by finite trees, and given an extended pseudo tree-code T, ¢ is satisfied by
T if and only if T is a good fair extended tree-code. Hence, there is an accepting
computation tree of M over « if and only if there is a tree in ezec(Ms) which satisfies
@, i.e., if and only if Ms F&, —o.

First, we describe the construction of the OPD S ensuring that the the set of
finite trees in exec(Mg) is the set of extended pseudo tree-codes. Here, we describe
the main aspects of the behavior of S. The formal definition of S easily follows. In
the following, for state of S, we mean a pushdown configuration of S (i.e., a state of
the associated module Mg). The OPD S proceeds in three phases.

Phase 1 (generation of the pseudo-code of a sequence of TM configura-
tion): The behavior of S in this phase is very similar to the behavior of the OPD
(in phases 1 and 2) in the proof of Theorem 2. In particular, the OPD S guesses a
pseudo code of some sequence of TM configurations pushing it onto the stack with
the additional constraint that the first guessed TM configuration C has the form
(go,01)02 . ..o # ... (thus, C corresponds to the initial TM configuration associ-

k
ated with o with the exception that the number of blanks # to the right of o,. can be
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different from 22" —7). As the OPD in the proof of Theorem 2, in this phase, a state
of S is a system state iff the top symbol in the associated stack content is {V} (in
these states, S simulates the choice of the TM M from the current guessed universal
TM configuration). Thus, universal choices of the TM M are simulated by system
choices of S from (system) states with stack top symbol V, while existential choices
of the TM M are simulated by environment choices of S from (environment) states
with stack top symbol 3. Whenever, S terminates to generate on the stack the last
symbol (3 or V) of the pseudo code of an accepting TM configuration, then S moves
deterministically (without changing the stack content) to a system state of the form
(opt, B) whose label is {opt} and switch to phase 2. Note that in this phase, the
label of each state (p,3) with p # opt coincides with the top symbol of §. Thus,
as for the OPD in the proof of Theorem 2, if we consider a tree T in ezec(Ms) and
removes all the subtrees rooted at opt-nodes, then the obtained tree is finite if and
only if it is a pseudo tree-code. Moreover, each pseudo tree-code can be obtained in
this way.

Phase 2 (generation of check-trees): Assume that S is in the system state
(opt, 3). By phase 1, we can also assume that the reverse 3~1 of the stack content
0 is the pseudo code of some sequence of TM configurations. Then, from this state
S can choose to move or to the system state (opt,,3) (whose label is {opt;}) or to
the system state (opt,, 3) (whose label is {opt,}), or to the system state (opty, 3)
(whose label is {opt,}), in both cases without changing the stack content.

By selecting opty, S simply empties deterministically the stack by a sequence of
pop transitions. The corresponding subtree of the computation tree of Mg reduces
to a finite path whose sequence of labels (excluded the first symbol) is 3.

By selecting opty, S empties the stack by a sequence of pop transitions with
the additional ability to generate by internal nondeterminism (i.e., in this phase,
each state of S is a system state) exactly at one pseudo TM block bl; of 5 the
symbol check; (more precisely, S keeps track of this symbol by its finite control)
and successively, in case bl; is not the first TM pseudo block of 57 1,8 to generate by
internal nondeterminism exactly at one TM sub-block sby the symbol checks with
the constraint that bl; and the pseudo block of sby are consecutive.’ Thus, after
having selected opt,, each state reached by S is a system state.

Finally, by selecting opts, S empties the stack by a sequence of pop transitions
with the additional ability to generate by internal nondeterminism (i.e., in this
phase, each state of S is a system state) exactly at one pseudo TM block bl; of
B the symbol checky and successively, in case bl; does not belong to the first TM
configuration along 57 1,'0 to generate by external nondeterminism at the last el-
ement of exactly one TM block bly the symbol opt, with the constraint that bly
and bly belong to two consecutive TM configurations of 3. Moreover, after having
generated, the marker opt, at the last symbol of bls (note that bly appears in reverse
order along (3), S generates by internal nondeterminism exactly at one sub-block of

8note that S can check whether this condition is satisfied or not

9In order to ensure that the symbol check is generated at least once, we assume that the first
TM block of 31, which is pushed onto the stack in phase 1, is marked by some special symbol

10note that S can check whether this condition is satisfied or not
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Figure 1: Structure of a subtree rooted at an opts-node.

bly the marker checks. Figures 1 and 2 illustrate the structure of a subtree (of the
computation tree) rooted at an opts-node.

Thus, S ensures that the subtree T' of the computation tree of S rooted at the
node associated with (opt, 3) satisfies the following: the set of trees obtained from
T by disabling some environment choices (without blocking the system) corresponds
to the set of check-trees associated with the reverse of .

By construction it follows that the set of finite trees in exec(Ms) coincides exactly
with the set of extended pseudo tree-codes.

Finally, we construct the CTL* formula . The main step in the definition of ¢
is the construction of a CTL* formula @ pecr satisfying the following requirement:
for each check tree T', T satisfies @ peck iff T is good and is associated with a code
faithful to the evolution of M. Assume that we have defined @ peck- Then, ¢ is
given by

¢ :=(AF - EX true) A AF(opt A @check)

where the subformula (AF — EX true) ensures that each model of ¢ is a finite tree,
and for any extended pseudo tree-code T, the subformula AF (opt A pcheck) requires
that T is in fact a good fair extended tree-code. The formula @ pecr is given by

Pcheck = EX(OPt1 A Soblock) A EX(OPtz A QPcode) A EX(OPtg A Cpgood A prair)
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Figure 2: Structure of a subtree rooted at an opts-node.

Fix a check tree Tipecr of a pseudo code w, of some sequence v = C4,...,C,
of TM configurations. Then, @pock requires that each pseudo TM block in w, is in
fact a TM block, ¢¢oqe requires that the block numbers in w, are encoded correctly
(hence, w, is a code), @gooq requires that T is good, and @y, requires that w, is
faithful to the evolution of M. Since the construction of the CTL* formula @pock is
very similar to the construction of formula ¢, in the proof of Theorem 2, here, we
focus on formulas Yeode, Pgood, ANd Prair. Let Topy , and Ty, be the subtrees rooted
at the opty-child and opts-child of the roof of Tepeck, respectively. By definition of
Pcheck, We can assume that pc.qe is asserted at the root of Ty, , and @gooq and @yqir
are asserted at the root of Ty, .

First, let us consider the CTL* formula @ .oqe. By using ¢pock, we can assume
that each pseudo block in w,, is in fact a block. Fix two consecutive blocks bly and bly
along w, such that bl; and bls belong to the same TM configuration and bls precedes
bly along w,. We have to require that NUM (bly) < 22" — 1 and NUM (bly) =
NUM (bl2) + 1, NUM (blz) = 0 if bly is the first TM block of the associated TM
configuration (i.e., bly is preceded along w, by a symbol in {{I},{r}, {f}}), and
NUM (bly) = 22" if bl; is the last TM block of the associated TM configuration
(i.e., bly is followed along w, by a symbol in {{3},{V}}). Note that the requirement
NUDM (bly) < 22" —1 and NUM (bly) = NUM (bly)+ 1 is equivalent to the following:

e there is a sub-block sb; of bl; such that denoted by sbs the sub-block of bl
having the same sub-block number as sby, it holds that CON(sb;) = 1 and
CON (sby) = 0. Moreover, for each sub-block sb} # sb; of bly, denoted by sb)
the sub-block of bly having the same sub-block number as sb/, the following
holds: CON(sb}) = 0 and CON(sb,) = 1 if sb] precedes sb; along w,, and
CON (sby) = CON(sb}) otherwise.

By definition of check tree, there is a path m, of T,,s, such that the block bl
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is marked by check; and the subtree T’ rooted at the node of m, associated with
the end-symbol of bl; (recall that bl; precedes bly along 7, and appears in reversed
order) satisfies the following: (1) for each path of T”, there is exactly one sub-block
marked by checks; moreover, this sub-block belongs to bls, and (2) for each sub-
block sby of bly, there is a path of T’ such that the sequence of nodes associated
with sbs is marked by checks. Moreover, note that each checki-node has exactly
one child. Thus, formula ¢ 4. is defined as follows:

Pcode *— @ﬁrst A\ Plast A\ Pinc

where
Glirst = AG( lend A (b U (b A XAVEV )] — [((8—0) A —b) U b] )

pras = AG( [¥ v 3] = [(5—1) A -b)U 1] )

Gine = AG( [end A checky A (~b U (b A ~X({IVrV f)))] —
[{(xX"$) — \/ E(bit, bit)y U {(X™$) AE(L,0) A

bite{0,1}

XmFL(((X™8) = £(0,1)) U (b A check)) }] )

where £(bitq, bits) is defined as follows:

£(bity, bits) := E( (X" bit1) A F(checks A $ A bits) A
n—1
AV (X bit) A F(bit A checks A X"98))
7=0 bite{0,1}

Now, we define the formula 4,04 Which ensures that Tipecr is a good check-tree
of wy,. Thus, Yyood ‘= Punique N Y=, Where Qunigue requires that each subtree of
Topt, rooted at a checki-node associated with some TM block bl of w, contains at
most one opt,-node, and p— additionally requires that in case the opt,-node exists
(i.e., bl does not belong to the first TM configuration along w, ), then the TM block
associated with the opt,-node has the same block number as bl. Note that the
definition of check-tree (which is in particular a minimal 24”-labeled tree) ensures
that the first requirement is equivalent to the following: for each subtree of Ty,
there is no node having a child labeled by opt, and an other child which is not
labeled by opt,. Thus, @unique is defined as follows (recall that we can assume that
©good is asserted at the root of Topt3)1

Gunique ‘= AG ~((EX opt,) N (EX-opty))
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Now, let us consider ¢p—. Let T be a subtree rooted at a check;-node and whose
label contains end (i.e., the node corresponds to the last symbol of a TM block bl) and
assume that bl does not belong to the first TM configuration. The, by using formula
©good, We can assume that 77 contains exactly one opt,-node (by def. of check tree,
the label of this node contain end). Let bl’ be the TM block associated with the
opt,-node. Then, we have to require that bl and b’ have the same block-number,
i.e., for each sub-block sb of bl, it holds that CON(sb’) = CON (sb), where sb’ is
the sub-block of bl’ having the same sub-block number as sb. Now, the definition of
check tree ensures that the subtree T}, rooted at the considered opt,-node satisfies
the following: (1) for each path of Ty, , there is exactly one sub-block marked by
checks; moreover, this sub-block belongs to bl’, and (2) for each sub-block sb’ of bl’,
there is a path of T, such that the sequence of nodes associated with sb’ is marked
by checks. Moreover, each checki-node has exactly one child. Thus, formula ¢_ is
defined as follows:

o = AG ((end/\checkl/\F(l\/r)) — G((checks A (X"8)) — \/ §(bit,bz't)))
bite{0,1}

where £(bitq, bita) is the subformula of ¢;,,. defined above. Note that the correctness
of the construction is crucially based on the fact that each subtree rooted at a check-
node contains at most one opt,-child.

It remains to define the CT'L* formula ¢y, which ensures that the sequence of
TM configurations v = (1, ..., (), pseudo-encoded by w, = wc, ...wc, is faithful
to the evolution of M and, in particular, for each 1 < ¢ < p, Ci11 = suce(C;) if we,
is marked by [, and C;11 = suce,(C;) otherwise. By definition of the CTL* formulas
Peode AN Pgo0q, We can assume that w, is a code and Tepecr is a good check-tree
associated with w,,.

Since Tepeer 18 a good check-tree, for each block bl’ of w, which does not belong
to the first TM configuration, there is a path m, in T,p;, such that the sequence
of nodes associated with bl is marked by check,. Moreover, this path visits exactly
one opt,-node and the following holds: the label of this node contains end and
the associated block bl has the same block number as bl’ and belongs to the TM
configuration that precedes the TM configuration of bl along w,. Since a path 7, of
Topt, Vvisits an opt,-node iff the checki-block of 7, does not belong to the first TM
configuration of w,, in order to ensure that w, is faithful to the evolution of M, it
suffices to require the following: for each path 7, of Ty, containing an opt,-node, it
holds that u' = nextq(uy, u, us), where v’ is the block content of the check:-block bl’
of m,, u is the cell content of the opt,-block bl of 7, d =1 iff the TM configuration
associated with bl’ is marked by I, and us (resp., u,) is the block content of the TM
block — if any — that precedes (resp., follows) bl along 7, and belongs to the same
TM configuration as bl.

Thus, ©fair := ¢fi A Pla N Pnon—est, Where @5 manages the case in which bl’ is
the first block of the associated TM configuration, ¢;, manages the case in which
bl’ is the last TM block, and ©,on_ ezt manages the remaining cases. For simplicity,
we define only @non—eqst (the other two formulas can be defined similarly). Such a
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formula is defined as follows where ¥ = £ U (Q x %) (recall that we can assume that
©fair is asserted at the root of Tyt 3):

AG( [b A checky A (X end) A F(b A X opty)] —
\%

- \/de{l’r} [newtq(up, u,us) A F(d A F(us A X (opty A
(b U (u A X(=bU ) )] )

Up,

Now, we can prove the main result of this paper.

Theorem 4.
(1) The pushdown module-checking problem for CTL is 2EXPTIME-complete.
(2) The pushdown module-checking problem for CTL* is 3EXPTIME-complete.

(3) The pushdown module-checking problem for both CTL and CTL* is EXPTIME-
complete in the size of the given OPD.

Proof. Claims 1 and 2 directly follow from Theorems 1, 2, and 3. Now, let us consider
Claim 3. First, we note that model checking pushdown systems corresponds to
module checking the class of OPD in which there are not environment configurations.
Moreover, pushdown model checking against CTL is known to be EXPTIME-complete
also for a fixed formula [3]. Thus, Claim 3 follows from Theorem 1. (]

6 Conclusion

Kupferman, Vardi, and Wolper [19] introduced module checking as a useful frame-
work for the verification of open finite—state systems. There, it has been shown that
while for LTL the complexity of the model checking problem coincides with that of
module checking (i.e., it is PSPACE-complete), for the branching time paradigm the
problem of module checking is much harder. In fact, CTL (resp., CTL*) module
checking of finite-state systems is EXPTIME-complete (resp. 2EXPTIME-complete).

In this paper, we have extended the framework of module checking problem to
pushdown systems.

Figure 3 below summarizes our results on pushdown module checking and com-
pares them with those known on pushdown model checking. All the complexities
in the figure denote tight bounds. Our complexities results provide an additional
evidence that for pushdown systems, checking CTL or CTL* properties is actually
harder than checking LTL properties.

We conclude with some questions which are left open in this paper. The first
interesting question is related to synthesis issues, i.e. whether it is possible to com-
pute in case the module Mg associated with the given OPD S does not satisfy

29



Model Checking | System complexity | Module Checking | System complexity
of Model Checking of Module Checking
LTL EXPTIME PTIME EXPTIME PTIME
2] (2]
CTL EXPTIME EXPTIME 2EXPTIME EXPTIME
[26] 3]
CTL* 2EXPTIME EXPTIME 3EXPTIME EXPTIME
(3] 3]

Figure 3: Complexity results on pushdown module checking and pushdown model
checking

the given formula, a counterexample, i.e., a representation in some formalism of an
environment (a labeled tree in exec(Ms)) which violates the specification. And in
particular, is there a finite-state environment that is a witness for violating the prop-
erty? If not, is there a pushdown environment that violates it, and in this case, is it
possible to construct a pushdown system whose computation tree corresponds to one
of these environments? For finite-state module checking, for example, if the module
does not satisfy the formula, then it is guaranteed the existence of a finite-state
environment which violates the specification, and in particular, one can construct a
labeled finite-state graph whose unwinding corresponds to some of such finite-state
environments.'!

An other interesting question is as follows. It is well-known that the set of con-
figurations of a pushdown system satisfying a CTL or CTL* formula is regular and
can be effectively computed (see for example [2, 12]). It would be interesting to in-
vestigate the same question in the context of pushdown module checking. Moreover,
in this paper, the partition into system and environment configurations of an OPD
is only based on the control state and stack top symbol. The more general situation
in which the partition depends also on the whole stack content seems interesting,
and in particular, the case in which the set of environment or system configurations
is symbolically represented by a regular specification (it is easy to check that with
context-free specifications, the problems become undecidable).

Finally, since the conference publication of our paper [4], further questions involv-
ing module checking of pushdown systems have been addressed [13, 1]. In particular,
pushdown module checking against branching-time temporal logics more expressive
than CTL* has been addressed in [13], where the authors show that for the p—
calculus enriched with graded and nominals (hybrid graded p—calulus), the problem
is still decidable and is solvable in double exponential time in the size of the formula
and in single exponential time in the size of the system. Aminof, Murano, and Vardi
[1] extend the pushdown module checking framework to the imperfect information
setting for the case in which the environment has only a partial view of the system’s
control states and stack content. It has been shown that CTL pushdown module

this is a consequence of the fact that a parity NTA accepts some (labeled) tree iff it accepts
some regular tree, i.e., a tree with a finite number of distinct subtrees
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checking becomes undecidable when the imperfect information relies on the push-
down store content, while it is decidable and its complexity is the same as that of
(perfect information) pushdown module checking when the imperfect information
relies only on the control states.
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