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Abstract. The fully enriched μ-calculus is the extension of the propositional
μ-calculus with inverse programs, graded modalities, and nominals. While satis-
fiability in several expressive fragments of the fully enriched μ-calculus is known
to be decidable and EXPTIME-complete, it has recently been proved that the full
calculus is undecidable. In this paper, we study the fragments of the fully enriched
μ-calculus that are obtained by dropping at least one of the additional constructs.
We show that, in all fragments obtained in this way, satisfiability is decidable
and EXPTIME-complete. Thus, we identify a family of decidable logics that are
maximal (and incomparable) in expressive power. Our results are obtained by
introducing two new automata models, showing that their emptiness problems
are EXPTIME-complete, and then reducing satisfiability in the relevant logics to
this problem. The automata models we introduce are two-way graded alternating
parity automata over infinite trees (2GAPT) and fully enriched automata (FEA)
over infinite forests. The former are a common generalization of two incompara-
ble automata models from the literature. The latter extend alternating automata in
a similar way as the fully enriched μ-calculus extends the standard μ-calculus.

1 Introduction

The μ-calculus is a propositional modal logic augmented with least and greatest fixpoint
operators [Koz83]. It is often used as a target formalism for embedding temporal and
modal logics with the goal of transferring computational and model theoretic properties
such as the EXPTIME upper complexity bound. Description logics (DLs) are a family of
knowledge representation languages that originated in artificial intelligence [BM+03].
DLs currently receive considerable attention, which is mainly due to their use as an
ontology language in prominent applications such as the semantic web [BHS02]. No-
tably, DLs have recently been standardized as the ontology language OWL by the W3C
committee. It has been pointed out by several authors that, by embedding DLs into the
μ-calculus, we can identify DLs that are of very high expressive power, but compu-
tationally well-behaved [CGL01, SV01, KSV02]. When putting this idea to work, we
face the problem that modern DLs such as the ones underlying OWL include several
constructs that cannot easily be translated into the μ-calculus. Most importantly, these
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Inverse progr. Graded mod. Nominals Complexity
fully enriched μ-calculus x x x undecidable
full graded μ-calculus x x EXPTIME (1ary/2ary)
full hybrid μ-calculus x x EXPTIME

hybrid graded μ-calculus x x EXPTIME (1ary/2ary)
graded μ-calculus x EXPTIME (1ary/2ary)

Fig. 1. Enriched μ-calculi and previous results

constructs are inverse programs, graded modalities, and nominals. Intuitively, inverse
programs allow to travel backwards along accessibility relations [Var98], nominals are
propositional variables interpreted as singleton sets [SV01], and graded modalities en-
able statements about the number of successors and predecessors of a state [KSV02].
All of the mentioned constructs are available in the DLs underlying OWL.

The extension of the μ-calculus with these constructs induces a family of enriched
μ-calculi. These calculi may or may not enjoy the attractive computational properties of
the original μ-calculus: on the one hand, it has been shown that satisfiability in a number
of the enriched calculi is decidable and EXPTIME-complete [CGL01, SV01, KSV02].
On the other hand, it has recently been proved by Bonatti and Peron that satisfiability
is undecidable in the fully enriched μ-calculus, i.e., the logic obtained by extending the
μ-calculus with all of the above constructs simultaneously [BP04]. In computer science
logic, it has always been a major research goal to identify decidable logics that are as
expressive as possible. Thus, the above results raise the question of maximal decidable
fragments of the fully enriched μ-calculus. In this paper, we study this question in a
systematic way by considering all fragments of the fully enriched μ-calculus that are
obtained by dropping at least one of inverse programs, graded modalities, and nominals.
We show that, in all these fragments, satisfiability is decidable and EXPTIME-complete.
Thus, we identify a whole family of decidable logics that have maximum (incompara-
ble) expressivity.

The relevant fragments of the fully enriched μ-calculus are shown in Fig. 1 together
with the complexity of their satisfiability problem. The results shown in gray are already
known from the literature: EXPTIME-completeness of satisfiability in the full hybrid
μ-calculus has been shown in [SV01]; under the assumption that the numbers inside
graded modalities are coded in unary, the same result was proved for the full graded
μ-calculus in [CGL01]; finally, the same was also shown for the (non-full) graded μ-
calculus in [KSV02] under the assumption of binary coding. In this paper, we prove
EXPTIME-completeness of the full graded μ-calculus and the hybrid graded μ-calculus.
In both cases, we allow numbers to be coded in binary (techniques such as those of
[CGL01] involve an exponential blow-up when numbers are coded in binary).

Our results are based on the automata-theoretic approach. We introduce fully en-
riched automata (FEAs), which run on infinite forests and use a parity acceptance con-
dition. Intuitively, these automata generalize alternating automata on infinite trees in a
similar way as the fully enriched μ-calculus extends the standard μ-calculus: FEAs can
move up to a node’s predecessor (by analogy with inverse programs), move down to at
least n or all but n successors (by analogy with graded modalities), and jump directly
to the roots of the input forest (which are the analogues of nominals). We prove that
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the emptiness problem is decidable for fully enriched automata and then show how to
reduce to this problem satisfiability in the hybrid graded and the full graded μ-calculi,
exploiting the forest model property enjoyed by these logics. Observe that decidability
of the emptiness problem for FEAs does not contradict the undecidability of the fully
enriched μ-calculus: the latter does not enjoy a forest model property [BP04], and hence
satisfiability cannot be decided using forest-based FEAs.

To show that the emptiness problem for FEAs is in EXPTIME, we introduce an ad-
ditional automata model: two-way graded parity tree automata (2GAPTs). These au-
tomata are interesting in their own right because they generalize in a natural way two
existing, but incomparable automata models: two-way alternating tree automata (2APT)
[Var98] and graded parity tree automata (GAPT) [KSV02]. We give a polynomial re-
duction of the emptiness problem for FEAs to that for 2GAPTs, and then show contain-
ment in EXPTIME for the 2GAPT emptiness problem by a reduction to the emptiness
of graded nondeterministic parity tree automata (GNPT) as introduced in [KSV02].

Due to space limitations, most of the proofs are omitted. The interested reader can
find them in the accompanying technical report [BL+06].

2 Preliminaries

Let AP , Var , Prog , and Nom be finite and pairwise disjoint sets of atomic proposi-
tions, propositional variables, atomic programs, and nominals. A program is an atomic
program a or its converse a−. The set of formulas of the fully enriched μ-calculus is the
smallest set such that (i) true and false are formulas; (ii) p and ¬p, for p ∈ AP ∪Nom ,
are formulas; (iii) x ∈ Var is a formula; (iv) if ϕ1 and ϕ2 are formulas, α is a program,
n is a non-negative integer, and y is a propositional variable, then the following are also
formulas: ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2, 〈n, α〉ϕ1, [n, α]ϕ1, μy.ϕ1(y), and νy.ϕ1(y). Observe
that we use positive normal form, i.e., negation is applied only to atomic propositions.

We call μ and ν fixpoint operators and use λ to denote a fixpoint operator μ or ν. A
propositional variable y occurs free in a formula if it is not in the scope of a fixpoint op-
erator, and bounded otherwise. A sentence is a formula that contains no free variables.
For a formula λy.ϕ(y), we write ϕ(λy.ϕ(y)) to denote the formula that is obtained
by one-step unfolding, i.e. replacing each free occurrence of y in ϕ with λy.ϕ(y). We
refer often to the graded modalities 〈n, α〉ϕ1 and [n, α]ϕ1 as atleast formulas and all-
but formulas and assume that the integers in these operators are given in binary cod-
ing: the contribution of n to the length of the formulas 〈n, α〉ϕ and [n, α]ϕ is �log n	
rather than n. We refer to fragments of the fully enriched μ-calculus using the names
from Fig. 1.

The semantics of the fully enriched μ-calculus is defined with respect to a Kripke
structure, i.e., a tuple K = 〈W, R, L〉 where W is a non-empty set of states, R :
Prog → 2W×W assigns to each atomic program a transition relation over W , and
L : AP ∪ Nom → 2W assigns to each atomic proposition and nominal a set of states
such that the sets assigned to nominals are singletons. To deal with inverse programs,
we extend R as follows: for each a ∈ Prog , set R(a−) = {(v, u) : (u, v) ∈ R(a)}. If
(w, w′) ∈ R(α), we say that w′ is an α successor of w. Informally, an atleast formula
〈n, α〉ϕ holds at a state w of a Kripke structure K if ϕ holds at least in n+1 α successors
of w. Dually, the allbut formula [n, α]ϕ holds in a state w of a Kripke structure K
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if ϕ holds in all but at most n α successors of w. Note that ¬〈n, α〉ϕ is equivalent
to [n, α]¬ϕ, and that the modalities 〈α〉ϕ and [α]ϕ of the standard μ-calculus can be
expressed as 〈0, α〉ϕ and [0, α]ϕ, respectively.

To formalize semantics, we introduce valuations. Given a Kripke structure K =
〈W, R, L〉 and a set {y1, . . . , yn} of variables in Var , a valuation V : {y1, . . . , yn} →
2W is an assignment of subsets of W to the variables y1, . . . , yn. For a valuation V , a
variable y, and a set W ′ ⊆ W , we denote by V [y ← W ′] the valuation obtained from V
by assigning W ′ to y. A formula ϕ with free variables among y1, . . . , yn is interpreted
over the structure K as a mapping ϕK from valuations to 2W , i.e., ϕK(V) denotes the
set of points that satisfy ϕ under valuation V . The mapping ϕK is defined inductively
as follows:

– trueK(V) = W and falseK(V) = ∅;
– for p ∈ AP ∪ Nom , we have pK(V) = L(p) and (¬p)K(V) = W \ L(p);
– for y ∈ Var , we have yK(V) = V(y);
– (ϕ1 ∧ ϕ2)K(V) = ϕK

1 (V) ∩ ϕK
2 (V) and (ϕ1 ∨ ϕ2)K(V) = ϕK

1 (V) ∪ ϕK
2 (V);

– (〈n, α〉ϕ)K (V) = {w : |{w′ ∈ W : (w, w′) ∈ R(α) and w′ ∈ ϕK(V)}| ≥ n+1};
– ([n, α]ϕ)K(V) = {w : |{w′ ∈ W : (w, w′) ∈ R(α) and w′ �∈ ϕK(V)}| ≤ n};
– (μy.ϕ(y))k(V) =

⋂
{W ′ ⊆ W : ϕK([y ← W ′]) ⊆ W ′};

– (νy.ϕ(y))k(V) =
⋃

{W ′ ⊆ W : W ′ ⊆ ϕK([y ← W ′])}.

Let K = 〈W, R, L〉 be a Kripke structure and ϕ a sentence. For a state w ∈ W , we say
that ϕ holds at w in K , denoted K, w |= ϕ, if w ∈ ϕK . K is a model of ϕ if there is a
w ∈ W such that K, w |= ϕ. Finally, ϕ is satisfiable if it has a model.

In the remainder of this section, we show that the full graded μ-calculus has a tree
model property, and that the hybrid graded μ-calculus has a forest model property. A
forest is a set F ⊆ IN+ such that if x·c ∈ F where x ∈ IN+ and c ∈ IN, then also x ∈ F .
The elements of F are called nodes, and the strings consisting of a single natural number
are the roots of F . For each root r ∈ F , the set T = {r · x | x ∈ IN∗ and r · x ∈ F} is a
tree of F (the tree rooted in r). For every x ∈ F , the nodes x · c ∈ F where c ∈ IN are
the successors of x, and x is their predecessor. The number of successors of x is called
the degree of x, and is denoted by deg(x). The degree of a forest is the maximum of
the degrees of a node in the forest and the number of roots.

We call a Kripke structure K = 〈W, R, L〉 a forest structure if (i) W is a forest,
(ii) (w, v) ∈

⋃
a∈Prog R(a) iff (w, v) ∈ W 2 and w is either a predecessor or a successor

of v, and (iii) R(α) ∩ R(β) = ∅ for all α, β ∈ Prog ∪ {a− | a ∈ Prog} with α �= β. K
is directed if (w, v) ∈

⋃
a∈Prog R(a) implies that v is a successor of w. If W consists

of a single tree then we call K a tree structure.
We call K = 〈W, R, L〉 a quasi forest structure if 〈W, R′, L〉 is a forest structure,

where R′(a) = R(a) \ (W × IN) for all a ∈ Prog (i.e., K becomes a forest structure
after deleting all the edges entering a root of W ). K is directed if 〈W, R′, L〉 is. The
degree of K is the degree of W . Note that forest and tree structures are quasi forest
structures. A forest model (resp. tree model, quasi forest model) of ϕ is a forest (resp.
tree, quasi forest) structure K = 〈W, R, L〉 such that ϕ and the nominals in ϕ hold at
some (not necessarily different) roots of W . In what follows, a formula ϕ counts up to
b if the maximal integer in atleast and allbut restrictions used in ϕ is b − 1.
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Theorem 1. Let ϕ be a sentence of the full graded μ-calculus such that ϕ has � atleast
subsentences and counts up to b. If ϕ is satisfiable, then ϕ has a tree model whose
degree is at most �(b + 1).

In contrast to the full graded μ-calculus, the hybrid graded μ-calculus does not enjoy
the tree model property. This is for example witnessed by the formula

o ∧ 〈0, a〉(p1 ∧ 〈0, a〉(p2 ∧ · · · 〈0, a〉(pn−1 ∧ 〈0, a〉o) · · · ))

which generates a cycle of length at most n if the atomic propositions are enforced
to be mutually disjoint. However, we can follow [SV01] to show that every satisfiable
formula of the hybrid graded μ-calculus has a quasi forest model.

Theorem 2. Let ϕ be a sentence of the hybrid graded μ-calculus such that ϕ has k
nominals, � atleast subsentences and counts up to b. If ϕ is satisfiable, then ϕ has a
directed quasi forest model K whose degree is at most max{k + 1, �(b + 1)}.

3 Enriched Automata
Nondeterministic automata on infinite trees are a variation of nondeterministic automata
on finite and infinite words, see [Tho90] for an introduction. Alternating automata, as
first introduced in [MS87], are a generalization of nondeterministic automata. Intu-
itively, while a nondeterministic automaton that visits a node x of the input tree sends
one copy of itself to each of the successors of x, an alternating automaton can send
several copies of itself to the same successor. In the two-way paradigm [Var98], an au-
tomaton can send a copy of itself to its predecessor, too. In graded automata [KSV02],
the automaton can specify a number n of successors to which copies of itself are sent,
without specifying which successors these exactly are. The fully enriched automata
that we are introducing in the next subsection work on infinite forests, include all of
the above features, and additionally have the ability to send a copy of themselves to the
roots of the forest.

3.1 Fully Enriched Automata

We start with some preliminaries. Let F ⊆ IN+ be a forest and x a node in F . As a
convention, we take x · ε = x, (x · c) ·−1 = x, and ε ·−1 as undefined. We call x a leaf
if it has no successors. A path π in F is a minimal set π ⊆ F such that some root r of
F is contained in π and for every x ∈ π, either x is a leaf or there exists a unique c ∈ F
such that x · c ∈ π. Given an alphabet Σ, a Σ-labeled forest is a pair 〈F, V 〉, where F
is a forest and V : F → Σ maps each node of F to a letter in Σ.

For a given set Y , let B+(Y ) be the set of positive Boolean formulas over Y (i.e.,
Boolean formulas built from elements in Y using ∧ and ∨), where we also allow the
formulas true and false and ∧ has precedence over ∨. For a set X ⊆ Y and a formula
θ ∈ B+(Y ), we say that X satisfies θ iff assigning true to elements in X and assigning
false to elements in Y \ X makes θ true. For b > 0, let 〈[b]〉 = {〈0〉, 〈1〉, . . . , 〈b〉},
[[b]] = {[0], [1], . . . , [b]}, and Db = 〈[b]〉 ∪ [[b]] ∪ {−1, ε, 〈root〉, [root ]}.

A fully enriched automaton is an automaton in which the transition function δ maps
a state q and a letter σ to a formula in B+(Db × Q). Intuitively, an atom (〈n〉, q) (resp.
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([n], q)) means that the automaton sends copies in state q to n + 1 (resp. all but n)
different successors of the current node, (ε, q) means that the automaton sends a copy
(in state q) to the current node, (−1, q) means that the automaton sends a copy to the
predecessor of the current node, and (〈root〉, q) and ([root ], q) mean that the automaton
sends a copy to some, respectively all of the roots of the forest. When, for instance, the
automaton is in state q, reads a node x, and

δ(q, V (x)) = (−1, q1) ∧ ((〈root〉, q2) ∨ ([root ], q3)),

it sends a copy in state q1 to the predecessor and either sends a copy in state q2 to one
of the roots or a copy in state q3 to all roots.

Formally, a fully enriched automaton (FEA, for short) is a tuple A = 〈Σ, b, Q, δ, q0,
F〉, where Σ is the input alphabet, b > 0 is a counting bound, Q is a finite set of states,
δ : Q × Σ → B+(Db × Q) is a transition function, q0 ∈ Q is an initial state, and F
is the acceptance condition. A run of A on an input Σ-labeled forest 〈F, V 〉 is a tree
〈Tr, r〉 in which each node is labeled by an element of F × Q. Intuitively, a node in Tr

labeled by (x, q) describes a copy of the automaton in state q that reads the node x of
F . Runs start in the initial state and satisfy the transition relation. Thus, a run 〈Tr, r〉
with root z has to satisfy the following: (i) r(z) = (c, q0) for some root c of F and (ii)
for all y ∈ Tr with r(y) = (x, q) and δ(q, V (x)) = θ, there is a (possibly empty) set
S ⊆ Db × Q, such that S satisfies θ, and for all (d, s) ∈ S, the following hold:

– If d ∈ {−1, ε}, then x · d is defined and there is j ∈ IN such that y · j ∈ Tr and
r(y · j) = (x · d, s);

– If d = 〈n〉, then there are distinct i1, . . . , in+1 ∈ IN such that for all 1 ≤ j ≤ n+1,
there is j′ ∈ IN such that y · j′ ∈ Tr, x · ij ∈ F , and r(y · j′) = (x · ij, s);

– If d = [n], then there are distinct i1 . . . , ideg(x)−n ∈ IN such that for all 1 ≤ j ≤
deg(x)−n, there is j′ ∈ IN such that y ·j′ ∈ Tr, x·ij ∈ F , and r(y ·j′) = (x·ij , s);

– If d = 〈root〉, then for some root c ∈ F and some j ∈ IN such that y · j ∈ Tr, it
holds that r(y · j) = (c, s);

– If d = [root ], then for all roots c ∈ F there exists j ∈ IN such that y · j ∈ Tr and
r(y · j) = (c, s).

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance condition. We
consider here the parity acceptance condition, where F = {F1, F2, . . . , Fk} is such
that F1 ⊆ F2 ⊆ . . . ⊆ Fk = Q. The number k of sets in F is called the index of the
automaton. Given a run 〈Tr, r〉 and an infinite path π ⊆ Tr, let Inf (π) ⊆ Q be such
that q ∈ Inf (π) iff there are infinitely many y ∈ π for which r(y) ∈ F ×{q}. A path π
satisfies a parity acceptance condition F = {F1, F2, . . . , Fk} iff there is an even i for
which Inf (π)∩Fi �= ∅ and Inf (π)∩Fi−1 = ∅. An automaton accepts a forest iff there
exists an accepting run of the automaton on the forest. We denote by L(A) the set of all
Σ-labeled forests that A accepts.

The emptiness problem for FEAs is to decide, given a FEA A, whether L(A) = ∅.
To decide this problem, we first reduce it to the emptiness problem of a more restricted
automata model: a two-way graded alternating parity tree automaton (2GAPT) is a
FEA that accepts trees (instead of forests) and cannot jump to the root of the input tree,
i.e., it does not support directions 〈root〉 and [root ] in the transition relation. For each
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FEA A, there exists a 2GAPT A′ that accepts a tree encoding of A’s language. A Σ-
labeled forest 〈F, V 〉 is encoded by a Σ ∪ {root}-labeled tree 〈T, V ′〉 with root z /∈ F
iff root �∈ Σ, T = {z} ∪ {z · c | c ∈ F}, and V ′ satisfies:

– V ′(z) = {root},
– V ′(z · x) = V (x) for all x ∈ F .

Then, we can prove the following.

Theorem 3. Let A be a FEA running on Σ-labeled forests with n states, index k and
counting bound b. There exists a 2GAPT A′ running on Σ∪{root}-labeled trees (root �∈
Σ) with 3n + 1 states, index k, and counting bound b such that A′ accepts a labeled
tree 〈T, V 〉 iff A accepts the forest encoded by 〈T, V 〉.

3.2 Graded Nondeterministic Parity Tree Automata

To decide the emptiness problem of 2GAPTs, we use a reduction to the emptiness prob-
lem of graded nondeterministic parity tree automata as introduced in [KSV02]. In the
following, we define these automata and state some results concerning them.

For an integer b, a b-bound is a pair in Bb = {(>, 0), (≤, 0), (>, 1), (≤, 1), . . . ,
(>, b), (≤, b)}. For a set Y , we use B(Y ) to denote the set of all Boolean formulas over
atoms in Y . Each formula θ ∈ B(Y ) induces a set sat(θ) ⊆ 2Y such that x ∈ sat(θ)
iff x satisfies θ. For an integer b ≥ 0, a b-counting constraint for 2Y is a relation
C ⊆ B(Y )×Bb. A tuple t = 〈x1, . . . , xm〉 ∈ (2Y )m satisfies the b-counting constraint
C if for all 〈θ, ξ〉 ∈ C, the tuple t satisfies ξ with respect to sat(θ), that is, when θ is
paired with (>, n), at least n + 1 elements of t should satisfy θ, and when θ is paired
with (≤, n), at most n elements in the tuple satisfy θ. We use C(Y, b) to denote the set
of all b-counting constraints for 2Y .

A graded nondeterministic parity tree automaton (GNPT, for short) is a tuple A =
〈Σ, b, Q, δ, q0, F〉 where Σ, b, q0, and F are as in 2GAPT, Q ⊆ 2Y is the set of
states (i.e., Q is encoded by a finite set of variables), and δ : Q × Σ → C(Y, b) maps
a state and a letter to a b-counting constraint for 2Y . Given a GNPT A, a run of A on
a Σ-labeled tree 〈T, V 〉 rooted in z is a Q-labeled tree 〈T, r〉 such that r(z) = q0 and
for every x ∈ T , the tuple 〈r(x · 1), . . . , r(x · deg(x))〉 satisfies δ(r(x), V (x)). The run
〈T, r〉 is accepting if all its infinite paths satisfy the parity acceptance condition.

We need two special cases of GNPT: FORALL automata and SAFETY automata. In
FORALL automata, for each q ∈ Q and σ ∈ Σ there is s ∈ Q such that δ(q, σ) =
{〈(¬θs), (≤, 0)〉}, where θs ∈ B(Y ) is such that sat(θs) = {s}. Thus, a FORALL au-
tomaton is a notational variant of a deterministic tree automaton, where the transition
function maps q and σ to 〈s, . . . , s〉. In SAFETY automata, there is no acceptance con-
dition, and all runs are accepting. Note that this does not mean that SAFETY automata
accept all trees, as it may be that on some trees the automaton does not have a run. We
will need the following results concerning GNPTs.

Lemma 1. [KSV02] Given a FORALL GNPT A1 with n1 states and index k, and a
SAFETY GNPT A2 with n2 states and counting bound b, we can define a GNPT A with
n1n2 states, index k, and counting bound b, such that L(A) = L(A1) ∩ L(A2).
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Theorem 4. [KSV02] Given a GNPT A = 〈Σ, b, Q, δ, q0, F〉 with n states, index k,
counting bound b, and |Σ| = �, the nonemptiness problem for A can be solved in time
nk�(b + 2)O(n(n+2+k log nk)).

4 The Emptiness Problem for 2GAPT

We show that emptiness of the language accepted by a 2GAPT can be decided in
EXPTIME. A corresponding lower bound is inherited from alternating tree automata
[KVW00].

Let A = 〈Σ, b, Q, δ, q0, F〉 be a 2GAPT. Recall that Db = 〈[b]〉 ∪ [[b]] ∪ {−1, ε}
and δ : Q × Σ → B+(Db × Q). A strategy tree for A is a 2Q×Db×Q-labeled tree
〈T, str〉. Intuitively, the function str (from now on called strategy) maps each node of
the tree to a set of transitions. For each label w = str(x), we define head(w) = {q :
(q, c, q′) ∈ w} as the set of sources of w. A strategy tree 〈T, str〉 is on a Σ-labeled
tree 〈T, V 〉, if q0 ∈ head(str(root(T ))) and for each node x ∈ T and state q, the set
{(c, q′) : (q, c, q′) ∈ str(x)} satisfies δ(q, V (x)) (where root(T ) denotes the root of
T ). Intuitively, by choosing the atoms that are going to be satisfied for a node x, str(x)
removes the nondeterminism in δ.

A promise tree for the automaton A on a Σ-labeled tree 〈T, V 〉 is a 2Q×Q-labeled
tree 〈T, pro〉. Intuitively, in a run that proceeds according to pro (in the following called
promise), if a node x·i has (q, q′) ∈ pro(x·i) and the run visits its parent x in state q and
proceeds by choosing an atom (〈n〉, q′) or ([n], q′), then x·i is among the successors of x
that inherit q′. For each label w = pro(x), we also define head(w) = {q : (q, q′) ∈ w}
as the set of sources of w.

Consider a 2GAPT A, a Σ-labeled tree 〈T, V 〉, a strategy tree 〈T, str〉 and a promise
tree 〈T, pro〉 for A on 〈T, V 〉. A (T × Q)-labeled tree 〈Tr, r〉 is consistent with str and
pro if 〈Tr, r〉 suggests a possible run of A on 〈T, V 〉 such that whenever the run 〈Tr, r〉
is in state q as it reads a node x ∈ T , the strategy str(x) is defined, the run proceeds
according to the elements of str(x) having q as source, and it delivers requirements to
each successor x · j according to the elements in pro(x · j) also having q as source.
Formally, 〈Tr, r〉 is consistent with str and pro iff the following hold:

– r(root(Tr)) = (root(T ), q0);
– for each node y in Tr with r(y) = (x, q), str(x) is defined and for all (q, c, q′) ∈

str(x), the following hold:
• If c = −1 or c = ε, then x · c is defined and there is j ∈ IN such that y · j ∈ Tr

and r(y · j) = (x · c, q′);
• If c = 〈n〉 or c = [n], then for each j ∈ IN with (q, q′) ∈ pro(x · j), there is

j′ ∈ IN such that y · j′ ∈ Tr and r(y · j′) = (x · j, q′).

Note that since the counting constraints in str(x) may not be satisfied, 〈Tr, r〉 may not
be a legal run.

Consider a strategy tree 〈T, str〉 and a promise tree 〈T, pro〉 on a Σ-labeled tree
〈T, V 〉. We say that pro fulfills str for V if the states promised to be visited by pro
satisfy the obligations induced by str as it runs on V . Formally, pro fulfills str for V if
for every node x ∈ T , the following hold:
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– For every (q, 〈n〉, q′) ∈ str(x), at least n + 1 successors x · j of x have (q, q′) ∈
pro(x · j);

– for every (q, [n], q′) ∈ str(x), at least deg(x)−n successors x·j of x have (q, q′) ∈
pro(x · j).

Consider a 2GAPT A, a strategy tree 〈T, str〉 and promise tree 〈T, pro〉 on a Σ-
labeled tree 〈T, V 〉. A sequence (x0, q0), (x1, q1) . . . is a trace induced by str and pro
if x0 is the root of T (notice that q0 is the initial state of A) and, for each i ≥ 0, one of
the following holds:

– qi �∈ head(str(xi)) and (xi, qi) is the last pair in the trace;
– there is (qi, c, qi+1) ∈ str(xi) with c = −1 or c = ε, xi ·c defined, and xi+1 = xi ·c;
– str(xi) contains (qi, 〈n〉, qi+1) or (qi, [n], qi+1), there exists j ∈ IN with xi+i =

xi · j, xi+i ∈ T , and (q, q′) ∈ pro(xi+1).

It is not difficult to see that a sequence of pairs of nodes of T and states of A starting
with (root(T ), q0) is a trace induced by a strategy and a promise for A on a Σ-labeled
tree 〈T, V 〉 if a run 〈Tr, r〉 on 〈T, V 〉, which is consistent with both the strategy and
the promise, has a path π labeled with the trace. We say that a strategy tree 〈T, str〉 and
a promise 〈T, pro〉 are good for 〈T, V 〉 if all the infinite traces induced by str and pro
satisfy the acceptance condition F . In [KSV02] it has been shown that a necessary and
sufficient condition for a tree to be accepted by a one-way GAPT is to have a strategy
tree and a promise tree good for the input tree, with the promise fulfilling the strategy.
We establish the same result with respect to the notions of strategy tree and promise
tree as introduced above for 2GAPTs.

Theorem 5. A 2GAPT A accepts 〈T, V 〉 iff there exist a strategy tree 〈T, str〉 and a
promise tree 〈T, pro〉 good for 〈T, V 〉 such that pro fulfills str for V .

Strategy and promise trees allow us to define a notion of a run for alternating automata
that has the same tree structure as the underlying input tree, unlike the run 〈Tr, r〉. Since
we want to translate 2GAPT into GNPT, we still have the problem that paths in a run can
go both up and down. To restrict our attention to unidirectional paths, we extend to our
setting the notion of annotation as defined in [Var98]. Annotations allow decomposing
a path of a run into a downward path and several finite paths (detour) that come back to
their origin (possibly in a loop).

Let A = 〈Σ, b, Q, δ, q0, F〉 be a 2GAPT with F = {F1, . . . , Fk}. Recall that Db =
〈[b]〉 ∪ [[b]] ∪ {−1, ε}. For each state q ∈ Q, let index(q) be the minimal i such that
q ∈ Fi. Consider a strategy tree 〈T, str〉 and a promise tree 〈T, pro〉 for A on a Σ-
labeled tree 〈T, V 〉, an annotation tree for A on 〈T, str〉 and 〈T, pro〉 is 〈T, ann〉 where
the annotation ann is a mapping ann : T → 2Q×{1,...,k}×Q such that for every node
x ∈ T the following conditions hold:

– If (q, ε, q′) ∈ str(x) then (q, index(q′), q′) ∈ ann(x);
– if (q, j′, q′) ∈ ann(x) and (q′, j′′, q′′) ∈ ann(x), then (q, min(j′, j′′), q′′) ∈

ann(x);
– if x = y · i, (q, −1, q′) ∈ str(x), (q′, j, q′′) ∈ ann(y), str(y) contains (q′′, 〈n〉, q′′′)

or (q′′, [n], q′′′), and (q′′, q′′′) ∈ pro(x), then (q, min(index(q′), j, index(q′′′)),
q′′′) ∈ ann(x);
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– if y = x · i, str(x) contains (q, 〈n〉, q′) or (q, [n], q′), (q, q′) ∈ pro(y), (q′, j, q′′) ∈
ann(y), and (q′′, −1, q′′′) ∈ str(y), then (q, min(index(q′), j, index(q′′′)), q′′′) ∈
ann(x).

Given an annotation tree 〈T, ann〉 for A on 〈T, str〉 and 〈T, pro〉, a downward path π
induced by str, pro, and ann is a sequence (x0, q0, t0), (x1, q1, t1), . . . of triples, where
x0 = root(T ), q0 is the initial state of A, and for each i, xi is in T , qi is in Q, and ti is
either an element of str(xi) or ann(xi), such that: (i) either ti is (qi, c, qi+1) for some
c ∈ [[b]] ∪ [〈b〉], (qi, qi+1) ∈ pro(xi · d) for some d ∈ IN, and xi+1 = xi · d; or (ii) ti is
(qi, d, qi+1), for d ∈ {1, . . . , k}, and xi+1 = xi. In the first case, we consider index(ti)
as the minimal j such that qi+1 ∈ Fj and, in the second case, index(ti) = d. Moreover,
for a downward path π, we consider index(π) as the minimal index index(ti) for all ti
occurring infinitely often in π. We say that a downward path π violates F if index(π)
is odd. Given an annotation tree 〈T, ann〉 for A on 〈T, str〉 and 〈T, pro〉, we say that ann
is accepting if there is no downward path induced by str, pro, and ann that violates F .
Notice that a downward path π can also end in a loop where the last ti is given by ann
and π is accepting if index(ti) is even.

Theorem 6. A 2GAPT A accepts 〈T, V 〉 iff there exist a strategy tree 〈T, str〉 and
a promise tree 〈T, pro〉 on 〈T, V 〉, and an annotation tree 〈T, ann〉 on 〈T, str〉 and
〈T, pro〉 such that pro fulfills str for V and ann is accepting.

In the following, we combine the input tree, the strategy, the promise, and the annotation
into one tree 〈T, (V, str, pro, ann)〉. Given a signature Σ for the input tree, let Σ′ denote
the extended signature for the combined trees, i.e., Σ′ = Σ × 2Q×Db×Q × 2Q×Q ×
2Q×{1,...k}×Q.

Theorem 7. Let A be a 2GAPT running on Σ-labeled trees with n states, index k and
counting bound b. There exists a GNPT A′ running on Σ′-labeled trees with
2n(2+k log nk) states, index nk, and b-counting constraints such that A′ accepts a tree
iff A accepts its projection on Σ.

5 EXPTIME Upper Bounds for Enriched μ-Calculi

We establish EXPTIME upper bounds for satisfiability in the full graded μ-calculus and
the hybrid graded μ-calculus. p For the full graded μ-calculus, we give a polynomial
translation of formulas ϕ into a 2GAPT Aϕ that, roughly speaking, accepts the tree
models of ϕ. By Theorem 1, we can thus decide satisfiability of ϕ by checking non-
emptiness of L(L(Aϕ). There is a minor technical difficulty to be overcome: Kripke
structures have labeled edges, while the trees accepted by 2GAPTs do not. This prob-
lem can be dealt with by moving the label from each edge to the target node of the edge.
For this purpose, we introduce a new propositional symbol pα for each program α. Let
the tree encoding of a tree structure K = 〈W, R, L〉 be the labeled tree 〈W, L∗〉 such
that L∗(w) = L(w) ∪ {pα | ∃(v, w) ∈ R(α) with w successor of v in W}.

Theorem 8. Given a sentence ϕ of the full graded μ-calculus that has � atleast sub-
sentences and counts up to b, we can construct a 2GAPT Aϕ such that Aϕ
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– accepts exactly the tree encodings of tree models of ϕ with degree at most �(b + 1),
– has |ϕ| states, index |ϕ|, and counting bound b.

In the case of the hybrid graded μ-calculus, two additional difficulties have to be ad-
dressed. First, FEAs accept forests while the hybrid μ-calculus has only a quasi forest
model property. This problem can be solved by introducing in node labels new propo-
sitional symbols ↑α

o (not occurring in the input formula) that represent an α-labeled
edge from the current node to the (unique) root node labeled by nominal o. Second, we
have to take care of the interaction between graded modalities and the implicit edges
encoded via propositions ↑a

o. To this end, we need to know the following information
before constructing the FEA: which “relevant” formulas are satisfied by each nominal
and which nominals are equivalent. This information is provided by a guess, which we
define as follows. The closure cl(ϕ) of a sentence ϕ of the full graded μ-calculus is the
smallest set of sentences satisfying the following:

– ϕ ∈ cl(ϕ);
– if ψ1 ∧ ψ2 ∈ cl(ϕ) or ψ1 ∨ ψ2 ∈ cl(ϕ), then {ψ1, ψ2} ⊆ cl(ϕ);
– if 〈n, α〉ψ ∈ cl(ϕ) or [n, α]ψ ∈ cl(ϕ), then ψ, ψ ∧ pα ∈ cl(ϕ);
– if λx.ψ(x) ∈ cl(ϕ), then ψ(λx.ψ(x)) ∈ cl(ϕ).
– if ψ ∈ cl(ϕ), then ¬ψ ∈ cl(ϕ), where ¬ψ denotes the formula obtained from ψ

by dualizing all operators and replacing every literal (i.e., atomic proposition or
negation thereof) with its negation.

For a sentence ϕ, we use |ϕ| to denote the length of ϕ with numbers inside graded
modalities coded in binary. Formally, |ϕ| is defined by induction on the structure of ϕ
in a standard way, with |〈n, α〉ψ| = �log n	 + 1 + |ψ|, and similarly for |[n, α]ψ|. As
proved in [Koz83], for every sentence ϕ, the number of elements in cl(ϕ) is linear in
the length ϕ.

A guess for ϕ is a pair (t, ∼) where t assigns a subset t(o) ⊆ cl(ϕ) to each o ∈
Nom, and ∼ is an equivalence relation on the set of nominals occurring in ϕ such that
the following conditions are satisfied, for all formulas ψ ∈ cl(ϕ) and nominals o, o′

occurring in ϕ: (i) ψ ∈ t(o) or ¬ψ ∈ t(o), (ii) o ∈ t(o), and (iii) o ∼ o′ implies
t(o) = t(o′). We construct a separate FEA Aϕ,G for each guess G for ϕ. Since the
number of guesses is exponential in the length of ϕ, we get an EXPTIME decision
procedure by constructing all of the FEAs and checking whether some of them accept
a nonempty language. Forest encodings of forest models are defined similar to tree
encodings of tree models with the additional property that ↑α

o ∈ L∗(w) iff there exists
(w, v) ∈ R(α) such that v is a root of W and o ∈ L∗(v).

Theorem 9. Given a sentence ϕ of the hybrid graded μ-calculus that has � atleast
subsentences, counts up to b, contains k nominals, and a guess G = (t, ∼) for ϕ, we
can construct a FEA Aϕ,G such that Aϕ,G

– accepts exactly the forest encodings of the quasi forest models of ϕ having degree
at most max{k + 1, �(b + 1)}, and

– has O(|ϕ|2) states, index |ϕ|, and counting bound b.

Given a sentence of the full graded μ-calculus with � at-least subformulas, we get by
Theorems 7 and 8 a GNPT Aϕ with the number of states n and index k bounded by |ϕ|,
and |Σ| and the counting bound b bounded by 2|ϕ|. While the latter are exponential in
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|ϕ|, only n and k appear in the exponents in the expression in Theorem 4. This yields the
desired EXPTIME upper bound. The lower bound is due to the fact that the μ-calculus is
EXPTIME-hard [FL79]. For the hybrid graded μ-calculus, we can argue similarly using
Theorems 3, 7, and 9.

Theorem 10. The satisfiability problems of the full graded μ-calculus and the hybrid
graded μ-calculus are EXPTIME-complete even if the numbers in the graded modalities
are coded in binary.
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