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Abstract. Visibly Pushdown Automata (VPA) are a special case of
pushdown machines where the stack operations are driven by the in-
put. In this paper, we consider VPA with two stacks, namely 2-VPA.
These automata introduce a useful model to effectively describe con-
current pushdown systems using a simple communication mechanism
between stacks. We show that 2-VPA are strictly more expressive than
VPA. Indeed, 2-VPA accept some context-sensitive languages that are
not context-free and some context-free languages that are not accepted
by any VPA. Nevertheless, the class of languages accepted by 2-VPA is
closed under all boolean operations and determinizable in ExpTime, but
does not preserve decidability of emptiness problem. By adding an or-
dering constraint on stacks (2-OVPA), decidability of emptiness can be
recovered (preserving desirable closure properties) and solved in PTime.
Using these properties along with the automata-theoretic approach, we
prove that the model checking problem over 2-OVPA models against
2-OVPA specifications is ExpTime-complete.

1 Introduction

In the area of formal design verification, one of the most significant developments
has been the discovery of the model checking technique, that automatically allows
to verify on-going behaviors of reactive systems ([4, 9, 12]). In this verification
method (for a survey see [5]), one checks the correctness of a system with respect
to a desired behavior by checking whether a mathematical model of the system
satisfies a formal specification of this behavior.

Traditionally, model checking is applied to finite-state systems, typically mod-
eled by labeled state-transition graphs. Recently, model checking has been ex-
tended to infinite-state sequential systems (e.g., see [13, 2]). These are systems in
which each state carries a finite, but unbounded, amount of information, e.g., a
pushdown store. Pushdown automata (PDA) naturally model the control flow of
sequential programs with nested and recursive procedure calls. Therefore, PDA
are the proper model to tackle with program analysis, compiler optimization,
and model checking questions that can be formulated as decision problems for
PDA. While many analysis problems, such as identifying dead code and accesses
to uninitialized variables, can be captured as regular requirements, many others
require inspection of the stack or matching of calls and returns, and are non-
regular context-free. More examples of useful non-regular properties are given
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in [10], where the specification of unbounded message buffers is considered. Since
checking context-free properties on PDA is proved in general to be undecidable
[7], weaker models have been proposed to decide different kinds of non-regular
properties. One of the most promising approaches is that of Visibly Pushdown
Automata (VPA) [1]. These are PDA where the push or pop actions on the stack
are controlled externally by the input alphabet. Such a restriction on the use of
the stack allows to enjoy all desirable closure properties and tractable decision
problems, though retaining an expressiveness adequate to formulate program
analysis questions (as summarized in Figure 1). Therefore, checking pushdown
properties of pushdown models is feasible as long as the calls and returns are
made visible. This visibility requirement seems quite natural while writing re-
quirements about pre/post conditions or for inter-procedural flow properties. In
particular, requirements that can be verified in this manner include all regular
properties, and non-regular properties such as: partial correctness (if P holds
when a procedure is invoked, then, if the procedure returns, P ′ holds upon
return), total correctness (if P holds when a procedure is invoked, then the pro-
cedure must return and P ′ must hold at the return state), local properties (the
computation within a procedure by skipping over calls to other procedures sat-
isfies a regular property, for instance, every request is followed by a response),
access control (a procedure A can be invoked only if another procedure B is in
the current stack), and stack limits (whenever the stack size is bounded by a
given constant, a property A holds). Unfortunately, some natural context-free
properties like “the number of calls to procedures A and B is the same” cannot
be captured by any VPA [1]. Moreover, VPA cannot explicitly represent con-
currency: for instance, properties of two threads running in parallel, each one
exploiting its own pushdown store.

In this paper, we propose an extension of VPA in order to enrich with fur-
ther expressiveness the model though maintaining some desirable closure prop-
erties and decidability results. We first consider VPA with an additional, input
driven, pushdown store and we call the proposed model 2-Visibly Pushdown Au-
tomaton (2-VPA). As in the VPA case, 2-VPA input symbols are partitioned
in subclasses, each one triggering a transition belonging to a specific class, i.e.,
push/pop/local transition, which also selects the operating stack, i.e., the first or
the second or both. Moreover, visibility in 2-VPA affects the transfer of informa-
tion from one stack to the other. 2-VPA turn out to be strictly more expressive
than VPA and they also accept some context-sensitive languages that are not
context-free. Unfortunately, this extension does not preserve decidability of the
emptiness problem as we prove by a reduction from the halting problem over
Minsky Machines. In the automata-theoretic approach, to gain with a decidable
model checking procedure, decidability of the emptiness problem is crucial. For
this reason, we add to 2-VPA a suitable restriction on stack operations, namely
we consider 2-VPA in which pop operations on the second stack are allowed
only if the first stack is empty. We call such a variant ordered 2-VPA (2-OVPA).
The ordering constraint is inspired from the class of multi-pushdown automata
(MPDA), defined in [3]. These are pushdown automata exploiting an ordered
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collection of arbitrary number of pushdown stores in which a pop action on the
i-th stack can occur only if all previous stacks are empty. In [3], it has been
shown that the class of languages accepted by MPDA is strictly included into
context-sensitive languages, it has the emptiness problem decidable, it is closed
under union, but not under intersection and complement.

From an expressive point of view, 2-OVPA are a proper subclass of MPDA
with two stacks (PD2). Differently from PD2, exploiting visibility allows to re-
cover in 2-OVPA closure under intersection and complement thus allowing to
face the model checking problem following the automata-theoretic approach. In
such an approach, to verify whether a system, modeled as a 2-OVPA S, satisfies
a correctness requirement expressed by a 2-OVPA P , we check for emptiness
the intersection between the language accepted by S and the complement of the
language accepted by P (i.e., L(S)∩L(P ) = ∅). Since we prove for 2-OVPA that
intersection and emptiness can be performed in polynomial time while com-
plementation in exponential time, and since inclusion for VPA is ExpTime-
complete [1], we get that model checking an 2-OVPA model against an 2-OVPA
specification is ExpTime-complete. This is notable since checking context-free
properties on PDA is proved to be undecidable [7], as well as model checking
multi-pushdown properties over MPDA.

The extension we propose for VPA does not only affect expressiveness, but
also gives us a way to naturally describe distributed pushdown systems behav-
ior. In fact, we show that 2-OVPA capture the behavior of systems built on
pairs of VPA running in a suitable synchronous way according to a distributed
computing paradigm. To this purpose, we introduce a composition operator on
VPA parameterized on a communication interface. Given a pair of VPA, this
operator allows to build a Synchronized System of VPA (S-VPA), which behaves
synchronously and in parallel. A communication between two synchronous VPA
consists in a transfer of information from the top of the stack of one VPA to
the top of stack of the other. If we interpret each one of the involved VPA as
a process with its pushdown store (containing activation records of procedure
calls, for instance), the enforced communication form can be seen as a Remote
Procedure Call [11], widely exploited in the client-server paradigm of distributed
computing. In our case, ordering of VPA modules can be interpreted as follows:
we can see the former one acting as a client and the latter as a server. The client
can always demand to the server the execution of a task and the server can
return a result to the client whenever this is available (its stack is empty). The
properties of languages accepted by 2-VPA and 2-OVPA we obtain along the
paper are summarized in Figure 1. Due to page limitations, proofs are omitted
and reported in the extended version1.

2 Preliminaries

Let Σ be a finite alphabet partitioned into three pairwise disjoint sets Σc, Σr,
and Σl standing respectively for call, return, and local alphabets. We denote
1 http://people.na.infn.it/∼carotenuto/research/2vpaTechRep.pdf.
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Languages Closure Properties Decision problems
∪ ∩ Complement Emptiness Inclusion

Regular Yes Yes Yes Nlogspace Pspace

CFL Yes No No Ptime Undecidable
VPL Yes Yes Yes Ptime ExpTime

LPD2 Yes No No Ptime Undecidable
2-VPL Yes Yes Yes Undecidable Undecidable
2-OVPL Yes Yes Yes Ptime ExpTime

Fig. 1. A comparison between closure properties and decision problems

the tuple ˜Σ = 〈Σc, Σr, Σl〉 a visibly pushdown alphabet. A (nondeterministic)
visibly pushdown automaton (VPA) on finite words over ˜Σ [1] is a tuple M =
(Q, Qin, Γ, ⊥, δ, QF ), where Q, Qin, QF , and Γ are respectively finite sets of
states, initial states, final states, and stack symbols ; ⊥ �∈ Γ is the stack bottom
symbol and we use Γ⊥ to denote Γ ∪ {⊥}; and δ ⊆ δc ∪ δr ∪ δl, is the transition
relation where δc = Q×Σc ×Q×Γ , δr = Q×Σr ×Γ⊥×Q, and δl = Q×Σl ×Q.
We call (q, a, q′, γ) ∈ δc a push transition, where on reading a the symbol γ is
pushed onto the stack and the control state changes to q′; (q, a, γ, q′) ∈ δr a pop
transition, where γ is popped from the stack leading to the control state q′; and
(q, a, q′) ∈ δl a local transition, where the automaton on reading a only changes
its control to q′. A configuration for a VPA M is a pair (q, σ) ∈ Q × (Γ ∗.⊥)
where σ is the stack content. A run ρ = (q0, σ0) . . . (qk, σk) of M on a word
w = a1 . . . ak is a sequence of configurations such that q0 ∈ Qin, σ0 = ⊥, and
for every i ∈ {0, . . . , k}, one of the following holds: [Push]: (qi, ai, qi+1, γ) ∈ δc,
and σi+1 = γ.σi; [Pop]: (qi, ai, γ, qi+1) ∈ δr, and either γ ∈ Γ and σi = γ.σi+1,
or γ = σi = σi+1 = ⊥; or [Local]: (qi, ai, qi+1) ∈ δl and σi+1 = σi.

A run is accepting if its last configuration contains a final state. The language
accepted by a VPA M is the set of all words w with an accepting run of M on
w, say it L(M). A language of finite words L ⊆ Σ∗ is a visibly pushdown lan-
guage (VPL) with respect to a pushdown alphabet ˜Σ, if there is a VPA M such
that L = L(M). VPLs are a subclass of deterministic context-free languages, a
superclass of regular languages, and are closed under intersection, union, com-
plementation, concatenation, and Kleene-∗. Furthermore, the emptiness problem
for a VPA M , i.e., deciding whether L(M) �= ∅, is decidable with time complexity
O(n3), where n is the number of states in M .

In the literature, different extensions of classical pushdown automata with
multiple stacks have been considered. Here, we recall multiple-pushdown au-
tomata as they were introduced in [3]. These machines are pushdown automata
endowed with an ordered set of an arbitrary number of stacks and the constraint
that pop operations occur sequentially and only operate on the first non-empty
stack. Thus, push operations are never constrained and they can be performed
independently on every stack. The formal definition follows.

A multi-pushdown automaton with n ≥ 1 stacks (PDn, for short) is a tuple
M = (Σ, Q, Qin, Γ , Z0, δ, QF ), where Σ, Q, Qin, Γ , and QF are respectively
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finite sets of input symbols, states, initial states, stack symbols, and final states,
Z0 �∈ Γ is the bottom stack symbol and used to identify the initial non-empty
stack, and δ is the transition relation defined as a partial function from Q ×
(Σ ∪ {ε}) × Γ to 2Q×(Γ ∗)n

. If (q′, α1, . . . , αn) ∈ δ(q, a, γ), on reading a the
automaton changes its control state from q to q′, the stack symbol γ ∈ Γ
is popped from the first non-empty stack, and for each i in {1, . . . , n}, and
αi ∈ Γ ∗ is pushed on the i-th stack. A configuration of M is a n + 2-tuple
〈q, x; σ0, . . . , σn〉, where q ∈ Q, x ∈ Σ∗, σ0, . . . , σn ∈ Γ ∗, and σi is the content
of the i-th stack. The above configuration is initial if q = q0, σ0 = Z0, and all
other stacks are empty, and it is final if q ∈ F . The transition relation �M over
configurations is defined in the following way: 〈q, ax; ε, . . . , ε, γ.γi, . . . , γn〉 �M

〈q′, x; α1, . . . , αi−1, αiγi, . . . , αnγn〉 if (q′, α1, . . . , αn) ∈ δ(q, a, γ). A word w is
accepted by a PDn M iff 〈q, w; Z0, ε . . . , ε〉 �∗

M 〈qF , ε; γ1, . . . , γn〉, where �∗
M is

the Kleene-closure of �M and qF ∈ QF . The language of a PDn M is the set
of words accepted by M . We denote the class of languages accepted by PDn as
LPDn . The following theorem summarizes the main results about PDn.

Theorem 1 ([3]). For every n ≥ 1, we have that LPDn subsumes CFLs, it
is strictly included in CSLs as well as in LPDn+1 . It is closed under union,
concatenation and Kleene-∗. Moreover, it has a decidable emptiness problem and
solvable in O(|Q|3), where |Q| is the number of states of the automaton.

3 Visibly Pushdown Automata with Two Stacks

A 2-pushdown alphabet is a pair of pushdown alphabets ˜Σ = 〈 ˜Σ0, ˜Σ1〉, where
˜Σ0 = 〈Σ0

c , Σ0
r , Σ0

l 〉 and ˜Σ1 = 〈Σ1
c , Σ1

r , Σ1
l 〉 are a possibly different partitioning

of the same input alphabet Σ. The intuition is that the ˜Σ0 drives the operations
over the first stack and ˜Σ1 those over the second. Symbols in ˜Σ belonging to call,
return or local partitions of both ˜Σ0 and ˜Σ1 are simply denoted by Σc, Σr, Σl,
respectively. Furthermore, input symbols that drive a call operation on the first
(resp., second) stack and a return on the second (resp., first) stack are called
synchronized communication symbols and formally denoted as Σs1 = Σ0

c ∩ Σ1
r

(resp., Σs0 = Σ0
r ∩ Σ1

c ). Finally, we denote with Σci (resp., Σri) the set of call
(resp., return) symbols for the stack i and local for the other, with i = 0, 1. In the
following, we use ˜Σ to denote both a 2-pushdown alphabet and a (1-)pushdown
alphabet, when the meaning is clear from the context.

Definition 1 (2-Visibly Pushdown Automaton). A (nondeterministic) 2-
Visibly Pushdown Automaton (2-VPA) on finite words over a 2-pushdown al-
phabet ˜Σ is a tuple M = (Q, Qin, Γ, ⊥, δ, QF ), where Q, Qin, QF , and Γ are
respectively finite sets of states, initial states, final states and stack symbols,
⊥ �∈ Γ is the stack bottom symbol (with Γ⊥ used to denote Γ ∪ {⊥}), and δ is
the transition relation defined as the union of the following sets, for i ∈ {0, 1}:

• δci ⊆ (Q × Σci × Q × Γ ), • δri ⊆ (Q × Σri × Γ⊥ × Q),
• δc ⊆ (Q × Σc × Q × Γ × Γ ), • δr ⊆ (Q × Σr × Γ⊥ × Γ⊥ × Q),
• δsi ⊆ (Q × Σsi × Γ⊥ × Q × Γ ), • δl ⊆ Q × Σl × Q.
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We say that M is deterministic if Qin is a singleton, and for every q ∈ Q, a ∈ Σ,
and γr, γ

′
r ∈ Γ⊥, there is at most one transition of the form (q, a, q′), (q, a, q′, γ),

(q, a, q′, γ, γ′), (q, a, γr, q
′), (q, a, γr, γ

′
r, q

′), or (q, a, γr, q
′, γ′) belonging to δ.

Transitions in δl, δci , and δri extend VPA’s local, call, and return transitions
to deal with two stacks, in a natural way. We call (q, a, q′, γ, γ′) ∈ δc a double-
call transition where on reading a the automaton changes its control state from
q to q′, and the symbols γ and γ′ are pushed on the first and second stack,
respectively; we call (q, a, γ, γ′, q′) ∈ δr a double-pop transition where on reading
a the automaton changes its control state from q to q′, and the symbols γ
and γ′ are popped from the first and second stack, respectively; finally, we call
(q, a, γ, q′, γ′) ∈ δsi , with i ∈ {0, 1}, a synchronous (communication) transition
between stacks, where on reading a the automaton changes its control state from
q to q′ and the symbol γ is popped from the stack i and γ′ pushed on the other.

A configuration of a 2-VPA M is a triple (q, σ0, σ1) where q ∈ Q and σ0, σ1 ∈
Γ ∗.⊥. For an input word w = a1 . . . ak ∈ Σ∗, a run of M on w is a sequence
ρ = (q0, σ

0
0 , σ1

0) . . . (qk, σ0
k, σ1

k) where q0 ∈ Qin, σ0
0 = σ1

0 = ⊥, and for all i ∈
{0, . . . , k − 1}, there are j, j′ ∈ {0, 1}, j �= j′, such that one of the following
holds:

Push: (qi, ai, qi+1, γ) ∈ δcj , then σj
i+1 = γ.σj

i and σj′

i+1 = σj′

i ;
2Push: (qi, ai, qi+1, γ, γ′) ∈ δc then σj

i+1 = γ.σj
i and σj′

i+1 = γ′.σj′

i ;
Pop: (qi, ai, γ, qi+1) ∈ δrj , then either γ = σj

i = σj
i+1 = ⊥, or γ �= ⊥ and

σj
i = γ.σj

i+1. In both cases σj′

i+1 = σj′

i ;
2Pop: (qi, ai, γ0, γ1, qi+1) ∈ δr then, for k ∈ {0, 1}, either γk = σk

i = σk
i+1 = ⊥,

or γk �= ⊥ and σk
i = γ.σk

i+1;
Local: (qi, ai, qi+1) ∈ δl then σ0

i+1 = σ0
i and σ1

i+1 = σ1
i ;

Synch: (qi, ai, γ, qi+1, γ̂) ∈ δsj then either γ = σj
i = σj

i+1 = ⊥, or γ �= ⊥ and

σj
i = γ.σj

i+1. In both cases σj′

i+1 = γ̂.σj′

i .

From the above definition, we notice that communication between stacks is
only allowed by applying a synch. transition. For a configuration c, we write
c �M c′ meaning that c′ is obtained from c by applying one of the rules above.
We omit M when it is clear from the context. A run ρ is accepting when it ends
with a configuration containing a final state. A word w is accepted if there is an
accepting run ρ of M on w. The language accepted by M , denoted by L(M), is
the set of all words accepted by M . A language L ⊆ Σ∗ is a 2-VPL with respect
to ˜Σ if there is a 2-VPA M over ˜Σ such that L(M) = L.

Theorem 2. The emptiness problem for 2-VPA is undecidable.

Proof. [sketch] We prove the result by showing a reduction from the halting
problem of two counters Minsky machines. A Minsky machine with two coun-
ters C0 and C1 is a finite sequence M = (L1 : I1; L2 : I2; . . . ; Ln : halt)
where n ≥ 1, L1, . . . , Ln are pairwise different instruction labels, and I1, . . . , In

are instructions of type increment, i.e., Cm := Cm + 1; goto Lj , or of type
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test and decrement, i.e., if Cm = 0 then goto Lj else Cm := Cm −1; goto Lk,
where 0 ≤ m ≤ 1 and 1 ≤ j, k ≤ n. A configuration of M is a triple (Li, v0, v1)
where Li is an instruction label, and v0, v1 ∈ N represent the values of the
counters C0 and C1, respectively. Let Conf be the set of all configurations of
M , the transition relation ↪→⊆Conf ×Conf between configurations is defined in
an obvious way, and ↪→∗ is the transitive and reflexive closure of ↪→. If (L1, 0, 0)
↪→ . . . ↪→ (Lj , v

0
j , v1

j ) holds for a Minsky machine M , we say that (L1, 0, 0) . . .

(Lj , v
0
j , v1

j ) is an execution trace for M . The halting problem for M is to decide
whether there exist v0, v1 ∈ N such that (L1, 0, 0) ↪→∗ (Ln, v0, v1). This problem
is known to be undecidable [8].

We now prove that given a two counters Minsky machine M there exists a
2-VPA M ′ over ˜Σ such that L(M ′) �= ∅ iff M eventually halts. Let M = (L1 :
I1; L2 : I2; . . . ; Ln : halt), we define M ′ = (Q, Qin, Γ , ⊥, δ, QF ) such that
Q = {L1, . . . , Ln}, Qin = {L1}, Γ = {A}, where A does not appear in M ,
QF = {Ln}, and ˜Σ is the partitioned set of all instructions Ii, with i = 1, . . . , n,
such that Ii ∈ Σc0 (resp., Ii ∈ Σc1) if Ii is an increment instruction of the
counter C0 (resp., C1), or Ii ∈ Σr0 (resp., Ii ∈ Σr1) if Ii is a test and decrement
instruction over the counter C0 (resp., C1). Finally, δ is defined as follows: if Ii

is an increment instruction such as Cm := Cm + 1; goto Lj, with m ∈ {0, 1},
then (Li, Ii, Lj, A) ∈ δcm ; otherwise, if Ii is a test and decrement instruction
such as if Cm = 0 then goto Lj else Cm := Cm −1; goto Lk, with m ∈ {0, 1}
then (Li, Ii, ⊥, Lj), (Li, Ii, A, Lk) ∈ δrm . It remains to prove that M halts iff M ′

accepts a word. It is easy to show by induction the following assertion.
Given a sequence of numbers s = s1s2 . . . sk, with si ∈ {1, . . . , n} for all

i ∈ {1, . . . , k}, the sequence (Ls1 , v
0
s1

, v1
s1

) . . . (Lsk
, v0

sk
, v1

sk
) of elements from

{L1, . . . Ln} × N × N is an execution trace of M if and only if the sequence
(Ls1 , σ

0
s1

, σ1
s1

) . . . (Lsk
, σ0

sk
, σ1

sk
) of elements from Q × Γ ∗.⊥ × Γ ∗.⊥ is a run of

M ′, with |σj
si

| = vj
si

+ 1 for each i ∈ {1, . . . , k} and j ∈ 0, 1.
The above assertion implies that M halts iff M ′ accepts a word. ��

It is interesting to notice that the reduction we consider in the proof of Theorem
2 also applies to the restricted model of VPA with 2 stacks where operations
acting simultaneously on both stacks are avoided. This follows from the fact
that two counters Minsky machine instructions only involves one counter at a
time, and the sets Σc, Σr and Σsi , with i ∈ {0, 1}, are empty.

4 Ordered Visibly Pushdown Automata with Two Stacks

In this section, we consider the subclass of 2-VPA which enforces the ordering
constraints on using pushdown stores as defined for MPDA. In more detail, we
consider a class of ordered 2-VPA (2-OVPA) as the class of 2-VPA in which a
pop operation on the second stack can occur only if the first stack is empty.
Thus, in such a model simultaneous pop operations are not allowed. The formal
definition of 2-OVPA follows.
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Definition 2. A 2-OVPA M over ˜Σ is a 2-VPA such that Σr is empty and for
all input word w = a1 . . . ak ∈ Σ∗ and run ρ = (q0, σ

0
0 , σ

1
0) . . . (q,σ

0
k, σ1

k) of M
over w, for all i ∈ {1, . . . , n}, the following hold:

Pop: (qi, ai, γ, qi+1) ∈ δr1 then σ0
i = σ0

i+1 = ⊥ and σ1
i+1 = γ.σ1

i

Synch: (qi, ai, γ, qi+1, γ̂) ∈ δs1 then σ0
i = ⊥ and σ0

i+1 = γ̂.⊥ and σ1
i+1 = γ.σ1

i .

Directly from the fact that 2-OVPA are a subclass of MPDA and the fact that
for MPDA the emptiness is solvable in cubic time, we get the following.

Corollary 1. Given a 2-OVPA M , deciding whether L(M) �= ∅ is solvable in
O(n3), where n is the number of states in M .

While dealing with automata, one interesting question is whether the acceptance
power increases while using ε-moves, i.e., transitions that allow to change the
state without consuming any input. Here we investigate 2-VPA with the ability
of performing a restricted form of ε-moves: we only enable ε-moves on reading
the top of the stack symbols on a local action. More formally, the variant 2-VPAε

of 2-VPA we consider is obtained by replacing δl in Definition 1 with a subset of
Q × (Σ ∪ {ε}) × Γ × Γ × Q and by substituting the Local rule in the definition
of a run for 2-VPA with the following:
Localε: ai ∈ Σl ∪ {ε} and there exists (qi, ai, γ

0, γ1, qi+1) ∈ δ such that σj
i =

σj
i+1 = γj.σj , for all j ∈ {0, 1}.
Since at each step, a 2-VPAε can now choose whether to consume an input

symbol or take an ε-move, we consider the run definition modified accordingly.
In the following theorem, we show that 2-VPA and 2-VPAε, as well as 2-OVPA
and 2-OVPAε, are expressively equivalent.

Theorem 3. L ∈2-VPL iff L ∈ 2-VPLε and L ∈2-OVPL iff L ∈2-OVPAε.

We conclude the section with an example of a language accepted by a 2-OVPAε.

Example 1. Let L1 = {anbncn | ∃n ∈ N }. We show a 2-OVPAε M accepting
L1. The alphabet ˜Σ we use for M is partitioned in Σc0 = {a}, Σs0 = {b}, and
Σr1 = {c} (i.e., all the other partition elements are empty). The automaton is the
following M = (Q, Qin, Γ, ⊥, δ, QF ), with Q = {q0, q1, q2, q3, qF }, Qin = {q0},
QF = {q0, qF }, Γ = {A, B} and δ = {(q0, a, q1, A), (q1, a, q1, A), (q1, b, A, q2, B),
(q2, b, A, q2, B), (q2, ε, ⊥, B, q3), (q3, c, B, q3), (q3, ε, ⊥, ⊥, qF )}. The 2-OVPAε M
is depicted in Figure 2, where we adopt the following conventions to represent
arcs: for a local transition such as (qi, a, A, B, qj) we label the arc between qi

ε, (⊥,⊥)

Fig. 2. A 2-OVPAε accepting L1 = {anbncn|∃n ∈ N}
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and qj as a, (A, B); for a synch transition such as (qi, a, A, qj , B) we label the
arc as s, A → B, if a ∈ Σs0 , and as s, B ← A , otherwise; moreover a push or
pop transition is labeled like a synch transition but with one part missing. For
example, a pop from the second stack (qi, a, B, qj) is labeled as a, ∗ ← B.

5 Expressiveness and Closure Properties

In this section, we compare 2-VPLs and 2-OVPLs with VPLs [1], determinis-
tic and (nondeterministic) context-free languages (resp., DCFLs and CFLs) [6],
and multi-pushdown languages [3] (LPDn). Recall that the following chain of
inclusions holds: VPLs ⊂ DCFLs ⊂ CFLs ⊂ LPD2 ⊂ CSLs.

Theorem 4. The following assertions hold:
a) 2-OVPLs ⊂ 2-VPLs; b) VPLs ⊂ 2-OVPLs; c) VPLs ⊂ 2-VPLs;
d) DCFLs \ 2-VPLs �= ∅; e) DCFLs \ 2-OVPLs �= ∅;
f) (2-VPLs ∩ CFLs)\ VPLs �= ∅; g) 2-OVPLs ⊂LPD2 ; h) 2-OVPLs ⊂ CSLs.

Although 2-VPLs and 2-OVPLs are strictly more expressive than VPLs, we
show they preserve union, intersection, complementation (and thus inclusion).
These properties, along with the emptiness problem for 2-OVPA being solvable
in Ptime, make 2-OVPA a powerful engine for system verification using the
automata-theoretic approach. We recall that 2-VPA and MPDA do not support
such an approach since MPDA does not enjoy closure under intersection and
complementation, and for 2-VPA the emptiness problem is undecidable.

Theorem 5 (Closure Properties). Let L1 and L2 be two 2-VPLs (resp., 2-
OVPLs) with respect to the same ˜Σ. Then, L1 ∩ L2, L1 ∪ L2 are 2-VPLs (resp.,
2-OVPLs) over ˜Σ. Also, L1 · L2, and L∗

1 are 2-VPLs over ˜Σ. Furthermore, all
the mentioned operations can be performed in polynomial-time.

The closure of 2-VPA and 2-OVPA under complementation can be proved as an
immediate consequence of determinization.

Theorem 6 (Determinization). Given a 2-VPA (resp., 2-OVPA) M over ˜Σ,
there is a deterministic 2-VPA (resp., deterministic 2-OVPA) M ′ over ˜Σ such
that L(M) = L(M ′). Moreover, if M has n states, we can construct M ′ with
O(22n2

) states and O(2n2 · |Σ|) stack symbols.

Proof. [sketch] The proof we present is inspired from that given in [1] for VPA.
There, the main idea is to do a subset construction, postponing handling push
transitions. The push transitions are stored into the stack and simulated later,
namely at the time of the matching pop transitions. The construction has two
components: a set of summary edges S, that keeps track of what state transitions
are possible from a push transition to the corresponding pop transition, and a set
of path edges R, that keeps track of all possible state reached from an initial state.
In our case, we have to handle two stacks and the communication mechanism.
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Therefore, we have to use two summary edges sets S0 and S1, and, in order
to manage the communication transitions, we augment the structure of states
adding information about the top of the stacks. Let M be a 2-VPA (resp., 2-
OVPA) over ˜Σ. We define a deterministic 2-VPA (resp., 2-OVPA) M ′ over ˜Σ
such that L(M) = L(M ′) behaving as sketched in the following example. We
refer to the extended version for the detailed definition. Let w = w1c

0
1w2c

1
1w3 be

an input word, where in w1 each push, either into the first or into the second
stack, is matched by a pop, but there may be unmatched pop transitions; w2
and w3 are words in which all push and pop transitions are matched for both
stacks; c0

1 and c1
1 are push, the former for the first stack and the latter for the

second. In M ′, after reading w, the first stack is (S0, R0, c
0
1).⊥, the second stack

is (S1, R1, c
1
1).⊥, and the control state is (S′′

0 , S′′
1 , R′′). S0 contains all the pair of

states (q, q′) such that the 2-VPA (resp., 2-OVPA) M can go from q with first
stack empty to q′ with first stack empty on reading w1. Analogously, S1 contains
all the pairs (q, q′) such that M can go from q with second stack empty to q′

with second stack empty on reading w1c
0
1w2. R0 and R1 are the sets of all states

reachable by M from an initial state on reading w1 and w1c
0
1w2, respectively. S′′

0
and S′′

1 are the current summaries for the first and second stack, respectively,
and R′′ is the set of all states reachable by M on reading w. ��

Corollary 2 (Closure under complementation). Let L ∈ 2-VPLs (resp.,
2-OVPLs) over ˜Σ, then Σ∗\ L ∈ 2-VPLs (resp., 2-OVPLs) over ˜Σ.

6 Model Checking and Synchronized Systems of VPA

A model checking procedure verifies the correctness of a system with respect to
a desired behavior by checking whether a mathematical model of the system sat-
isfies a formal specification of this behavior. Here, we consider the case whether
both the model of the system and the formal specification of the required be-
havior are given by VPA with two stacks, say them M and P , respectively. The
automata-theoretic approach to model checking exploits the combination of clo-
sure properties and emptiness decidability: checking whether M satisfies P is
reduced to check whether L(M)∩L(P ) = ∅ (all the runs of the model M satisfy
the behavioral property represented by P ).

Recall that the emptiness problem for 2-OVPA is solvable in cubic time (Corol-
lary 1). Since determinization for 2-OVPA is in ExpTime (Theorem 6), and
intersection can be done in polynomial-time (Theorem 5), we get an ExpTime

algorithm to solve the model checking problem. The completeness follows from
the fact that VPA model checking is ExpTime-complete [1].

Theorem 7. The model checking problem for 2-OVPA is ExpTime-complete.

In the remaining part of this section we show that 2-OVPA gives a natural
way to describe distributed pushdown systems. In fact, we show that 2-OVPA
capture the behavior of systems built on pairs of VPA working in a suitable
synchronous way according to distributed computing paradigm. To this purpose,
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we introduce an operator of synchronous composition on VPA that allows to
build a Synchronized System of VPA from a pair of VPA M0 and M1. The
automata M0 and M1 run independently on the same input so that each input
symbol can drive different transitions on the two, that is a local transition for the
former and a push transition for the latter. Only communications between M0
and M1 have to be synchronized in accordance with a relation λ (a parameter
of the synchronous composition operator) that contains all the transitions that
are push transitions for the one and pop transitions for the other. The idea is
that λ contains all the pairs of transitions on which the two VPA are allowed to
communicate. The only constraint on the pushdown alphabets is that an input
symbol can not trigger a pop transition on both VPA. Moreover, we have to
prevent that M1 can pop whenever M0 has a non-empty stack, and thus every
pop transition of M1 is synchronized with M0. Two VPA M0 and M1 over ˜Σ0

and ˜Σ1, respectively, are synchronizable if Σ0 = Σ1 and Σ0
r ∩ Σ1

r is empty.

Definition 3 (Synchronized Systems of VPA). A Synchronized System of
VPA (S-VPA) M0||λM1 is a pair of synchronizable VPA M0 and M1 over ˜Σ0

and ˜Σ1, respectively, together with a communication relation λ ⊆ δ0
c ×δ1

r ∪δ0
r ×δ1

c ,
where δ0 and δ1 are the transition relations of M0 and M1, respectively.

A run ρ on w = a1 . . . an ∈ (Σ0 ∪ Σ1)∗ for M0||λM1 is a pair of VPA runs on w,
π0 = (q0

0 , ⊥)(q0
1 , σ0

1) . . . (q0
n, σ0

n) for M0 and π1 = (q1
0 , ⊥)(q1

1 , σ
1
1) . . . (q1

n, σ1
n) for

M1 such that, for all k ∈ {0, . . . , n − 1}, where t0k is the transition applied from
(q0

k, σ0
k) to (q0

k+1, σ
0
k+1) in M0, and t1k is the transition applied from (q1

k, σ1
k) to

(q1
k+1, σ

1
k+1) in M1, such that if t1k is a pop transition then σ0

k is empty and if
(t0k, t1k) ∈ δ0

c ×δ1
r ∪δ0

r ×δ1
c then (t0k, t1k) ∈ λ. A run ρ is accepting if both π0 and π1

are accepting and thus w is accepted. L(M0||λM1) is the set of words accepted
by M0||λM1. From Definition 3, it follows that L(M0||λM1) ⊆ L(M0) ∩ L(M1).
Next theorem states that 2-OVPA are more expressive than S-VPA.

Theorem 8. Let M0||λM1 be a S-VPA over ˜Σ0, ˜Σ1, then L(M0||λM1) is a
2-OVPL with respect to ˜Σ = 〈 ˜Σ0, ˜Σ1〉.

We give an evidence of the power of the introduced S-VPA by means of an
example of a system behaving in a context-sensitive way. Consider a client-server
system of pushdown processes described by a pair of synchronized VPA (see
Figure 3) behaving in the following way: first, the client collects in its pushdown
store an ordered pool of jobs on reading a sequence of input jobi ∈ JobSet;
after that, the client transfers (rcall) the whole ordered sequence of jobs to the

Jobi
startpool

endpool endRcall
pop(

jobi
push( )|Jobi

, returnSol  ,j
)

⊥)

restart
solve,

push( )

startpool

endpool

rcall,push(

restart, pop( )

endRcall

solve,
pop(

returnSol

Jobi|

Jobi|λ

q1
2 ||q1

1q1
0|q0

0 |q0
1 |q0

2 q0
3 |

j

jobi

jSol

Client Server

)rcall,pop( )

)
j|Solpop(

⊥

Fig. 3. An example of an S-VPA
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server; then the server dispatches to the client a solution for each job (solve)
in the same order the client has collected the jobs; moreover, the server waits a
special commitment from the client (returnSolj) after each dispatching, which is
necessary to process next job; when the server runs out of pending jobs, the whole
system can restart the computation (restart). Notice that the communication
interface λ relates each Jobi that the server has to pop, with its solution Solj
that the client has to push, determining the computation.

7 Conclusions

In this paper, we have investigated ordered visibly pushdown automata with two
stacks (2-OVPA), obtained by merging the definitions of visibly pushdown au-
tomata [1] and multi-pushdown automata with two stacks [3]. We have shown
that 2-OVPA are determinizable, closed under intersection and complementa-
tion, and have the emptiness problem decidable and solvable in polynomial time.
Thus, we get that the inclusion problem is also decidable for 2-OVPA, and in par-
ticular, it is ExpTime-complete. It is worth noticing that dropping visibility or
the ordering constraint from 2-OVPA makes inclusion undecidable. The proper-
ties satisfied by 2-OVPA, along with the fact that they accept some context-free
languages that are not regular as well as some context-sensitive languages that
are not context-free, make 2-OVPA a powerful model in system verification while
using the automata-theoretic approach. Finally, the model we propose can be
also extended to deal with an arbitrary number n of stacks (n-OVPA). We argue
(it is left to further investigation) that n-OVPA still retain decidability and clo-
sure properties of 2-OVPA and that, from an expressivity viewpoint, n-OVPA
define a strict hierarchy based on the number of pushdown stores.
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