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Formal Verification:

d System > A mathematical model M
O Desired Behavior > A formal specification vy
O Correctness > A formal technique
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Motivations

Formal Verification:

0 System - A mathematical model M
O Desired Behavior > A formal specification vy
O Correctness > A formal technique

O O
" Tl

The system has
the required
behavior

@ Model Checking: Does M satisfies  ?

@ Satisfiability: Is there M for y ?
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A Basic Model: Kripke Structure

O A system can be represented as a Kripke Structure: a labeled-
state transition graph

M = (AP, 5, SO, R, Lab)

@ AP is a set of atomic propositions.

€ S is a finite set of states.

® S, C S is the set of initial states.

€ R c S x Sisa transition relation, total: vse S, 3 s' . R(s, s).

® Lab : S — 2%° |abels states with propositions true in that states.

Qd A path is a system run!
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System Specification

0 Modal and Temporal logic allow description of the temporal
ordering of events
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System Specification

0 Modal and Temporal logic allow description of the temporal
ordering of events

d Two main families of logics:

O Linear-Time Logics (LTL)
€ Each moment in time has a unique possible future.
@ LTL expresses path properties based on the paths state labels.
@ Useful for hardware specification.

d Branching-Time Logics (CTL, CTL*, and u-CALCULUS)
€ Each moment in time may split into various possible future.

€ CTL* expresses state properties from which LTL-like properties are
satisfied in an existential or universal way .

@ Useful for software specification.
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H-calculus is a very expressive logic

[ Can express several practical properties.

O Corresponds to alternating parity tree automata
[ Important connections with MSO

O Strictly subsumes classical logics such as CTL, LTL, CTL¥, ...

0 Identifies powerful classes of Description Logics

 Decision problems:
€ Model checking: UP N co-UP
@ Satisfiability: ExpTime-complete
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u-calculus limitations

Q Several important constructs cannot be easily translated to the
p-calculus:

@ Inverse Programs to travel relations in backward
€@ Graded modalities to enable statements on a number of successors

€ Nominals as propositional variables true exactly in one state
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u-calculus limitations

Q Several important constructs cannot be easily translated to the
p-calculus:

@ Inverse Programs to travel relations in backward
€@ Graded modalities to enable statements on a number of successors

€ Nominals as propositional variables true exactly in one state

O Extensions of the p-calculus with these abilities induces families
of enriched pu-calculi.

d Similarly, we can define families of enriched temporal logics.
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Outline of the talk
I part

v Motivations
Q Fully enriched p-calculus
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v Motivations
Q Fully enriched p-calculus

Q Families of enriched p-calculi
@ full graded p-calculus (with inverse programs and graded mod.)
@ hybrid graded p-calculus (with graded modalities and nominals)
@ full hybrid p-calculus (with inverse programs and nominals)
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Outline of the talk
I part

v Motivations
Q Fully enriched p-calculus

Q Families of enriched p-calculi
@ full graded p-calculus (with inverse programs and graded mod.)
@ hybrid graded p-calculus (with graded modalities and nominals)
@ full hybrid p-calculus (with inverse programs and nominals)

O Satisfiability of fully enriched p-calculus: Undecidable

O Satisfiability of the other families we consider: ExpTime-complete
@ Upper bound via Fully Enriched Automata (FEA).
@ The upper bound holds also in case humbers are coded in binary
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Outline of the talk
II part

0 Graded Computation Tree Logic (GCTL)

O ExpTime solution of the satisfiability problem for graded numbers
coded in unary/binary
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0 Graded Computation Tree Logic (GCTL)

O ExpTime solution of the satisfiability problem for graded numbers
coded in unary/binary

0 Open questions on GCTL and its extensions:
® GCTL*, PGCTL/PGCTL*, etc..
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Outline of the talk
II part

0 Graded Computation Tree Logic (GCTL)

O ExpTime solution of the satisfiability problem for graded numbers
coded in unary/binary

0 Open questions on GCTL and its extensions:
® GCTL*, PGCTL/PGCTL*, etc..

0 Some achievements in open system verification.
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I part: Enriched p-calculi
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Some known results

O Satisfiability for Fully enriched p-calculus is undecidable [Bonatti,
Peron 2004]
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Some known results

O Satisfiability for Fully enriched p-calculus is undecidable [Bonatti,
Peron 2004]

0 ExpTime-completeness of satisfiability for enriched p-calculi:
@ p-calculus with inverse programs [Vardi'98]
@ p-calculus with graded modalities [Kupferman,Sattler,Vardi'02]
® full hybrid logic [Sattler,Vardi'01]

@ full graded logic in unary coding [Calvanese, De Giacomo, Lenzerini'01]
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The fully enriched u-calculus

0 The p-calculus is a propositional modal logic with least(u) and
greatest (v) fixpoint operators [Kozen 1983].

O The fully enriched p-calculus extends the p-calculus with
® graded modalities: (n,a) (atleast formulas) and [n,a] (allbut formulas)
€ nominals propositions: Nominal set Nom

@ inverse programs: Use of both program sets Prog and Prog-
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The fully enriched p-calculus (Syntax)

Qd Let AP, Var, Prog, and Nom be sets of atomic proposition,
propositional variables, atomic, programs and nominals

d Syntax:
¢ :=true | false|p|-plyloVeoloAol (na)e|[nale|py.oly)|vy. ey)

where p € AP U Nom, y € Var, ne N, and a is a program or its converse
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The fully enriched p-calculus (Syntax)

Qd Let AP, Var, Prog, and Nom be sets of atomic proposition,
propositional variables, atomic, programs and nominals

d Syntax:
¢ :=true | false|p|-plyloVeoloAol (na)e|[nale|py.oly)|vy. ey)

where p € AP U Nom, y € Var, ne N, and a is a program or its converse

O Fragments of the fully enriched p-calculus:
@ full graded p-calculus (without nominals)
@ hybrid graded p-calculus (without inverse programs)
@ full hybrid p-calculus (without graded modalities)
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Semantics: The enriched model

O The semantics of the fully enriched p-calculus is given with
respect to enriched Kripke structures

K = (AP U Nom, W, W,, R, Lab)
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Semantics: The enriched model

O The semantics of the fully enriched p-calculus is given with
respect to enriched Kripke structures

K = (AP U Nom, W, W,, R, Lab)
d In particular, R and Lab are enriched as follows:

@ R : Prog — 2W * W gssigns o programs transitions relation over S

@ Lab: AP U Nom — 2W assigns to propositions and nominal sets of
states, where those assigned to each nominal are singletons.

O——¥
2 (9
K
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Semantics: The enriched model

O The semantics of the fully enriched p-calculus is given with
respect to enriched Kripke structures

K = (AP U Nom, W, W,, R, Lab)

d In particular, R and Lab are enriched as follows:
@ R : Prog — 2W * W gssigns o programs transitions relation over S

@ Lab: AP U Nom — 2W assigns to propositions and nominal sets of
states, where those assigned to each nominal are singletons.

O Given a Kripke structure, atomic propositions and boolean
connectivities are interpreted as usual:

@ K satisfies the nominal n at the starting state r, since Lab(n)={s}
@ K does not satisfy q at r, but at s.

O——¥
2 (9
K
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Semantics

A For a Kripke structure, the new modalities are interpreted as follows.
O (n,a)e holds inw if ¢ holds at least in n+1 a-successors of w.
Q [n,a]e holds in w if ¢ holds in all but at most n a-successors of w.
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O (n,a)e holds inw if ¢ holds at least in n+1 a-successors of w.
Q [n,a]e holds in w if ¢ holds in all but at most n a-successors of w.

dInr, (1,b)p holds
dInr, [1,b]p does not hold.
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Semantics

A For a Kripke structure, the new modalities are interpreted as follows.

O (n,a)e holds inw if ¢ holds at least in n+1 a-successors of w.
Q [n,a]e holds in w if ¢ holds in all but at most n a-successors of w.

dInr, (1,b)p holds

dInr, [1,b]p does not hold.
QdInr, [2,b]p holds.

dIns, (0,b )h holds
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Semantics

A For a Kripke structure, the new modalities are interpreted as follows.

O (n,a)e holds inw if ¢ holds at least in n+1 a-successors of w.
Q [n,a]e holds in w if ¢ holds in all but at most n a-successors of w.

dInr, (1,b)p holds

dInr, [1,b]p does not hold.
QdInr, [2,b]p holds.

dIns, (0,b )h holds

O v and pare useful o express liveness and safety:
€ AGp: p always true along all a-paths is vX. p A [0,a]X
€ EFp: there exists an a-path where p eventually holds is uX. p v (0,a)X

O Note that (0,a)e is (o) and [0,a]e is [o]e
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Structure properties

O In branching-time temporal logic, important model features to
symplify decisions reasonings are:

d Finite-model property:
@ Is there a finite model satisfying the formula
@ It is possible to use exhaustive (brute-force) methods!

d Tree-model property:
@ Is there a tree-model shape satisfying the formula
@ It is possible to use tree automata !

A In enriched p-calculus we need forest structures as models

Aniello Murano - Enriched Modal Logics
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Forest structures %" %@

O A forest F C N'is a collection of trees:

¢ o ) * *
% L : o*n S S5 0 ’.:.’
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* . [] * o * * * " * * -
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= . M - = 2 . < - = (3 . * = .
L ] L) L [ ] L ] -
[ ] = - [ ] L ] ™
L] [ " [

0)

00 o1

O The elements of F are nodes, the degree of F is the maximum number of
node's successors, and O, 1, and 2 are roots of F.

O Theset T={rx | x € N and r-x € F } is the tree of F rooted inr
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Forest structures %" %@

A forest F C N" is a collection of trees:

0] 1 2
A A A
02 }0 g N 20 21 22

00 o1

The elements of F are nodes, the degree of F is the maximum number of
node's successors, and O, 1, and 2 are roots of F.

The set T={r-x | x e N" and r-x € F } is the tree of F rooted inr

A Kripke structure K is a forest structure if it induces a forest:

€ Nodes W represent a forest and the relation R is defined over nodes, where
each pair of successive nodes is labeled with one atomic program or its converse.
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Forest structures %" %@

A forest F C N" is a collection of trees:
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The elements of F are nodes, the degree of F is the maximum number of
node's successors, and O, 1, and 2 are roots of F.

The set T={r-x | x e N" and r-x € F } is the tree of F rooted inr

A Kripke structure K is a forest structure if it induces a forest:

€ Nodes W represent a forest and the relation R is defined over nodes, where
each pair of successive nodes is labeled with one atomic program or its converse.

A Kripke structure K is a quasi forest structure if it becomes a forest
structure after deleting all the edges entering a root of W.
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Forest structures %" %@

A forest F C N" is a collection of trees:
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The elements of F are nodes, the degree of F is the maximum number of
node's successors, and O, 1, and 2 are roots of F.

The set T={r-x | x e N" and r-x € F } is the tree of F rooted inr

A Kripke structure K is a forest structure if it induces a forest:

€ Nodes W represent a forest and the relation R is defined over nodes, where
each pair of successive nodes is labeled with one atomic program or its converse.

A Kripke structure K is a quasi forest structure if it becomes a forest
structure after deleting all the edges entering a root of W.
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Forest structures %" %@

A forest F C N" is a collection of trees:

0
/PN
00 01 02

The elements of F are nodes, the degree of F is the maximum number of
node's successors, and O, 1, and 2 are roots of F.

The set T={r-x | x e N" and r-x € F } is the tree of F rooted inr

A Kripke structure K is a forest structure if it induces a forest:

€ Nodes W represent a forest and the relation R is defined over nodes, where
each pair of successive nodes is labeled with one atomic program or its converse.

A Kripke structure K is a quasi forest structure if it becomes a forest
structure after deleting all the edges entering a root of W.

K is a tree structure if W consists of a single tree.
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Forest and tree model property

O Given a sentence ¢ of the full graded p-calculus with m atleast
subsentences and counting up to b
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Forest and tree model property

0 Given a sentence ¢ of the full graded p-calculus with m atleast
subsentences and counting up to b

¢ is satisfiable

3

¢ has a tree model whose degree is at most m-(b+1).
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Forest and tree model property

0 Given a sentence ¢ of the full graded p-calculus with m atleast
subsentences and counting up to b

¢ is satisfiable

3

¢ has a tree model whose degree is at most m-(b+1).

d The hybrid graded p-calculus does not enjoy the tree model
property.
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Forest and tree model property

0 Given a sentence ¢ of the full graded p-calculus with m atleast
subsentences and counting up to b

¢ is sa’nsﬁable
¢ has a tree model whose degree is at most m-(b+1).

d The hybrid graded p-calculus does not enjoy the tree model
property.

O Given a sentence ¢ of the hybrid graded p-calculus with k
nominals, m atleast subsentences and counting up to b

¢ is SGTISfIGble
¢ has a quasi for'es‘r model
whose degree is at most max{k+1, m-(b+1)}
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Solving enriched mu-calculi

[ We use an automata-theoretic approach.

O In modal p-calulus, we translate a formula to an alternating parity
tree automaton anch check for its emptiness.

€ The translation is polynomial
@ Checking for emptiness can be done in ExpTime
@ Satisfiability of p-calculus is solvable in ExpTime.

O For the enriched p-calculi, we need an enriched version of parity
tree automata.

O Let us first recall alternating automata on infinite tree...
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Nondeterministic (binary)

A
¥
f*% tree automata: NTA 9

d A infinite (binary) freeis t : {0,1}* 2 = e @

Q A path is an infinite sequence of nodes @ @ e Q

starting at the root

d AnNTAisatuple A = < Q, X, 8, Q, F > a (Z-labeled) tree t
> 8: QX I > 2%%Q s a tree transition relation
> Runs are binary trees labeled with states accordingly to &
> F is an acceptance condition satisfied on each path of a run

20



Runs )
bR

O Arunr: {01} > Q is built in accordance with & and r(c) € Q.

Thus, runs are Q-labeled trees.
OLet (q,9) € 8(p,a) and q, initial state

/ \
£

/1 \ /I \ /I \ /1 \ /I \ /1 \ / \
I N\ LN T 5 TA NN E ™ L N\l

“atreet the corresponding run r’
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Runs f@% &‘,

O Arunr: {01} > Q is built in accordance with & and r(c) € Q.

Thus, runs are Q-labeled trees.
Olet (@,q) € 6(p,a) Bnd q, initial state

TF AT A g s ARG BN TA NN E ™ L N\l

“atreet the corresponding run r’



Runs f@% &‘,

O Arunr: {01} > Q is built in accordance with & and r(c) € Q.

Thus, runs are Q-labeled trees.
Olet (@,q) € 6(p,a) Bnd q, initial state

/1 \ /I \ /7 \ /I \
TF AT A g s ARG BN TA NN E ™ L N\l

“atreet the corresponding run r’

O A run is accepting if the acceptance condition is satisfied on
every path

21



y
X f Alternating automata
A on infinite trees
O An alternating (finite-state) automaton on infinite Z-labeled
D-trees is a tuple

A=<Q,2,6,QQ,F>

>3 :(Qx2Z)> B xQ)
> positive Boolean formulas of pairs of directions and states

PR

For example
8(p.a)=
(1,p)A(1,q)

Y-labeled binary tree



Runs i

&

ad A runona Z-labeled D-trees is a (D* x Q)-labeled tree. The root is labeled
with (e, qp) and labels of each node and its successors must satisfy the &

A

_/\ /\

a binary tree T . " the corresponding run r

-




Runs i

&

ad A runona Z-labeled D-trees is a (D* x Q)-labeled tree. The root is labeled
with (e, qp) and labels of each node and its successors must satisfy the &

Q 3(90.0)=((0.91)v(0.,9,)) ~ (0.,93) A (1.93)
Q Let S={(0.9;). (0.93). (1.95)}.

A

‘/\ / \ : : :

a binary tree T . the corresponding run r




Runs %,

S

ad A runona Z-labeled D-trees is a (D* x Q)-labeled tree. The root is labeled
with (e, qp) and labels of each node and its successors must satisfy the &

Q 3(90.0)=((0.91)v(0.,9,)) ~ (0.,93) A (1.93)
Q Let S={(0.9;). (0.93). (1.95)}.

S ks
ANV

a binary tree T . the corresponding run r

-

0 There is no one-to-one correspondence between nodes of T and r



Runs .
5

ad A runona Z-labeled D-trees is a (D* x Q)-labeled tree. The root is labeled
with (e, qp) and labels of each node and its successors must satisfy the &

Q 3(90.0)=((0.91)v(0.,9,)) ~ (0.,93) A (1.93)
Q Let S={(0.9;). (0.93). (1.95)}.

S ks
ANV

a binary tree T . the corresponding run r

-

0 There is no one-to-one correspondence between nodes of T and r

0 As in nondeterministic automata, a run is accepting if the acceptance
condition is satisfied on every path.



Fully Enriched Automata

O Fully enriched automata (FEA) run on infinite labeled forests (T, V).

O FEA generalize alternating automata on infinite trees as the fully enriched
u-calculus extends the standard p-calculus:
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Fully Enriched Automata

O Fully enriched automata (FEA) run on infinite labeled forests (T, V).

O FEA generadlize alternating automata on infinite trees as the fully enriched
u-calculus extends the standard p-calculus:

€ Move up to a predecessor of a node
(by analogy with inverse programs)

€ Move down to at least n or all but n successors
(by analogy with graded modalities)

€ Jump directly to the roots of the input forest
(which are the analogues of nominals).
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Fully Enriched Automata

O Fully enriched automata (FEA) run on infinite labeled forests (T, V).

O FEA generadlize alternating automata on infinite trees as the fully enriched
u-calculus extends the standard p-calculus:

€ Move up to a predecessor of a node
(by analogy with inverse programs)

€ Move down to at least n or all but n successors
(by analogy with graded modalities)

€ Jump directly to the roots of the input forest
(which are the analogues of nominals).

d 3(q,0) is a positive boolean combination of pairs of directfons and states.
O Formally,

€ 5:QxZ—B*(Dy, x Q), where Dy can be -1, ¢, (root), [root], (n), or [n], with O < n < b.
® (-1, q) and (¢, q) send a copy to the predecessor and to the current node.
€ ((root), q) and ([root], q) send a copy to some or all roots of the forest.

€ ((n), q) and ([n], q) send a copy in state q to n+1 and all but n successors of the
current node, respectively.
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o

Runs for FEA &, &

&
O For a FEA A with a transition 8: Q x £ — B*(D, x Q)

d A run over a forest <F,Vg is a (FxQ)-labeled tree, built in
accordance with 6 and r(g) = (c, qp), for a root c of F.
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o

Runs for FEA %E) ,@{
O For a FEA A with a transition 8: Q x £ — B*(D, x Q)

d A run over a forest <F,Vg is a (FxQ)-labeled tree, built in
accordance with 6 and r(g) = (c, qp), for a root c of F.

Iﬂ.
L]
[ L4
’ te,
*
4
1 2 ".\
0
o S e
. h e
L4 . L4 . L4 .
& . 2 L'y L4 .
& . 2 L'y & .
» . D .

B0 07" Rl O et T2
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o

Runs for FEA &, ,@{

&
O For a FEA A with a transition 8: Q x £ — B*(D, x Q)

d A run over a forest <F,Vg is a (FxQ)-labeled tree, built in
accordance with 6 and r(g) = (c, qp), for a root c of F.

d Let r(0)=(11,9), V(11)=qa, and
6(q.a) = (-1.91) A (((root),q,)Vv([root].qs))

<F,V>: 0] 1

0 o1 oz 10 12
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Runs for FEA &, ,@{

&
O For a FEA A with a transition 8: Q x £ — B*(D, x Q)

d A run over a forest <F,Vg is a (FxQ)-labeled tree, built in
accordance with 6 and r(g) = (c, qp), for a root c of F.

d Let r(0)=(11,9), V(11)=qa, and

5(q.a) = (-1,91) A (({root),q,)V([rootl.qs))
Q Let S={(-1.95), ({root).g,)}.

<F,V>: 0] 1

0 o1 oz 10 12
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o

Runs for FEA &, ,@{

&
O For a FEA A with a transition 8: Q x £ — B*(D, x Q)

d A run over a forest <F,Vg is a (FxQ)-labeled tree, built in
accordance with 6 and r(g) = (c, qp), for a root c of F.

d Let r(0)=(11,9), V(11)=qa, and

5(q.a) = (-1,91) A (({root),q,)V([rootl.qs))
Q Let S={(-1.95), ({root).g,)}.

<F,V>: 0] 1

0 o1 oz 10 12

[ We use a parity condition.
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Acceptance conditions

Q Biichi condition: F € Q. A run r is accepting iff for every path, there exists
a final state appearing infinitely often

Q Formally, a run is accepting if for each path =, Inf(r|z) N F = @
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Q Parity condition: F = {F,..,F.}. A runr is accepting if for each path = in r the
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Acceptance conditions

Biichi condition: F € Q. A run r is accepting iff for every path, there exists
a final state appearing infinitely often

Formally, a run is accepting if for each path =, Inf(r|zr) N F # @

Parity condition: F = {F;,..,F,.}. A runr is accepting if for each path = in r the
minimal i for which Inf(r|r) N F # @ is even

Emptiness:
€ Nondeterministic Buchi Tree Automata (NBT) : PTime-Complete
€ Alternating Buchi Tree Automata (ABT) : ExpTime-Complete
€ Nondeterministic Parity Tree Automata (NPT): UP n Co-UP
€ Alternating Parity Tree Automata (APT) : ExpTime-Complete



Solving the satisfiability problem

O We show that the satisfiability problem for enriched p-calculus formulas
(except for fully enriched ones) is EXPTime-Complete
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Solving the satisfiability problem

We show that the satisfiability problem for enriched p-calculus formulas
(except for fully enriched ones) is EXPTime-Complete

Lower Bound: Satisfiability for the p-calculus is EXPTime-hard [Fisher
Ladner 1979]
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Solving the satisfiability problem

We show that the satisfiability problem for enriched p-calculus formulas
(except for fully enriched ones) is EXPTime-Complete

Lower Bound: Satisfiability for the p-calculus is EXPTime-hard [Fisher
Ladner 1979]

Upper Bound: We use an automata-theoretic approach:

Given a sentence ¢ of the full graded p-calculus that has m atleast sub-
sentences and counts up to b, we can construct a FEA A, that

€ accepts the set of tree models of ¢ with degree at most m(b+1), and
€ has |p| states, index |o].
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Solving the satisfiability problem

We show that the satisfiability problem for enriched p-calculus formulas
(except for fully enriched ones) is EXPTime-Complete

Lower Bound: Satisfiability for the p-calculus is EXPTime-hard [Fisher
Ladner 1979]

Upper Bound: We use an automata-theoretic approach:

Given a sentence ¢ of the full graded p-calculus that has m atleast sub-
sentences and counts up to b, we can construct a FEA A, that

€ accepts the set of tree models of ¢ with degree at most m(b+1), and
€ has |p| states, index |o].

Given a sentence ¢ of the hybrid graded/full p-calculus with m atleast
subsentences, k nominals, and counts up to b, we can built a FEA A that

€ accepts all quasi forest models of ¢ with degree max{k+1, m(b+1)}, and
€ has O(|¢|?) states, index |o].
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Solving the satisfiability problem

We show that the satisfiability problem for enriched p-calculus formulas
(except for fully enriched ones) is EXPTime-Complete

Lower Bound: Satisfiability for the p-calculus is EXPTime-hard [Fisher
Ladner 1979]

Upper Bound: We use an automata-theoretic approach:

Given a sentence ¢ of the full graded p-calculus that has m atleast sub-
sentences and counts up to b, we can construct a FEA A, that

€ accepts the set of tree models of ¢ with degree at most m(b+1), and
€ has |p| states, index |o].

Given a sentence ¢ of the hybrid graded/full p-calculus with m atleast
subsentences, k nominals, and counts up to b, we can built a FEA A that

€ accepts all quasi forest models of ¢ with degree max{k+1, m(b+1)}, and
€ has O(|¢|?) states, index |o].

In both cases, ¢ is satisfiable if L(A,) # 0
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Solving the emptiness problem

O We first reduce the emptiness problem for FEA to the emptiness
problem for 2GAPTs.

€ A 2GAPT is a FEA that accepts trees and cannot jump to the root of
the input tree.
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Solving the emptiness problem

O We first reduce the emptiness problem for FEA to the emptiness
problem for 2GAPTs.

€ A 2GAPT is a FEA that accepts trees and cannot jump to the root of
the input tree.

0 To decide the emptiness of 2GAPTs, we use a reduction to the
emptiness problem of GNPT, via "strategy trees”

€ To remove alternation, we build special trees that allow encoding the
original run in one having the same tree structure as the input tree.

@ To restrict to unidirectional paths, we use the notion of annotation
that allow to decompose each path into downward paths and detours.
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Solving the emptiness problem

O We first reduce the emptiness problem for FEA to the emptiness
problem for 2GAPTs.

€ A 2GAPT is a FEA that accepts trees and cannot jump to the root of
the input tree.

0 To decide the emptiness of 2GAPTs, we use a reduction to the
emptiness problem of GNPT, via "strategy trees”

€ To remove alternation, we build special trees that allow encoding the
original run in one having the same tree structure as the input tree.

@ To restrict to unidirectional paths, we use the notion of annotation
that allow to decompose each path into downward paths and detours.

Q The result follows from the blow-up involved in building the GNPT
and from the complexity for checking its emptiness.
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A strategy tree with detour

1 &} (1,QG)

(go, ( 0),qs)
/ \ W / \
(11,b) ,a) ‘/l\\ (41, 1/‘?2}{;‘-} qs)

(1,42) (111, gs) (112, gs)
(111,b)  (112,a)
(121g3J

Figure 2: A fragment of an input tree, a corresponding run, and its strategy tree.
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A strategy tree with detour
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Figure 2: A fragment of an input tree, a corresponding run, and its strategy tree.
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A Summary for Enriched p-calculi

Results on the satisfiability problem for Enriched p-calculi

p]i'r;\;er'zsnfs mggcc](?iiide < Nominals Complexity
fully enriched X X X Undecidable[1]
full hybrid X X ExpTime[2]
full graded X X
hybrid graded X X
graded X ExpTime lary/2ary[3]
full X ExpTime[5]

1. [Bonatti, Peron 2004]
2. [Sattler, Vardi 2001]

3. [Vardi 1998]

4. [Calvanese, De Giacomo, Lenzerini, 2001]
5. [Kupferman, Sattler, Vardi, 2002]
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Enriching Temporal Logics

[ p-calculus is a very expressive but too low-level logic.

d Branching time temporal logics such as CTL, and CTL* are less
expressive but much more human-friendly.
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Enriching Temporal Logics

[ p-calculus is a very expressive but too low-level logic.

d Branching time temporal logics such as CTL, and CTL* are less
expressive but much more human-friendly.

O What about enriching CTL and CTL* with graded modalities.
@ So far, only CTL has been fully solved, both in unary and binary coding.
@ Graded CTL is exponentially more succinct than graded p-calculus.
€ The satisfiability problem remains ExpTime-Complete
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Enriching Temporal Logics

[ p-calculus is a very expressive but too low-level logic.

d Branching time temporal logics such as CTL, and CTL* are less
expressive but much more human-friendly.

O What about enriching CTL and CTL* with graded modalities.
@ So far, only CTL has been fully solved, both in unary and binary coding.
@ Graded CTL is exponentially more succinct than graded p-calculus.
€ The satisfiability problem remains ExpTime-Complete

O Moving from p-calculus to CTL with graded modalities, we need to
move from graded world modalities to graded path modalities!
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Syntax of GCTL* and GCTL

0 GCTL* extends CTL* with new graded path quantifiers:

® "there exists at least n paths satisfying a given property";

@ "all but at most n paths satisfy a given property".
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Syntax of GCTL* and GCTL

0 GCTL* extends CTL* with new graded path quantifiers:
@ "there exists at least n paths satisfying a given property";
@ "all but at most n paths satisfy a given property".

O CTL* uses state and path formulas built inductively as follows:
0 State-formulas:

®o=pl-¢olorp|eVe|Ey A"y
® where p € AP and y is a path-formula

d path-formulas (LTL):

Sy:=olyry|-vw|Xy|lyUy
@ where ¢ is a state-formula, and y a path-formula

[ GCTL formulas are obtained by forcing each temporal operator to
be coupled with a path quantifier
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Counting paths

Example: F g
O What does counting paths mean?
e

€ A property ensured by a common prefix may be p g D
satisfied on an infinite number of paths. )

Je)

/\
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Counting paths

Example: G g!
O What does counting paths mean? n
€ A property ensured by a common prefix may be g — g “ " p
satisfied on an infinite number of paths.
@ It may happen that the prefix satisfies a formula q

but a whole path may not.

/\
i

A

g P ggqg p
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Counting paths

O What does counting paths mean?

€ A property ensured by a common prefix may be
satisfied on an infinite number of paths.

@ It may happen that the prefix satisfies a formula
but a whole path may not.
[ We restrict to minimal and conservative paths

O Two paths are equivalent if
@ their common prefix satisfy the formula.

@ no matter how these prefixes are extended in the
structure, the paths satisfy the formula.

Aniello Murano - Enriched Modal Logics
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Semantics of GCTL*

O For a Kripke structure K, a world w, and a GCTL* path formula v,

O Let P(K, w, y) be the set of minimal and conservative paths of K
starting in w and satisfying y
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Semantics of GCTL*

O For a Kripke structure K, a world w, and a GCTL* path formula v,

O Let P(K, w, y) be the set of minimal and conservative paths of K
starting in w and satisfying y

®K weBENYIff |[P(K,w,y)| 2n
®K we Anyiff |P(K, w, ~g)| <n

a For n=1, we write Ey and Ay instead of B2l gy e Al y
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Solving GCTL in unary coding

O Let y be a GCTL formula with grades coded in unary.

O From y we build in linear time a "Partitioning Alternating Bichi
Tree Automata” (PABT) P,
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Solving GCTL in unary coding

O Let y be a GCTL formula with grades coded in unary.

O From y we build in linear time a "Partitioning Alternating Bichi
Tree Automata” (PABT) P,

0 A PABT accepts all tre models of a formula, by «gessing» how to
partition a required graded modality among successors

E>3 Fy

YA\
Y F

F Y
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Solving GCTL in unary coding

O Let y be a GCTL formula with grades coded in unary.

O From y we build in linear time a "Partitioning Alternating Bichi
Tree Automata” (PABT) P,

0 A PABT accepts all tre models of a formula, by «gessing» how to
partition a required graded modality among successors

E2:3 Fy
&
Fy Fy

O By means of an opportune extension of the Myhano-Hayashi
tecnique, we translate in Exponential Time P, in an NBT B,

O Since the emptiness of L(B,) can be checked in polynomial time, we
get that the satisfiability problem for GCTL is in ExpTime.

0 ExpTime hardness comes from the satisfiability problem for CTL
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Solving GCTL in binary coding

O If we use the unary case approach, we lose an exponent:

€ The tree model property requires trees with a branching degree
exponential in the highest graded b, of the formula.
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Solving GCTL in binary coding

O If we use the unary case approach, we lose an exponent:

€ The tree model property requires trees with a branching degree
exponential in the highest graded b, of the formula.

O We use a binary encoding of each tree model and split the automata
construction into a linear PABT plus a satellite NBT automaton.

€ The tree encoding turns each level of the tree in a binary tree, i.e.,
brothers of a node become its successors.

€ The satellite is an (exponential) NBT and ensures that each tree model
satisfies some structural properties along its paths.
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Solving GCTL in binary coding

If we use the unary case approach, we lose an exponent:

€ The tree model property requires trees with a branching degree
exponential in the highest graded b, of the formula.

We use a binary encoding of each tree model and split the automata
construction into a linear PABT plus a satellite NBT automaton.

€ The tree encoding turns each level of the tree in a binary tree, i.e.,
brothers of a node become its successors.

€ The satellite is an (exponential) NBT and ensures that each tree model
satisfies some structural properties along its paths.

As the satellite automaton is already an NBT, this avoids to inject
an extra exponent when moving both automata to a unique NBT.

Thus, also in the binary coding, the satisfiability question for GCTL
is ExpTime-complete
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What about GCTL*

0 Solving graded CTL* is even more appealing.
0 There are several question to investigate.
d Is GCTL* more succinct than 6raded mu-calculus?

d What about the satisfiability?

@ Using a slight variation of the previous reasoning used for GCTL, we
get a 3ExpTime upper bound.

€ As CTL* satisfiability is 2ExpTime-complete, it is an open question to
decide the exact complexity of the problem for GCTL*
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Further directions about GCTL and GCTL*

d What about GCTL/ GCTL* plus backwords modalities?

0 CTL and CTL* have been investigated with respect to (linear and
branching) Past modalities.

O PCTL (PCTL*) is (2)ExpTime-complete.

d What about GCTL/GCTL over more enriched structures:
Hierachical, pushown, weighted eftc...
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Enriched modalities vs. open systems

O Enriched mu-calculi has been investigated in the setting of module
checking.

O Same results as in the satisfiability case:
€ Undecidable if we consider the fully enriched mu-calculus.
& ExpTime-complete for every fragment.

Aniello Murano - Enriched Modal Logics

39



Conclusion

Results on the satisfiability problem for Enriched p-calculi

p]fﬂg\;?;sn?s mﬁgﬂﬂiﬁe ¢ | Nomi nals Complexity
fully enriched X X X Undecidable[1]
full hybrid X X ExpTime[2]
full graded X X ExpTime 2ary (lary[4])
hybrid graded X X ExpTime lary/2ary
graded X ExpTime lary/2ary[3]
full X ExpTime[5]
Results on the satisfiability problem for GCTL
GCTL X ExpTime lary/2ary
Past CTL X ExpTime[6]
1. [Bonatti, Peron 2004] 4. [Calvanese, De Giacomo, Lenzerini, 2001]
2. [Sattler, Vardi 2001] 5. [Kupferman, Sattler, Vardi, 2002]
3. [Vardi 1998] 6. [Kupferman, Pnueli 1995]
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