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Is the system correct? 



Motivations 
 
Formal Verification: 
 

 System    A mathematical model M 
 Desired Behavior    A formal specification  
 Correctness     A formal technique 

 
                  
 

                                      
 
                                    
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 System    A mathematical model M 
 Desired Behavior    A formal specification  
 Correctness     A formal technique 

 
                  
 

 Model Checking: Does M satisfies  ? 
 
 Satisfiability: Is there M for  ? 

 
 
 
 
 

The system has 
the required 

behavior 
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A Basic Model: Kripke Structure 

 A system can be represented as a Kripke Structure: a labeled-
state transition graph 
 

M = (AP, S, S0, R, Lab) 
 

 AP is a set of atomic propositions.  

 S is a finite set of states. 

 S0 ⊆ S is the set of initial states. 

 R ⊆ S x S is a transition relation, total: ∀s є S, ∃ s’ . R(s, s’). 

 Lab : S → 2AP labels states with propositions true in that states. 

 

 A path is a system run! 
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System Specification 

 Modal and Temporal logic allow description of the temporal 
ordering of events 

                              

                          
                                                   

                                                                

                                    

                                                   
                                                             

                                                                     
                                               

                                    
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System Specification 

 Modal and Temporal logic allow description of the temporal 
ordering of events 

 Two main families of logics: 

 Linear-Time Logics (LTL) 
 Each moment in time has a unique possible future. 

 LTL expresses path properties based on the paths state labels. 

 Useful for hardware specification. 

 Branching-Time Logics (CTL, CTL*, and μ-CALCULUS) 
 Each moment in time may split into various possible future. 

 CTL* expresses state properties from which LTL-like properties are 
satisfied in an existential or universal way . 

 Useful for software specification. 
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μ-calculus is a very expressive logic 

 Can express several practical properties. 

 Corresponds to alternating parity tree automata 

 Important connections with MSO 

 Strictly subsumes classical logics such as CTL, LTL, CTL*, … 

 Identifies powerful classes of Description Logics 

 

 Decision problems: 

 Model checking: UP ⋂ co-UP 

 Satisfiability: ExpTime-complete 
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μ-calculus limitations 

 Several important constructs cannot be easily translated to the 
μ-calculus: 

 Inverse Programs to travel relations in backward   

 Graded modalities to enable statements on a number of successors 

 Nominals as propositional variables true exactly in one state  

 

                                                                     
                       

                                                                
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μ-calculus limitations 

 Several important constructs cannot be easily translated to the 
μ-calculus: 

 Inverse Programs to travel relations in backward   

 Graded modalities to enable statements on a number of successors 

 Nominals as propositional variables true exactly in one state  

 

 Extensions of the μ-calculus with these abilities induces families 
of enriched μ-calculi. 

 Similarly, we can define families of enriched temporal logics. 
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Outline of the talk 
I part 

 Motivations 

 Fully enriched μ-calculus 

                                
                                                                

                                                                

                                                             

 

                                                          

                                                                     
                                                

                                                                
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Outline of the talk 
I part 

 Motivations 

 Fully enriched μ-calculus 

 Families of enriched μ-calculi 
 full graded μ-calculus (with inverse programs and graded mod.) 

 hybrid graded μ-calculus (with graded modalities and nominals) 

 full hybrid μ-calculus (with inverse programs and nominals) 

 

                                                          

                                                                     
                                                

                                                                
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 Satisfiability of fully enriched μ-calculus: Undecidable 

                                                                     
                                                

                                                                
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Outline of the talk 
I part 

 Motivations 

 Fully enriched μ-calculus 

 Families of enriched μ-calculi 
 full graded μ-calculus (with inverse programs and graded mod.) 

 hybrid graded μ-calculus (with graded modalities and nominals) 

 full hybrid μ-calculus (with inverse programs and nominals) 

 

 Satisfiability of fully enriched μ-calculus: Undecidable 

 Satisfiability of the other families we  consider: ExpTime-complete 
Upper bound via Fully Enriched Automata (FEA). 

The upper bound holds also in case numbers are coded in binary 
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Outline of the talk 
II part 

 Graded Computation Tree Logic (GCTL) 

 

 ExpTime solution of the satisfiability problem for graded numbers 
coded in unary/binary 

 

                                             
                            

  

                                                
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Outline of the talk 
II part 

 Graded Computation Tree Logic (GCTL) 

 

 ExpTime solution of the satisfiability problem for graded numbers 
coded in unary/binary 

 

 Open questions on GCTL and its extensions:  
 GCTL*, PGCTL/PGCTL*, etc.. 

  

                                                
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Outline of the talk 
II part 

 Graded Computation Tree Logic (GCTL) 

 

 ExpTime solution of the satisfiability problem for graded numbers 
coded in unary/binary 

 

 Open questions on GCTL and its extensions:  
 GCTL*, PGCTL/PGCTL*, etc.. 

  

 Some achievements in open system verification. 
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10 
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Some known results 

 Satisfiability for Fully enriched μ-calculus is undecidable [Bonatti, 

Peron 2004] 

                                                                

                                             

                                                                  

                                      

                                                                         
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Some known results 

 Satisfiability for Fully enriched μ-calculus is undecidable [Bonatti, 

Peron 2004] 

 ExpTime-completeness of satisfiability for enriched μ-calculi: 

 μ-calculus with inverse programs [Vardi’98] 

 μ-calculus with graded modalities [Kupferman,Sattler,Vardi’02]   

 full hybrid logic [Sattler,Vardi’01] 

 full graded logic in unary coding [Calvanese, De Giacomo, Lenzerini’01] 
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The fully enriched μ-calculus 

 The -calculus is a propositional modal logic with least() and 
greatest () fixpoint operators [Kozen 1983].  

 

 The fully enriched μ-calculus extends the μ-calculus with  
 

 graded modalities: hn,i (atleast formulas) and [n,] (allbut formulas)  

 

 nominals propositions: Nominal set Nom 

 

 inverse programs: Use of both program sets Prog and Prog- 
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The fully enriched μ-calculus (Syntax) 

 Let AP, Var, Prog, and Nom be sets of atomic proposition, 
propositional variables, atomic, programs and nominals 

 Syntax: 
 φ := true | false | p | :p | y | φ ⋁ φ | φ ⋀ φ | hn,iφ | [n,] φ | y. φ(y) | y. φ(y) 

  

 where p є AP ∪ Nom, y є Var, n є N, and  is a program or its converse 

 

                                             
                                           

                                                     

                                                    
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The fully enriched μ-calculus (Syntax) 

 Let AP, Var, Prog, and Nom be sets of atomic proposition, 
propositional variables, atomic, programs and nominals 

 Syntax: 
 φ := true | false | p | :p | y | φ ⋁ φ | φ ⋀ φ | hn,iφ | [n,] φ | y. φ(y) | y. φ(y) 

  

 where p є AP ∪ Nom, y є Var, n є N, and  is a program or its converse 

 

 Fragments of the fully enriched μ-calculus: 
 full graded μ-calculus (without nominals) 

 hybrid graded μ-calculus (without inverse programs) 

 full hybrid μ-calculus (without graded modalities) 
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Semantics: The enriched model 

 The semantics of the fully enriched -calculus is given with 
respect to enriched Kripke structures 

K = (AP [ Nom, W, W0, R, Lab) 

                                                   

                                                                   

                                                                 
                                                             

 

                                                            
                                          
                                                                      

                                      
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Semantics: The enriched model 

 The semantics of the fully enriched -calculus is given with 
respect to enriched Kripke structures 

K = (AP [ Nom, W, W0, R, Lab) 

 In particular, R and Lab are enriched as follows: 

 R : Prog ! 2W £ W assigns to programs transitions relation over S 

 Lab: AP [ Nom ! 2W assigns to propositions and nominal sets of 
states, where those assigned to each nominal are singletons. 

 

                                                            
                                          
                                                                      

                                      
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Semantics: The enriched model 

 The semantics of the fully enriched -calculus is given with 
respect to enriched Kripke structures 

K = (AP [ Nom, W, W0, R, Lab) 

 In particular, R and Lab are enriched as follows: 

 R : Prog ! 2W £ W assigns to programs transitions relation over S 

 Lab: AP [ Nom ! 2W assigns to propositions and nominal sets of 
states, where those assigned to each nominal are singletons. 

 

 Given a Kripke structure, atomic propositions and boolean 
connectivities are interpreted as usual:  
 K satisfies the nominal n at the starting state r, since Lab(n)={s}  

 K does not satisfy q at r, but at s. 
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Semantics 

 For a Kripke structure, the new modalities are interpreted as follows. 

 hn,iφ holds in w if φ holds at least in n+1 -successors of w.   

 [n,]φ holds in w if φ holds in all but at most n -successors of w.  

 

 

 

 

 

 

 

                                                     
                                                         

                                                                         
 

                                             

                     

                             

                     

                      
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                                                     
                                                         

                                                                         
 

                                             

In r, h1,bip holds  

                             

                     

                      

p p 
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h  q q 
b b 

p p 
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                                             

In r, h1,bip holds  

In r, [1,b]p does not hold. 
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Semantics 

 For a Kripke structure, the new modalities are interpreted as follows. 

 hn,iφ holds in w if φ holds at least in n+1 -successors of w.   

 [n,]φ holds in w if φ holds in all but at most n -successors of w.  

 

 

 

 

 

 

 

  and  are useful to express liveness and safety:  
 AGp: p always true along all a-paths is X. p Æ [0,a]X  

 EFp: there exists an a-path where p eventually holds is X. p Ç h0,aiX  
 

 Note that h0,iφ is hiφ and [0,]φ is []φ 

 

In r, h1,bip holds  

In r, [1,b]p does not hold. 

In r, [2,b]p holds. 

In s, h0,b-ih holds  
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Structure properties 

 In branching-time temporal logic, important model features to 
symplify decisions reasonings are: 

 Finite-model property: 
 Is there a finite model satisfying the formula 

 It is possible to use exhaustive (brute-force) methods! 

 Tree-model property: 
 Is there a tree-model shape satisfying the formula 

 It is possible to use tree automata !  

 

 In enriched μ-calculus we need forest structures as models 
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Forest structures  
 A forest F µ N+ is a collection of trees: 

 

 

 

 

 

 The elements of F are nodes, the degree of F is the maximum number of 
node’s successors, and 0, 1, and 2 are roots of F.  

 The set T= {r¢x j x 2 N* and r¢x 2 F } is the tree of F rooted in r  

                                                                    
                                                                             

                                                                                    

                                                                          
                                                             

                                                       
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 The elements of F are nodes, the degree of F is the maximum number of 
node’s successors, and 0, 1, and 2 are roots of F.  

 The set T= {r¢x j x 2 N* and r¢x 2 F } is the tree of F rooted in r  

 A Kripke structure K is a forest structure if it induces a forest: 
 Nodes W represent a forest and the relation R is defined over nodes, where 

each pair of successive nodes is labeled with one atomic program or its converse.   
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structure after deleting all the edges entering a root of W. 
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Forest structures  
 A forest F µ N+ is a collection of trees: 

 

 

 

 

 

 The elements of F are nodes, the degree of F is the maximum number of 
node’s successors, and 0, 1, and 2 are roots of F.  

 The set T= {r¢x j x 2 N* and r¢x 2 F } is the tree of F rooted in r  

 A Kripke structure K is a forest structure if it induces a forest: 
 Nodes W represent a forest and the relation R is defined over nodes, where 

each pair of successive nodes is labeled with one atomic program or its converse.   

 A Kripke structure K is a quasi forest structure if it becomes a forest 
structure after deleting all the edges entering a root of W. 

 K is a tree structure if W consists of a single tree. 
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Forest and tree model property 

 Given a sentence φ of the full graded -calculus with m atleast 
subsentences and counting up to b 

                   

 

                                                      
  

                                                             
           
 

                                                            
                                                       

                  

 
                             
                                           
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Forest and tree model property 

 Given a sentence φ of the full graded -calculus with m atleast 
subsentences and counting up to b 

φ is satisfiable  

 

φ has a tree model whose degree is at most m¢(b+1).  
  

                                                             
           
 

                                                            
                                                       

                  

 
                             
                                           
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Forest and tree model property 

 Given a sentence φ of the full graded -calculus with m atleast 
subsentences and counting up to b 

φ is satisfiable  

 

φ has a tree model whose degree is at most m¢(b+1).  
  

 The hybrid graded -calculus does not enjoy the tree model 
property.  
 

                                                            
                                                       

                  

 
                             
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Forest and tree model property 

 Given a sentence φ of the full graded -calculus with m atleast 
subsentences and counting up to b 

φ is satisfiable  

 

φ has a tree model whose degree is at most m¢(b+1).  
  

 The hybrid graded -calculus does not enjoy the tree model 
property.  
 

 Given a sentence φ of the hybrid graded -calculus with k 
nominals, m atleast subsentences and counting up to b  

φ is satisfiable 

 
φ has a quasi forest model  

whose degree is at most max{k+1, m¢(b+1)} 
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Solving enriched mu-calculi 

 We use an automata-theoretic approach. 

 In modal μ-calulus, we translate a formula to an alternating parity 
tree automaton anch check for its emptiness. 
 The translation is polynomial 

 Checking for emptiness can be done in ExpTime 

 Satisfiability of μ-calculus is solvable in ExpTime.   

 For the enriched μ-calculi, we need an enriched version of parity 
tree automata. 

 

 Let us first recall alternating automata on infinite tree…  
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Nondeterministic (binary)  
tree automata: NTA 

20 

 A infinite (binary) tree is t : {0,1}*   

 

 A path is an infinite sequence of nodes                                                             
starting at the root 

 

 An NTA is a tuple A = < Q, , , Q0, F > 

   : Q x   2QxQ  is a tree transition relation 

  Runs are binary trees labeled with states accordingly to   

  F is an acceptance condition satisfied on each path of a run 

 

 

0 1 

00 01 10 11 

a (-labeled) tree t 

a 

a b 

b a b b 



Runs 

                                                                 
           

 A run r : {0,1}*  Q is built in accordance with  and r() є Q0. 

Thus, runs are Q-labeled trees. 
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00 01 10 11 

 

0 1 

00 01 10 11 

q0 
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p p 
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q 
q 

b 

b a 

a b b a 

Let (q,q) ϵ (p,a) and q0 initial state 

 

a tree t the corresponding run r 
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Runs 

 A run is accepting if the acceptance condition is satisfied on 
every path 

 

 A run r : {0,1}*  Q is built in accordance with  and r() є Q0. 

Thus, runs are Q-labeled trees. 
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Alternating automata 
on infinite trees 

 An alternating (finite-state) automaton on infinite -labeled 
D-trees is a tuple  
 

A = ‹ Q, , , q0, F › 
 

  : (Q x )  B+(D  Q)  

 positive Boolean formulas of pairs of directions and states  

 
 

0 1 

00 01 10 11 

-labeled binary tree 

a 

a b 

b a b b 

For example 

(p,a)= 

(1,p)(1,q) 



Runs 

 A run on a -labeled D-trees is a (D*  Q)-labeled tree. The root is labeled 
with (, q0) and labels of each node and its successors must satisfy the  

                                           

                                  

a  ·q0 

                                                                 

                                                                        

                                      

a binary tree T the corresponding run r 



Runs 

 A run on a -labeled D-trees is a (D*  Q)-labeled tree. The root is labeled 
with (, q0) and labels of each node and its successors must satisfy the  

 (q0,a)=((0,q1)(0,q2))  (0,q3)  (1,q3) 

 Let S= {(0,q1), (0,q3), (1,q3)}. 

 

a  ·q0 
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Runs 

 A run on a -labeled D-trees is a (D*  Q)-labeled tree. The root is labeled 
with (, q0) and labels of each node and its successors must satisfy the  

 (q0,a)=((0,q1)(0,q2))  (0,q3)  (1,q3) 

 Let S= {(0,q1), (0,q3), (1,q3)}. 

 

a 

0·q1 0·q3 

 ·q0 

1·q3 

 There is no one-to-one correspondence between nodes of T and r  

                                                                        
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Runs 

 A run on a -labeled D-trees is a (D*  Q)-labeled tree. The root is labeled 
with (, q0) and labels of each node and its successors must satisfy the  

 (q0,a)=((0,q1)(0,q2))  (0,q3)  (1,q3) 

 Let S= {(0,q1), (0,q3), (1,q3)}. 

 

a 

0·q1 0·q3 

 ·q0 

1·q3 

 There is no one-to-one correspondence between nodes of T and r  

 As in nondeterministic automata, a run is accepting if the acceptance 

condition is satisfied on every path. 

 

a binary tree T the corresponding run r 
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Fully Enriched Automata 
 Fully enriched automata (FEA) run on infinite labeled forests hT,Vi. 

 FEA generalize alternating automata on infinite trees as the fully enriched 
-calculus extends the standard -calculus:  

                                     
                                       

                                                  
                                     

                                                 
                                           

                                                                              

           
                                                                                          

                                                                            

                                                                              

                                                                                      
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Fully Enriched Automata 
 Fully enriched automata (FEA) run on infinite labeled forests hT,Vi. 

 FEA generalize alternating automata on infinite trees as the fully enriched 
-calculus extends the standard -calculus:  

 Move up to a predecessor of a node  
  (by analogy with inverse programs)  

 Move down to at least n or all but n successors  
(by analogy with graded modalities) 

 Jump directly to the roots of the input forest  
  (which are the analogues of nominals).  

                                                                              
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                                                                                          
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Fully Enriched Automata 
 Fully enriched automata (FEA) run on infinite labeled forests hT,Vi. 

 FEA generalize alternating automata on infinite trees as the fully enriched 
-calculus extends the standard -calculus:  

 Move up to a predecessor of a node  
  (by analogy with inverse programs)  

 Move down to at least n or all but n successors  
(by analogy with graded modalities) 

 Jump directly to the roots of the input forest  
  (which are the analogues of nominals).  

 (q,) is a positive boolean combination of pairs of directions and states.  

 Formally, 
  : QB+(Db  Q), where Db can be -1, , hrooti, [root], hni, or [n], with 0 · n · b.  

 (-1, q) and (, q) send a copy to the predecessor and to the current node. 

 (hrooti, q) and ([root], q) send a copy to some or all roots of the forest.  

 (hni, q) and ([n], q) send a copy in state q to n+1 and all but n successors of the 
current node, respectively. 
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Runs for FEA 

 For a FEA A with a transition : Q £  ! B+(Db £ Q) 

 A run over a forest hF,Vi is a (F£Q)–labeled tree, built in 
accordance with  and r() = (c, q0), for a root c of F. 

                                

                                                 

                                

                            
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Runs for FEA 

 For a FEA A with a transition : Q £  ! B+(Db £ Q) 

 A run over a forest hF,Vi is a (F£Q)–labeled tree, built in 
accordance with  and r() = (c, q0), for a root c of F. 

                                

                                                 

                                

0 

00 01 02 

1 

10 11 12 

hF,Vi: 
 

0 1 m 

01 00 

r: 

                            

c1,q0 
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Runs for FEA 

 For a FEA A with a transition : Q £  ! B+(Db £ Q) 

 A run over a forest hF,Vi is a (F£Q)–labeled tree, built in 
accordance with  and r() = (c, q0), for a root c of F. 

 Let r(0)=(11,q), V(11)=a, and  

   (q,a) = (-1,q1)  ((hrooti,q2)Ç([root],q3)) 

                                

0 

00 01 02 

1 

10 11 12 

hF,Vi: 
 

0 1 m 

01 00 

r: 

                            

c1,q0 

11,q 

a 
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Runs for FEA 

 For a FEA A with a transition : Q £  ! B+(Db £ Q) 

 A run over a forest hF,Vi is a (F£Q)–labeled tree, built in 
accordance with  and r() = (c, q0), for a root c of F. 

 Let r(0)=(11,q), V(11)=a, and  

   (q,a) = (-1,q1)  ((hrooti,q2)Ç([root],q3)) 

 Let S= {(-1,q1), (hrooti,q2)}. 

 
0 

00 01 02 

1 

10 11 12 

hF,Vi: 
 

0 1 m 

01 00 

r: 

                            

c1,q0 

11,q 

a 
c2,q2 1,q1 
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Runs for FEA 

 For a FEA A with a transition : Q £  ! B+(Db £ Q) 

 A run over a forest hF,Vi is a (F£Q)–labeled tree, built in 
accordance with  and r() = (c, q0), for a root c of F. 

 Let r(0)=(11,q), V(11)=a, and  

   (q,a) = (-1,q1)  ((hrooti,q2)Ç([root],q3)) 

 Let S= {(-1,q1), (hrooti,q2)}. 

 
0 

00 01 02 

1 

10 11 12 

hF,Vi: 
 

0 1 m 

01 00 

r: 

 We use a parity condition. 

 

c1,q0 

11,q 

a 
c2,q2 1,q1 
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Acceptance conditions 

 Büchi condition: F ⊆ Q. A run r is accepting iff for every path, there exists 

a final state appearing infinitely often  

 Formally, a run is accepting if for each path , Inf(r|) ⋂ F  Ø 

 

                                                                                    
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Acceptance conditions 

 Büchi condition: F ⊆ Q. A run r is accepting iff for every path, there exists 

a final state appearing infinitely often  

 Formally, a run is accepting if for each path , Inf(r|) ⋂ F  Ø 

 

 Parity condition: F = {F1,…,Fm}. A run r is accepting if for each path  in r the 

minimal i for which Inf(r|) ⋂ F  Ø is even 
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Acceptance conditions 

 Büchi condition: F ⊆ Q. A run r is accepting iff for every path, there exists 

a final state appearing infinitely often  

 Formally, a run is accepting if for each path , Inf(r|) ⋂ F  Ø 

 

 Parity condition: F = {F1,…,Fm}. A run r is accepting if for each path  in r the 

minimal i for which Inf(r|) ⋂ F  Ø is even 

 

 Emptiness: 

 Nondeterministic Buchi Tree Automata (NBT) : PTime-Complete  

 Alternating Buchi Tree Automata (ABT) : ExpTime-Complete 

 Nondeterministic Parity Tree Automata (NPT) : UP ⋂ Co-UP 

 Alternating Parity Tree Automata (APT) : ExpTime-Complete 
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Solving the satisfiability problem 

 We show that the satisfiability problem for enriched -calculus formulas 
(except for fully enriched ones) is EXPTime-Complete 

                                                                         
             

                                                     

                                                                          
                                                             

                                                                     

                            

                                                                         
                                                                         

                                                                        

                                

                                               
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Solving the satisfiability problem 

 We show that the satisfiability problem for enriched -calculus formulas 
(except for fully enriched ones) is EXPTime-Complete 

 Lower Bound: Satisfiability for the -calculus is EXPTime-hard [Fisher 
Ladner 1979] 
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Solving the satisfiability problem 

 We show that the satisfiability problem for enriched -calculus formulas 
(except for fully enriched ones) is EXPTime-Complete 

 Lower Bound: Satisfiability for the -calculus is EXPTime-hard [Fisher 
Ladner 1979] 

 Upper Bound: We use an automata-theoretic approach: 

 Given a sentence φ of the full graded -calculus that has m atleast sub-
sentences and counts up to b, we can construct a FEA Aφ that 

 accepts the set of tree models of φ with degree at most m(b+1), and 

 has |φ| states, index |φ|. 

                                                                         
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                                               
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Solving the satisfiability problem 

 We show that the satisfiability problem for enriched -calculus formulas 
(except for fully enriched ones) is EXPTime-Complete 

 Lower Bound: Satisfiability for the -calculus is EXPTime-hard [Fisher 
Ladner 1979] 

 Upper Bound: We use an automata-theoretic approach: 

 Given a sentence φ of the full graded -calculus that has m atleast sub-
sentences and counts up to b, we can construct a FEA Aφ that 

 accepts the set of tree models of φ with degree at most m(b+1), and 

 has |φ| states, index |φ|. 

 Given a sentence φ of the hybrid graded/full -calculus with m atleast 
subsentences, k nominals, and counts up to b, we can built a FEA Aφ that 

 accepts all quasi forest models of φ with degree max{k+1, m(b+1)}, and 

 has O(|φ|2) states, index |φ|. 

                                               
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Solving the satisfiability problem 

 We show that the satisfiability problem for enriched -calculus formulas 
(except for fully enriched ones) is EXPTime-Complete 

 Lower Bound: Satisfiability for the -calculus is EXPTime-hard [Fisher 
Ladner 1979] 

 Upper Bound: We use an automata-theoretic approach: 

 Given a sentence φ of the full graded -calculus that has m atleast sub-
sentences and counts up to b, we can construct a FEA Aφ that 

 accepts the set of tree models of φ with degree at most m(b+1), and 

 has |φ| states, index |φ|. 

 Given a sentence φ of the hybrid graded/full -calculus with m atleast 
subsentences, k nominals, and counts up to b, we can built a FEA Aφ that 

 accepts all quasi forest models of φ with degree max{k+1, m(b+1)}, and 

 has O(|φ|2) states, index |φ|. 

 In both cases, φ is satisfiable if L(Aφ)  ;  
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Solving the emptiness problem  

 We first reduce the emptiness problem for FEA to the emptiness 
problem for 2GAPTs. 
 A 2GAPT is a FEA that accepts trees and cannot jump to the root of 

the input tree. 

                                                               
                                                

                                                                        
                                                                      

                                                                       
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Solving the emptiness problem  

 We first reduce the emptiness problem for FEA to the emptiness 
problem for 2GAPTs. 
 A 2GAPT is a FEA that accepts trees and cannot jump to the root of 

the input tree. 

 To decide the emptiness of 2GAPTs, we use a reduction to the 
emptiness problem of GNPT, via “strategy trees” 
 To remove alternation, we build special trees that allow encoding the 

original run in one having the same tree structure as the input tree. 

 To restrict to unidirectional paths, we use the notion of annotation 
that allow to decompose each path into downward paths and detours. 

                                                                    
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Solving the emptiness problem  

 We first reduce the emptiness problem for FEA to the emptiness 
problem for 2GAPTs. 
 A 2GAPT is a FEA that accepts trees and cannot jump to the root of 

the input tree. 

 To decide the emptiness of 2GAPTs, we use a reduction to the 
emptiness problem of GNPT, via “strategy trees” 
 To remove alternation, we build special trees that allow encoding the 

original run in one having the same tree structure as the input tree. 

 To restrict to unidirectional paths, we use the notion of annotation 
that allow to decompose each path into downward paths and detours. 

 The result follows from the blow-up involved in building the GNPT 
and from the complexity for checking its emptiness. 
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A strategy tree with detour 
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Results on the satisfiability problem for Enriched -calculi 

Inverse  
programs  

Graded  
modalities Nominals Complexity 

fully enriched x x x Undecidable[1] 

full hybrid x x  ExpTime[2] 

full graded x x  ExpTime 2ary (1ary[4]) 

hybrid graded x x  ExpTime 1ary/2ary 

graded x ExpTime 1ary/2ary[3] 

full x ExpTime[5] 

1. [Bonatti, Peron 2004] 

2. [Sattler, Vardi 2001]  

3. [Vardi 1998] 

4. [Calvanese, De Giacomo, Lenzerini, 2001] 

5. [Kupferman, Sattler, Vardi, 2002] 

A Summary for Enriched -calculi 
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Enriching Temporal Logics 

 μ-calculus is a very expressive but too low-level logic.  

 Branching time temporal logics such as CTL, and CTL* are less 
expressive but much more human-friendly. 

                                                           
                                                                          

                                                                   

                                                      

                                                                   
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Enriching Temporal Logics 

 μ-calculus is a very expressive but too low-level logic.  

 Branching time temporal logics such as CTL, and CTL* are less 
expressive but much more human-friendly. 

 What about enriching CTL and CTL* with graded modalities. 
 So far, only CTL has been fully solved, both in unary and binary coding. 

 Graded CTL is exponentially more succinct than graded μ-calculus. 

 The satisfiability problem remains ExpTime-Complete  

                                                                   
                                                             

Aniello Murano  -  Enriched Modal Logics 31 



Enriching Temporal Logics 

 μ-calculus is a very expressive but too low-level logic.  

 Branching time temporal logics such as CTL, and CTL* are less 
expressive but much more human-friendly. 

 What about enriching CTL and CTL* with graded modalities. 
 So far, only CTL has been fully solved, both in unary and binary coding. 

 Graded CTL is exponentially more succinct than graded μ-calculus. 

 The satisfiability problem remains ExpTime-Complete  

 Moving from μ-calculus to CTL with graded modalities, we need to 
move from graded world modalities to graded path modalities! 
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Syntax of GCTL* and GCTL 

 GCTL* extends CTL* with new graded path quantifiers: 
 "there exists at least n paths satisfying a given property"; 

 "all but at most n paths satisfy a given property". 

                                                                 

                  

                                            

                                       

                       

                                  

                                                   

                                                                  
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Syntax of GCTL* and GCTL 

 GCTL* extends CTL* with new graded path quantifiers: 
 "there exists at least n paths satisfying a given property"; 

 "all but at most n paths satisfy a given property". 

 CTL* uses state and path formulas built inductively as follows: 

 State-formulas:  

φ := p| ¬φ | φ ∧ φ | φ ⋁ φ | E≥n ψ | A<n ψ 

where p ∈ AP and ψ is a path-formula  

 path-formulas (LTL):  

ψ := φ| ψ ∧ ψ | ¬ψ | Xψ | ψ U ψ  

where φ is a state-formula, and ψ a path-formula  

 GCTL formulas are obtained by forcing each temporal operator to 
be coupled with a path quantifier 
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Counting paths 

 What does counting paths mean? 
 A property ensured by a common prefix may be 

satisfied on an infinite number of paths. 

                                                    
                          

                                               

                              
                                          

                                                   
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Counting paths 

 What does counting paths mean? 
 A property ensured by a common prefix may be 

satisfied on an infinite number of paths. 

 It may happen that the prefix satisfies a formula 
but a whole path may not. 

                                               
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Counting paths 

 What does counting paths mean? 
 A property ensured by a common prefix may be 

satisfied on an infinite number of paths. 

 It may happen that the prefix satisfies a formula 
but a whole path may not. 

 We restrict to minimal and conservative paths 

 Two paths are equivalent if  
 their common prefix satisfy the formula. 

 no matter how these prefixes are extended in the 
structure, the paths satisfy the formula. 
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Semantics of GCTL* 

 For a Kripke structure K, a world w, and a GCTL* path formula ψ, 

 Let P(K, w, ψ) be the set of minimal and conservative paths of K 
starting in w and satisfying ψ 
 

                                   
 

                                    
 

                                                      
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Semantics of GCTL* 

 For a Kripke structure K, a world w, and a GCTL* path formula ψ, 

 Let P(K, w, ψ) be the set of minimal and conservative paths of K 
starting in w and satisfying ψ 
 

K, w ⊨ E≥n ψ iff |P(K, w, ψ)| ≥ n 
 

K, w ⊨ A<n ψ iff |P(K, w, ¬ψ)| < n 
 

 For n=1, we write Eψ and Aψ instead of E≥1 ψ e A<1 ψ 
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Solving GCTL in unary coding 

 Let ψ be a GCTL formula with grades coded in unary. 

 From ψ  we build in linear time a “Partitioning Alternating Büchi 
Tree Automata” (PABT) Pψ 

                                                                  
                                                      

 

 

 

                                                           
                                                           

                                                                     
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Solving GCTL in unary coding 

 Let ψ be a GCTL formula with grades coded in unary. 

 From ψ  we build in linear time a “Partitioning Alternating Büchi 
Tree Automata” (PABT) Pψ 

 A PABT accepts all tre models of a formula, by «gessing» how to 
partition a required graded modality among successors 

 

 

 

                                                           
                                                           

                                                                     
                                                            

                                                                
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Solving GCTL in unary coding 

 Let ψ be a GCTL formula with grades coded in unary. 

 From ψ  we build in linear time a “Partitioning Alternating Büchi 
Tree Automata” (PABT) Pψ 

 A PABT accepts all tre models of a formula, by «gessing» how to 
partition a required graded modality among successors 

 

 

 

 By means of an opportune extension of the Myhano-Hayashi 
tecnique, we translate in Exponential Time Pψ in an NBT Bψ 

 Since the emptiness of L(Bψ) can be checked in polynomial time, we 
get that the satisfiability problem for GCTL is in ExpTime. 

 ExpTime hardness comes from the satisfiability problem for CTL 
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Solving GCTL in binary coding 

 If we use the unary case approach, we lose an exponent: 
 The tree model property requires trees with a branching degree 

exponential in the highest graded bmax of the formula.  
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Solving GCTL in binary coding 

 If we use the unary case approach, we lose an exponent: 
 The tree model property requires trees with a branching degree 

exponential in the highest graded bmax of the formula.  

 We use a binary encoding of each tree model and split the automata 
construction into a linear PABT plus a satellite NBT automaton.  
 The tree encoding turns each level of the tree in a binary tree, i.e., 

brothers of a node become its successors.  

 The satellite is an (exponential) NBT and ensures that each tree model 
satisfies some structural properties along its paths. 

 As the satellite automaton is already an NBT, this avoids to inject 
an extra exponent when moving both automata to a unique NBT. 

 Thus, also in the binary coding, the satisfiability question for GCTL 
is ExpTime-complete 
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What about GCTL* 

 Solving graded CTL* is even more appealing. 

 There are several question to investigate.  

 Is GCTL* more succinct than Graded mu-calculus? 

 What about the satisfiability? 
 Using a slight variation of the previous reasoning used for GCTL, we 

get a 3ExpTime upper bound.  

 As CTL* satisfiability is 2ExpTime-complete, it is an open question to 
decide the exact complexity of the problem for GCTL* 
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Further directions about GCTL and GCTL* 

 What about GCTL/ GCTL* plus backwords modalities? 

 CTL and CTL* have been investigated with respect to (linear and 
branching) Past modalities.  

 PCTL (PCTL*) is (2)ExpTime-complete. 

 What about GCTL/GCTL over more enriched structures: 
Hierachical, pushown, weighted etc… 

Aniello Murano  -  Enriched Modal Logics 38 



Enriched modalities vs. open systems 

 Enriched mu-calculi has been investigated in the setting of module 
checking. 

 Same results as in the satisfiability case: 
 Undecidable if we consider the fully enriched mu-calculus. 

 ExpTime-complete for every fragment. 
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Results on the satisfiability problem for Enriched -calculi 

Inverse  
programs  

Graded  
modalities Nominals Complexity 

fully enriched x x x Undecidable[1] 

full hybrid x x  ExpTime[2] 

full graded x x  ExpTime 2ary (1ary[4]) 

hybrid graded x x  ExpTime 1ary/2ary 

graded x ExpTime 1ary/2ary[3] 

full x ExpTime[5] 

Results on the satisfiability problem for GCTL 

GCTL x  ExpTime 1ary/2ary 

Past CTL x ExpTime[6] 

1. [Bonatti, Peron 2004] 
2. [Sattler, Vardi 2001]  
3. [Vardi 1998] 

4. [Calvanese, De Giacomo, Lenzerini, 2001] 
5. [Kupferman, Sattler, Vardi, 2002] 
6. [Kupferman, Pnueli 1995] 

Conclusion 
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Thank you for your attention! 


