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Abstract

Do agents know each others’ strategies? In multi-process
software construction, each process has access to the pro-
cesses already constructed; but in typical human-robot inter-
actions, a human may not announce its strategy to the robot
(indeed, the human may not even know their own strategy).
This question has often been overlooked when modeling and
reasoning about multi-agent systems. Recently, the impact of
this distinction on epistemic reasoning was studied. In this
work we study how it impacts strategic reasoning.
To do so we consider Strategy Logic (SL), a well-established
and highly expressive logic for strategic reasoning. Its usual
semantics, which we call “white-box semantics”, models
systems in which agents “broadcast” their strategies. By
adding imperfect information to the evaluation games for the
usual semantics, we obtain a new semantics called “black-
box semantics”, in which agents keep their strategies private.
We consider the model-checking problem and show that the
black-box semantics has much lower complexity than white-
box semantics for an important fragment of Strategy Logic.

1 Introduction
In multi-agent systems, strategies tell agents what actions to
take in order to try and achieve their goals. The strategy that
an agent decides or chooses to use at a point in time may or
may not depend on the strategies chosen by the other agents.
For example, in typical agent applications such as human-
robot interaction, a human may not announce its strategy
to the robot (indeed, the human may not even be aware of
their own strategy); on the other hand, in multi-process soft-
ware construction projects one might assume that each pro-
cess knows the strategy of the other processes already con-
structed. The purpose of this paper is to encapsulate this dis-
tinction in Strategy Logic (SL), a powerful logical formal-
ism able to express a wide range of game-theoretic strate-
gic concepts, such as winning strategies and Nash equilib-
ria (Mogavero et al. 2014).

There are a number of strategic logics of varying ex-
pressiveness and complexities, e.g., ATL/ATL* (Alur, Hen-
zinger, and Kupferman 2002), ATL with strategy con-
texts (Laroussinie and Markey 2015), Strategy Logic and
its fragments (Chatterjee, Henzinger, and Piterman 2010;
Mogavero et al. 2014; Mogavero et al. 2017; Belardinelli
et al. 2019; Aminof et al. 2019; Cermák, Lomuscio, and

Murano 2015). These logics are typically interpreted over
multi-agent transition systems (known as “concurrent game
structures”) in which agents take simultaneous actions re-
sulting in the next state. The usual semantics of these logics
is what we call “white-box”, which means, intuitively, that
agents announce their strategies. We illustrate this with a
simple example.

Consider the game of matching pennies in which two
players, Alice and Bob, simultaneously choose Heads or
Tails, and the objective of Bob is to match Alice’s choice.
Consider the property “for every strategy of Alice there ex-
ists a strategy of Bob such that the pennies match”, which
we could write in SL as

∀sA ∃sB (Alice, sA)(Bob, sB)Match,

where (a, s) indicates that agent a is assigned strategy s.
Under the usual mathematical interpretation of quantifiers,
this property is true: for any strategy sA of Alice, the same
strategy for Bob provides a witness to the satisfaction of the
formula. And indeed this formula holds true in the usual
semantics of SL, which reflects the usual mathematical in-
terpretation.

This interpretation, however, is not always the desired
one. In the example, a strategy sB for Bob exists for each
strategy sA of Alice, but sB depends on Alice’s strategy, and
Bob is not able to know which strategy to pick unless Alice
first announces her strategy sA. However, in most agent-
based scenarios agents are assumed to choose their strate-
gies in secret and not announce them to their opponents. In
such settings, if one wants ∃sB to express not only the ex-
istence of a strategy, but the ability for the agent to choose
it, then a different type of semantics for such strategic prop-
erties is required, in which Bob’s strategy is not allowed to
depend at all on Alice’s strategy. We call this interpretation
“black-box” semantics, in contrast to the usual “white-box”
semantics where strategies are publicly announced.

In this work, we define Strategy Logic with black-box se-
mantics, and study its expressiveness and complexity.

Contributions
We consider Branching-time Strategy Logic (BSL), which
adds to SL a quantifier on possible outcomes of the strate-
gies currently bound to agents. This quantifier can be simu-
lated in classic SL with white-box semantics by quantifying



on strategies for agents that are not bound to any strategy,
but this no longer works with the black-box semantics of
strategy quantification, hence our choice to consider BSL.

After recalling the usual Tarski-style white-box seman-
tics of BSL, we propose an equivalent definition via evalua-
tion games; see (Hintikka and Sandu 1997) for an overview
of game-theoretic semantics. These are two-player games
played between Eloise and Abelard, where Eloise tries to
prove that the given formula is true in the given model, while
Abelard tries to prove the opposite. A formula is defined to
be true in a model if Eloise has a winning strategy in the cor-
responding evaluation game. Our new black-box semantics
for BSL is then elegantly obtained by simply adding imper-
fect information to the evaluation games for the white-box
semantics, hiding the universally quantified strategies so that
Eloise’s strategies cannot depend on them when she chooses
existentially quantified ones.

We then focus on the “Nested-Goals” fragment of BSL.
Nested-Goals is an important fragment of SL studied
in (Mogavero et al. 2014) in a line of work looking for “well
behaved” fragments of the logic, having both satisfactory ex-
pressivity and elementary complexity. Formulas of Nested-
Goals SL consist of a prefix of strategy quantifiers followed
by a Boolean combinations of goals, i.e., formulas of the
form ♭ψ where ♭ is a sequence of strategy assignments for
all agents, and ψ is an LTL formula which can have nested
goals as atomic propositions. New strategy quantifications
inside goals are also allowed if they start independent sub-
sentences. Nested-Goals SL under the white-box semantics
is very expressive and can express most properties of inter-
est (it subsumes ATL∗, it can express existence of Nash and
subgame perfect equilibria), but its model-checking prob-
lem is nonelementary, as for the full logic (Mogavero et al.
2014). We adapt the definition of Nested-Goals to BSL, ob-
taining the fragment BSL[NG]. We show that BSL[NG] with
black-box semantics is strictly more expressive than ATL∗,
can express existence of Nash or subgame perfect equilib-
ria, but still enjoys an elementary model-checking problem,
which we prove to be 3-EXPTIME-complete. To obtain
the upper-bounds, we observe that under black-box seman-
tics existential and universal strategy quantifiers commute,
and thus BSL[NG] with black-box semantics translates into
BSL[NG] with white-box semantics and only one alternation
in strategy quantifiers.

Finally we introduce and discuss an extension of BSL that
combines the two semantics, white-box and black-box, in a
single logic with two kinds of strategy quantifiers: public
quantifiers from the white-box semantics, and private quan-
tifiers from the black-box one.

Outline In Section 2 we recall the classic white-box se-
mantics of BSL. In Section 3 we present an alternative,
equivalent definition of this semantics via evaluation games,
we define the new black-box semantics by adding imperfect
information to those evaluation games, and we discuss this
new semantics. We study the model-checking problem for
BSL[NG] with black-box semantics in Section 4. In Sec-
tion 5 we discuss a logic merging both semantics. Related
work is discussed in Section 6, and we conclude in Section 7.

2 Classic Strategy Logic
2.1 Games
For the rest of the paper we fix a number of parameters: AP
is a finite set of atomic propositions (denoted p, q, r, . . .), Ag
is a finite set of agents or players (denoted a, b, c, . . .), Act is
a finite set of actions (usually denoted α), and Var is a finite
set of strategy variables (usually denoted s).

Definition 1 (Game). A concurrent game structure G (or
game for short) is a tuple (V, v0,∆, ℓ) where:

• V is the set of positions,
• v0 ∈ V is the initial position,

• ∆ : V × ActAg → V is the transition function,
• ℓ : V → 2AP is the labeling function.

Joint actions. In a position v ∈ V , each player a ∈ Ag
chooses an action αa ∈ Act, and the game proceeds to the
position ∆(v,α), where α ∈ ActAg stands for the joint
action (αa)a∈Ag. Given a joint action α = (αa)a∈Ag and
a ∈ Ag, we let αa denote αa.

Plays and strategies. A play π is an infinite word over V ,
and a history h is a finite prefix of a play. For a play π =
v1v2 . . . and an index i ∈ N, history π≤i = v1 . . . vi is the
prefix of π up until position i. Plays is the set of plays, and
Hist the set of histories. A strategy is a function σ : Hist →
Act, and Str is the set of all strategies. The length of a history
h is written |h| and its last position last(h).

Assignments and bindings. An assignment is a partial
function χ : Var → Str that interprets strategy variables,
and a binding is a partial function β : Ag → Str that binds
some agents to strategies. We write χ[s 7→ σ] for the as-
signment that maps s to σ and is equal to χ on the rest of
its domain, and similarly for bindings. For a binding β we
also let β[a 7→ ∅] be the binding that is undefined on a and
otherwise equal to β. We say that an agent is bound by β if
it is in its domain dom(β).

Outcomes. Given a binding β and a history h = h′ · v0 we
let Out(h, β) be the set of plays that can be obtained starting
from h when each agent a bound by β plays according to
β(a), i.e., the set of plays of the form h′ · v0v1v2 . . . where
for each i ≥ 0 there exists a joint action α where αa =
β(a)(h′ · v0 . . . vi−1) for each agent a bound by β, such that
vi+1 ∈ ∆(vi,α).

Turn-based games. While concurrent game structures pro-
vide the models of Strategy Logic, we will also use turn-
based games to define the semantics of the logics. These
games, where players play in turns, can be seen as a partic-
ular case of the games defined above, but it is convenient to
use specialized notations. In such cases the set of positions
V = ⊎a∈AgVa is partitioned between the players, and when
in position v ∈ Va player a directly chooses the next posi-
tion. Transitions are thus described by a relation ∆ ⊆ V×V .
Histories and plays are as before, a strategy for a player a is
a function V ∗Va → V that respects the transitions, and out-
comes are plays that follows the fixed strategies.



2.2 Syntax of Strategy Logic
We first present the full Strategy Logic. We consider the
branching-time variant of SL (Knight and Maubert 2015;
Fijalkow et al. 2018; Berthon et al. 2021), which contains
an outcome quantifier that quantifies on possible outcomes
given the current history and binding, as well as an unbind-
ing operator that releases an agent from its current strat-
egy. The main reason to consider this variant is that it is
expressively equivalent to usual SL (Knight and Maubert
2015) but allows explicit quantification on outcomes, while
in usual SL this has to be simulated by strategy quantifi-
cations and bindings. Such artificial strategy quantifications
may increase the computational complexity of evaluating the
formula. But using strategy quantifiers instead of outcomes
quantifiers is also a problem when considering unorthodox
semantics for strategy quantification as we do here.

Definition 2. The syntax of BSL (Branching-time Strategy
Logic) is given by the following grammar:

φ ::= p | ¬φ | φ ∨ φ | ∃sφ | (a, s)φ | (a, ∅)φ | Eψ
ψ ::= φ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ∈ AP, a ∈ Ag and s ∈ Var.

As usual we define ⊤ = p ∨ ¬p, φ ∧ φ′ = ¬(¬φ ∨ ¬φ′),
∀sφ = ¬∃s¬φ, Aψ = ¬E¬ψ, Fψ = ⊤Uψ and Gψ =
¬F¬ψ. Without loss of generality we will assume that each
strategy variable s appears at most once in each formula,
which allows us to talk about existentially quantified and
universally quantified variables.

Formulas of type φ are called history formulas, those of
type ψ are called outcome formulas. We define HistSub(φ)
and OutSub(φ) as the sets of history and outcome subformu-
las of φ, respectively. We say that a strategy variable appears
free in a formula if it appears (in a binding operator) out of
the scope of a strategy quantifier. A sentence is a history
formula without free variables.

Remark 1. Note that when all agents are bound to a strat-
egy, i.e., when β is defined for all agents, this determines
a unique outcome: Out(h, β) is a singleton for any history
h. As a result Eψ and Aψ are equivalent when evaluated
in such a complete binding (see Definition 4), and we may
thus omit the outcome quantifier. For instance if we have
Ag = {a, b}, we may write ∃s∀t (a, s)(b, t)Xp instead of
∃s∀t (a, s)(b, t)AXp.

We also introduce the Nested-Goals fragment of BSL.
The idea of Nested-Goals is that strategy quantifiers come
in blocks, each followed by a Boolean combination of goals
(written ♭), which consist of a sequence of strategy bindings
or unbindings, followed by an outcome formula, in such a
way that each block of quantifiers starts a closed formula
whose semantics is independent of previous quantifiers and
bindings. Goals can also be nested, allowing the rebind-
ing of agents to previously quantified strategies along an
outcome formula. This very expressive fragment subsumes
ATL∗ and can in addition express complex game-theoretic
notions such as existence of Nash Equilibria or Subgame
Perfect Equilibria.

Definition 3. BSL[NG] consists of formulas generated by
the following grammar:

Φ ::= ∃sΦ | ϕ
ϕ ::= ϕ ∨ ϕ | ¬ϕ | ♭
♭ ::= (a, s)♭ | (a, ∅)♭ | Eψ
ψ ::= p | ♭ | Φ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ∈ AP, a ∈ Ag and s ∈ Var, with the following syn-
tactic constraint: each subformula of type Φ′ of an outcome
formula ψ must be a closed sentence, meaning that it either
unbinds or rebinds to newly quantified strategies all agents
that were bound above Φ′, before each outcome quantifier
E. Such a formula is called an independent subsentence.

Since independent subsentences can be evaluated inde-
pendently, we will sometimes treat them as atomic propo-
sitions. For instance when considering the model-checking
problem, a bottom-up model-checking procedure can start
by evaluating innermost independent subsentences and dec-
orate the model with atomic propositions indicating where
they hold. Seeing independent subsentences as atomic for-
mulas leads to the flat fragment of BSL[NG], denoted by
BSL[NG,f] and defined by the same grammar as above, ex-
cept that Φ is removed from the production rule for out-
comes formulas, which becomes:

ψ ::= p | ♭ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ
Example 1. Write Ag = {a1, . . . , an}, and consider that
each agent ai aims at making true some property expressed
by an LTL formula ψi. Define the following formula

ΦNE = ∃s1 . . . ∃sn ∀t
n∧

i=1

(Ag−i, s−i)(ai, t)ψi → (Ag, s)ψi,

where (Ag, s) is a shorthand for (a1, s1) . . . (an, sn)
and, similarly, notation (Ag−i, s−i) is a shorthand for
(a1, s1) . . . (ai−1, si−1)(ai+1, si+1) . . . (an, sn). ΦNE ex-
presses that there exists a Nash Equilibrium for objectives
ψi. This formula is in BSL[NG], and even in its flat frag-
ment as it does not contain any strategy quantifier under an
outcome quantifier (each ψi is a pure LTL formula).

Consider now formula

ΦSPE = ∃s1 . . . ∃sn (Ag, s)AG

∀t
n∧

i=1

(ai, t)ψi → ψi,

which expresses that there exists a Subgame Perfect equilib-
rium. It is not in the Nested Goals fragment: indeed the sub-
formula on the second line is of type Φ, but each conjunct
only rebinds one agent (ai) before the outcome quantifier,
leaving other agents bound to strategies from the previous
block of strategy quantifiers.

One could consider rewriting into the equivalent formula

Φ′
SPE = ∃s1 . . . ∃sn (Ag, s)AG

∀t
n∧

i=1

(Ag−i, s−i)(ai, t)ψi → (Ag, s)ψi,



but the latter is still not part of the Nested Goals fragment.
Indeed here in the subformula of the second line each agent
is bound again, but only one is bound to a newly quantified
strategy. All the remaining agents are bound to strategies
quantified in the first part of the formula.

However, since the universal quantification ∀t commutes
with the universal quantification on points of outcomes AG
and with the binding (Ag, s) (which does not involve t), one
can instead rewrite ΦSPE as follows:

Φ′′
SPE = ∃s1 . . . ∃sn ∀t (Ag, s)AG

n∧
i=1

(ai, t)ψi → (Ag, s)ψi,

This formula is in BSL[NG], and even in its flat fragment.

We conclude this section by recalling the usual semantics
of BSL.

2.3 White-box Semantics of Strategy Logic
We recall the classical Tarski-style semantics of BSL for-
mulas, which we call white-box and denote |=□. In the next
section we will provide a new equivalent definition via eval-
uation games.

Definition 4 (White-box semantics). Let G be a game. A
history formula φ (resp. outcome formula ψ) is evaluated in
an assignment χ for free variables of φ (resp. ψ), a binding
β and a history h (resp. a play π and an index i ∈ N). We
define G, χ, β, h |=□ φ and G, χ, β, π, i |=□ ψ inductively
as follows (we omit G):

χ, β, h |=□ p if p ∈ ℓ(last(h))
χ, β, h |=□ ¬φ if χ, β, h ̸|=□ ¬φ
χ, β, h |=□ φ ∨ φ′ if χ, β, h |=□ φ or χ, β, h |=□ φ

′

χ, β, h |=□ ∃sφ if ∃σ ∈ Str s.t. χ[s 7→ σ], β, h |=□ φ

χ, β, h |=□ (a, s)φ if χ, β[a 7→ χ(s)], h |=□ φ

χ, β, h |=□ (a, ∅)φ if χ, β[a 7→ ∅], h |=□ φ

χ, β, h |=□ Eψ if ∃π ∈ Out(h, β) s.t.
χ, β, π, |h| |=□ ψ

χ, β, π, i |=□ φ if χ, β, π≤i |=□ φ

χ, β, π, i |=□ ¬ψ if χ, β, π, i ̸|=□ ψ

χ, β, π, i |=□ ψ ∨ ψ′ if χ, β, π, i |=□ ψ or χ, β, π, i |= ψ′

χ, β, π, i |=□ Xψ if χ, β, π, i+ 1 |=□ ψ

χ, β, π, i |=□ ψUψ
′ if ∃j ≥ i s.t. χ, β, π, j |=□ ψ

′, and
∀k ∈ [i, j), χ, β, π, k |=□ ψ

For a sentence φ we write G |=□ φ if G, ∅, ∅, v0 |=□ φ.

In this paper we focus on strategy quantification, and in
particular alternation of existential and universal quantifiers.
In the white-box semantics of a formula ∀s.∃s′.φ the strat-
egy σ chosen for s is publicly announced, in the sense that s′
can depend on σ. Technically this is due to the fact that the
evaluation of ∃s′.φ is carried out with σ in the assignment
χ[s 7→ σ]. Let us illustrate this on a very simple example.

Example 2. “Cop and robber” is a one-step concurrent
two-player game. Both the cop and the robber pick either
LEFT or RIGHT at the same time, and the cop catches the
robber if their choices match (see Figure 1).

Figure 1: Cop and robber

Consider the BSL formula

φ = ∀s∃t (COP, s)(ROBBER, t)ESCAPE

It expresses that for every strategy of the cop there is a strat-
egy of the robber which ensures that she escapes (ESCAPE is
a formula which expresses that the outcome of the one-shot
game is ESCAPE.

In the white-box semantics, we have G |=□ φ. Indeed,
when the robber picks a strategy, the cop’s strategy s has
already been publicly announced, hence choosing t ̸= s en-
sures an escape. We will get back to this example with the
black-box semantics.

3 Black-box Semantics
In this section we introduce and discuss the new black-box
semantics, which we define via evaluation games. We first
introduce an alternative definition of the usual white-box se-
mantics via evaluation games with perfect information, and
then describe how to obtain the black-box semantics by hid-
ing the chosen strategies in the games for the white-box se-
mantics, thus obtaining games with imperfect information.
We refer to, e.g., (Hodges and Väänänen 2019) for an intro-
duction to game semantics for classical logic.

3.1 White-box evaluation games
Given a game G and a BSL sentence Φ, we define the evalua-
tion game G□(G,Φ). It is a turn-based game played between
two players: Eloise (also written E), who aims at proving
that G |=□ Φ, and Abelard (A), who challenges this claim.

The set VG,Φ of positions in G□(G,Φ) is the union of

{(χ, β, h, φ,P) | φ ∈ HistSub(Φ),P ∈ {E,A}}

and

{(χ, β, π, i, ψ,P) | ψ ∈ OutSub(Φ),P ∈ {E,A}}

and the initial position is (∅, ∅, v0,Φ, V ). Negation is dealt
with by switching the roles of the players in trying to prove
or disprove the current subformula, the idea being that
Eloise succeeds in proving that ¬φ holds if Abelard fails
to prove that φ holds. Component P ∈ {E,A} in a position



(χ, β, h, φ,P) indicates who of Eloise or Abelard is trying
to prove subformula φ true in the current context; this is
determined by whether the number of negations above sub-
formula φ is even or odd1. We call P the player in charge
and let P denote its opponent.

Positions of the form (χ, β, h, p,P) are terminal, mean-
ing that the game ends. Such a position with P = E is
winning for Eloise if p ∈ ℓ(last(h)), otherwise it is winning
for Abelard, and vice versa when P = A. Moves in other
types of positions are as follows.

• ¬-positions: from (χ, β, h,¬φ,P) the game goes to
(χ, β, h, φ,P), and similarly from (χ, β, π, i,¬ψ,P) the
game goes to (χ, β, π, i, ψ,P).

• ∨-positions: from (χ, β, h, φ ∨ φ′,P), P moves either to
(χ, β, h, φ,P) or to (χ, β, h, φ′,P). Similarly for posi-
tions of the form (χ, β, π, i, ψ ∨ ψ′,P).

• ∃s-positions: from (χ, β, h, ∃sφ,P), P chooses some
σ ∈ Str and moves to (χ[s 7→ σ], β, h, φ,P).

• (a, s)-positions: from (χ, β, h, (a, s)φ,P), the game
moves to (χ, β[a 7→ χ(s)], h, φ,P).

• (a, ∅)-positions: from (χ, β, h, (a, s)φ,P), the game
moves to (χ, β[a 7→ ∅], h, φ,P).

• E-positions: from (χ, β, h,Eψ,P), P chooses some out-
come π ∈ Out(χ, h) and moves to (χ, β, π, |h|, φ, 0).

• φ-positions: from (χ, β, π, i, φ,P) the game goes to
(χ, β, π≤i, φ,P)

• X-positions: from (χ, β, π, i,Xψ,P), the game moves to
(χ, β, π, i+ 1, ψ,P).

• U-positions: from (χ, β, π, i, ψUψ′,P), P chooses be-
tween (χ, β, π, i, ψ′,P) and (χ, β, π, i, ψ ∧XψUψ′,P).

A play is winning if either it reaches a winning termi-
nal position, or it remains from some point onwards in U-
positions with P = A (meaning that Abelard is trying to
prove true some formula ψUψ′ but keeps postponing for-
ever the realization of ψ′).

A strategy for Eloise defines a move for every history in
G□(G,Φ) ending in a situation where Eloise has a choice to
make. A strategy for Eloise is winning if all plays consistent
with this strategy are winning.

Lemma 1 (Correctness of the evaluation game). G |=□ Φ if,
and only if, Eloise has a winning strategy in G□(G,Φ).

3.2 Black-box evaluation games
The intuition behind the black-box semantics is that when
a strategy is universally quantified, it is fixed but not pub-
licly announced, so that later existentially quantified strate-
gies cannot depend on them. This is mathematically for-
malised by constraining the information available to Eloise
in the evaluation game, making it an imperfect-information
game in the classical sense for games played on graphs,

1Note that all along Eloise tries to prove that the initial for-
mula holds in the game. Roles change only for subformulas: Eloise
proves that ¬φ is true if Abelard cannot prove that φ is true.

where an equivalence relation models indistinguishable po-
sitions, and strategies are required to be consistent with ob-
servations (Doyen and Raskin 2011).

We define the fact that a sentence Φ of BSL is satisfied
in a game G with the black-box semantics, written G |=■ Φ,
via an evaluation game G■(G,Φ).

The game G■(G,Φ) is similar to G□(G,Φ) (it has the
same set of positions VG,φ, same moves and same win-
ning condition), except that it has imperfect information:
we define an equivalence relation ∼ over VG,Φ by letting
two positions be equivalent if they are identical except pos-
sibly for the interpretation of universally quantified vari-
ables. We then require that Eloise play similarly in equiva-
lent situations, thus forcing her to choose existentially quan-
tified strategies independently from the universally quanti-
fied strategies chosen by Abelard.

Formally, define (χ, β, h, φ,P) ∼ (χ′, β′, h′, φ′,P′) if
β = β′, h = h′, φ = φ′, P = P′ and for all s ∈ Var exis-
tentially quantified in Φ, we have χ(s) = χ′(s). Similarly,
define (χ, β, π, i, ψ,P) ∼ (χ′, β′, π′, i′, ψ′,P′) if β = β′,
π = π′, i = i′, ψ = ψ′, P = P′ and for all s ∈ Var exis-
tentially quantified in Φ, we have χ(s) = χ′(s). We then let
[VG,Φ]∼ denote the quotient of VG,Φ by ∼, and require that
Eloise’s strategies be defined on [VG,Φ]

∗
∼ instead of V ∗

G,Φ as
in G□(G,Φ).
Definition 5 (Black-box semantics). Let G be a game,
Φ a BSL sentence and φ a history subformula of Φ.
Then G, χ, β, h |=■ φ if Eloise has a winning strategy in
G■(G,Φ) from position (χ, β, h, φ,E).

We start by proving the following central property, which
is that under black-box semantics existential and universal
strategy quantifiers commute. The proof also serves to illus-
trate how the game semantics work.

Lemma 2. For every formula of the form ∀s∃tΦ, for every
game G, assignment χ, binding β and history h, it holds that

G, χ, β, h |=■ ∀s∃tΦ iff G, χ, β, h |=■ ∃t∀sΦ

Proof. The right-to-left direction is clear. The other one fol-
lows directly from the definition of the black-box seman-
tics: assume that G, χ, β, h |=■ ∀s∃tΦ, i.e., Eloise has
a winning strategy in the corresponding evaluation game
from position (χ, β, h,¬∃s¬∃tΦ,E). The game moves
to (χ, β, h, ∃s¬∃tΦ,A), where Abelard chooses a strat-
egy σ, then to (χ[s 7→ σ], β, h,¬∃tΦ,A), and then to
(χ[s 7→ σ], β, h,∃tΦ,E). Let σ′ be the strategy cho-
sen by Eloise’s winning strategy in this position. By def-
inition of the imperfect-information evaluation game, the
strategy σ′ picked by Eloise’s winning strategy is the same
for any choice made by Abelard for t, and the position
(χ[s 7→ σ, t 7→ σ′], β, h,Φ,E) is winning for Eloise for
any σ. As a result Eloise has a winning strategy from
(χ, β, h, ∃t¬∃s¬Φ,E), which is to pick σ′, and this con-
cludes the proof.

Example 3. Let us get back to Example 2. Intuitively,
if the cop keeps its strategy private, then there is no way
for the robber to pick a strategy that ensures she escapes.
This is the kind of situation that the black-box semantics is



designed to capture, and we claim that indeed G ̸|=■ φ.
This is because a strategy for Eloise for the subformula
ψ = ∃t (COP, s)(ROBBER, t) ESCAPE does not see what
strategy Abelard has chosen for s. In other words, it must
make the same choice for all s, but there is no strategy t for
the ROBBER that ensures she will escape for any s.

Example 4. The point of this example is to illustrate a sub-
telty of the black-box semantics for existential quantifiers.
We consider a variant of the cop and robber game from Ex-
ample 2: now there are two cops, COP1 and COP2, and one
robber. All three agents choose LEFT or RIGHT at the same
time, and the cops catch the robber if at least one of the two
cops chooses the same direction as the robber.

Consider the SL formula

∃s1 ∃s2 ∀t (COP1, s1)(COP2, s2)(ROBBER, t) CATCH

It expresses that there exist strategies for the two cops en-
suring to catch the robber, and intuitively it should hold:
two strategies s1 and s2 that pick different directions are
witnesses for the satisfaction of this formula. And indeed we
have that G |=■ Φ.

There are two aspects of the evaluation game that ac-
count for this. First, only the valuation of universally quan-
tified strategies is hidden, while existential ones are visi-
ble to Eloise. Second, all existentially quantified strategies
are chosen by Eloise, and that a formula is said to hold if
there exists a winning strategy for Eloise. This meta exis-
tential quantification on Eloise’s strategies effectively quan-
tifies on all existentially quantified strategies of the formula
at once, making it possible for s2 to depend on s1. A conse-
quence of this is that the semantics would remain unchanged
if all strategies (both existentially and universally quanti-
fied) were hidden in the evaluation game G■(G,Φ).
Example 5. Consider again formulas ΦNE and Φ′′

SPE from
Example 1. In both formulas, all existential quantifications
on strategies are made before universal ones, so that black-
box and white-box semantics coincide for these formulas.

From the last example we get:

Proposition 1. The existence of Nash Equilibria and Sub-
game Perfect Equilibria can be expressed in BSL[NG] with
black-box semantics.

3.3 Comparison with ATL∗

We briefly recall the syntax and semantics of ATL∗.
Formulas are given by the following grammar:

φ ::= p | ¬φ | φ ∨ φ | ⟨A⟩ψ
ψ ::= φ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ∈ AP and A ⊆ Ag.
A formula of type φ is evaluated in a position of a game,

and while a formula of type ψ is evaluated in a play. We
only recall the semantics for the coalition operator ⟨A⟩ψ,
whose intuitive meaning is that coalition A has a strategy to
ensure that ψ holds. Formally, G, v |= ⟨A⟩ψ if there exists
a strategy profile {σa}a∈A such that for all outcomes π ∈
Out(v, (a, σa)a∈A) formula ψ holds in π. The dual operator

[A]ψ is defined as ¬⟨A⟩¬ψ, and means that for any strategy
of coalition A there exists an outcome that satisfies ψ.

ATL∗ formulas can be translated to BSL with black-box
semantics. Such a translation can be defined by induction,
where all cases are trivial but the coalition quantifier which
is as follows: assuming that Ag = {a1, . . . , an} and A =
{ai1 , . . . , aik}, ⟨A⟩ψ is translated as

∃s1 . . . ∃sk(Ag, ∅)(a1, s1) . . . (ak, sk)Aψ′,

where ψ′ is the translation of ψ.
Observe that each block of strategy quantifiers is followed

by a unique goal which starts by unbinding all agents, and
all new bindings are made with newly quantified strategies.
As a result, this translation produces only formulas in the
Nested Goals fragment. In addition, each block of strategy
quantifiers consists in only existential operators (when trans-
lating ⟨A⟩) or only universal ones (when translating [A]), so
that the white-box and black-box semantics coincide for the
obtained formulas.

It follows that BSL[NG] with black-box semantics sub-
sumes ATL∗. We show that it is actually strictly more ex-
pressive.
Proposition 2. BSL[NG] with black-box semantics is
strictly more expressive than ATL∗.

Proof. We adapt the proof from (Mogavero et al. 2014)
that One-Goal SL with white-box semantics is strictly more
expressive than ATL∗. Consider the two concurrent game
structures in Figure 2. We have three agents a, b and c,
and two actions 0 and 1 in G1, three actions 0, 1 and 2 in
G2. In both games the initial position is v0. The transitions
are defined by the sets of joint moves J1 = {00∗, 11∗} and
J2 = {00∗, 11∗, 12∗, 200, 202, 211} (Ji denotes the com-
plement of Ji). It is proved in (Mogavero et al. 2014, Theo-
rem 4.4) that both games satisfy the same ATL∗ formulas.

Consider now the BSL[NG] formula

Φ = ∃sa ∀sb (a, sa)(b, sb)EX¬p
It is quite easy to see that G1 ̸|=■ Φ, while G2 |=■ Φ. Indeed
in G1 no matter which action is chosen by a, if b plays the
same action then the game goes to v1, where p holds. In G2

instead, if agent a plays 2, then no matter what strategy is
played by b, c has a way to reach v2 where p does not hold.
Observe that in Φ there is no universal quantifier under an
existential one, so that white-box and black-box semantics
coincide for this formula.

4 Model checking
In this section we show that model checking BSL[NG] with
black-box semantics is 3-EXPTIME-complete.

4.1 Upper bound
We establish the result for the flat fragment. It can then be
lifted to BSL[NG] via a marking algorithm that evaluates in-
dependent subsentences in a bottom-up fashion. But first we
recall the notion of alternation depth of a formula.
Definition 6. The alternation depth of a formula in
BSL[NG,f] is the maximum number of alternations between
existential and universal strategy quantifiers.
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Figure 2: Games G1 and G2

We now establish the following about the flat fragment:
Proposition 3. Model checking BSL[NG,f] with black-box
semantics is in 3-EXPTIME.

Proof. Let Φ be a formula in the flat fragment of BSL[NG].
It is of the form Φ = Qϕ, where Q is a block of strat-
egy quantifiers and ϕ contains no strategy quantifier. By
Lemma 2, existential quantifiers in Q can be permuted
with universal ones, thus obtaining an equivalent formula
Φ′ = Q′ϕ where Q′ consists of a block of existential strat-
egy quantifiers followed by a block of universal ones. Φ′

has alternation depth 1 and model checking BSL formulas
with alternation depth k can be done in time at most (k+2)-
exponential in the size of the formula (Berthon et al. 2021,
Proposition 5.4).2

Note that formulas obtained by the translation from ATL∗

to BSL[NG,f] presented in Section 3.3 have zero alterna-
tion of strategy quantifiers, so that they fall in a frag-
ment of BSL[NG,f] whose model checking is actually in 2-
EXPTIME, as for ATL∗.

4.2 Lower bound
We prove the following:
Proposition 4. Model checking BSL[NG,f] with black-box
semantics is 3-EXPTIME-hard.

Proof. It is shown in (Laroussinie and Markey 2014, The-
orem 4.11) that model checking EQkCTL∗ is (k + 1)-
EXPTIME hard for k > 0, where EQkCTL∗ is the fragment
of Quantified CTL∗ with all second-order quantifiers at the
beginning of the formula, starting with an existential quan-
tification and with k − 1 alternations. The reduction from
model checking for Quantified CTL∗ to that of BSL with
white-box semantics presented in (Laroussinie and Markey
2015; Berthon et al. 2021), when applied to formulas of
EQkCTL∗, produces formulas in BSL[NG,f] with alterna-
tion k − 1. Taking k = 2, we obtain formulas in which the

2More precisely (Berthon et al. 2021) considers a notion of sim-
ulation depth which allows for a finer analysis, and they prove that
formulas with simulation depth k can be model checked in (k+1)-
exponential time. Formulas of alternation depth k as defined here
have simulation depth at most k + 1, hence the result. Some for-
mulas of alternation k have simulation depth only k, but defining
simulation depth would be cumbersome and unnecessary to obtain
our 3-EXPTIME upper bound.

only strategy quantifiers consist of an initial block of exis-
tential quantifiers followed by a block of universal ones. For
such formulas, the black-box semantics coincides with the
white-box one. We thus obtain the desired lower bound.

Propositions 3 and 4 entail that:
Theorem 1. Model checking BSL[NG] with black-box se-
mantics is 3-EXPTIME-complete.

Up to our knowledge, BSL[NG] is the first logic that
strictly subsumes ATL∗, can express Nash equilibria and
subgame perfect Equilibria, and yet enjoys a model-
checking problem with elementary complexity.

5 Strategy Logic with Mixed Announcements
We now introduce a logic that combines the white-box and
black-box semantics, by allowing two kinds of strategy
quantification: public (white-box) and private (black-box).
This logic subsumes both BSL with white-box semantics
and BSL with black-box semantics, and is written BSL□■.
Definition 7 (Syntax). The set of BSL□■ formulas is given
by the following grammar:

φ ::= p | ¬φ | φ ∨ φ | ∃□sφ | ∃■sφ | (a, s)φ | (a, ∅)φ | Eψ
ψ ::= φ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ∈ AP, a ∈ Ag and s ∈ Var.
Define ∀□sφ = ¬∃□¬φ and ∀■sφ = ¬∃■¬φ. Strat-

egy variables introduced by white-box quantifiers ∃□s are
called publicly quantified, while those introduced by black-
box quantifiers ∃■s are called privately quantified.

We now define the semantics |=□■ of BSL□■ via yet an-
other evaluation game, obtained by refining the informa-
tion accessible to Eloise in the black-box evaluation games.
More precisely, for a game G and a sentence Φ we define the
evaluation game G□■(G,Φ) as follows: the set of positions
V □■
G,Φ is again the union of

{(χ, β, h, φ,P) | φ ∈ HistSub(Φ),P ∈ {E,A}} and
{(χ, β, π, i, ψ,P) | ψ ∈ OutSub(Φ),P ∈ {E,A}} ,

the initial position is (∅, ∅, v0,Φ, V ), and moves are defined
similarly to the games for white-box and black-box seman-
tics. In particular, for the two types of strategy quantifiers,
moves are as follows:
• ∃□s-positions: from (χ, β, h, ∃□sφ,P), P chooses some
σ ∈ Str and moves to (χ[s 7→ σ], β, h, φ,P).

• ∃■s-positions: from (χ, β, h, ∃■sφ,P), P chooses some
σ ∈ Str and moves to (χ[s 7→ σ], β, h, φ,P).
The only difference is in the definition of the equiv-

alence relation on positions. Formally, we define
(χ, β, h, φ,P) ∼□■ (χ′, β′, h′, φ′,P′) if β = β′, h =
h′, φ = φ′, P = P′ and for all variables s ∈ Var
that are either existentially quantified or universally pub-
licly quantified in Φ, we have χ(s) = χ′(s); similarly
for (χ, β, π, i, ψ,P) ∼□■ (χ′, β′, π′, i′, ψ′,P′). Strategies
of Eloise are defined on [V □■

G,Φ]
∗
∼□■

. The interpretation is
that Eloise cannot observe which strategies are chosen by
Abelard for universal black-box quantifiers.



Definition 8 (Mixed announcements semantics). Let G be a
game, Φ a BSL□■ sentence and φ a history subformula of
Φ. Then G, χ, β, h |=□■ φ if Eloise has a winning strategy
in G□■(G,Φ) from position (χ, β, h, φ,E).

First, note that by definition of the semantics, and in par-
ticular by definition of ∼□■, public or private quantification
makes a difference only for universal quantification, so that
we may write ∃s instead of ∃□s or ∃■s.

We now illustrate with two examples how BSL with
mixed announcements can be used to model subtle scenarios
in which agents in a system may or may not be informed of
other agents’ strategies.
Example 6. Let us discuss another variant of the cop and
robber game from Example 2 with two cops and one robber.
Consider the BSL□■ formula:
Φ = ∀■s1∀■t ∃s2(COP1, s1)(COP2, s2)(ROBBER, t)CATCH

It expresses that the second cop can choose a strategy s2
ensuring a catch irrespective of both the strategies of the
first cop (s1) and of the robber (t). Note that here it is quite
natural to require that s2 does not depend on t, which is
why t is quantified privately. Whether s2 should be allowed
to depend on s1 or not depends on whether the two cops can
communicate along a private channel, and the point of this
example is to show that this can be formalised in BSL with
mixed announcements.

The formula above does not hold: G ̸|=□■ Φ. Indeed, to
ensure a catch, s2 should choose the direction not chosen
by s2. But since s1 is kept private, s2 cannot depend on it.
However, by replacing ∀■s1 with ∀□s1, the formula becomes
true on this game, because s2 can make the opposite choice
of s1 to ensure a catch.
Example 7. All examples so far were one-step concurrent
games. To illustrate the expressive power of strategy logic
with mixed announcements, let us consider a multiagent sys-
tem involving temporal reasoning. The game is called “cop
and smuggler”: at each time step, the smuggler chooses ei-
ther LEFT, RIGHT, or WAIT, and the cop chooses either
LEFT or RIGHT. If at some point the two choices coincide,
the cop catches the robber. The outcome is illustrated in Fig-
ure 3. The objective of the smuggler is to smuggle as much
as possible.

Figure 3: Cop and smuggler

Consider the BSL□■ formula:

∀□t (ROBBER, t)
(
AGF (LEFT ∨ RIGHT)

→∃s (COP, s) F CATCH
)

It expresses that for all strategies of the robber that at-
tempts to smuggle infinitely often, i.e., does not wait forever,
there exists a catching strategy for the cop. The formula
holds if t is publicly announced (as in the formula above),
and it does not otherwise.

6 Related work
One thread in the history of strategic logics for multi-agent
systems is the search for an expressive logic with elementary
complexity. The influential logic ATL∗ (Alur, Henzinger,
and Kupferman 2002), which extends the branching-time
logic CTL∗ with strategic modalities, can express the ex-
istence or absence of winning strategies for a coalition, and
has elementary complexity: its model-checking problem is
2-EXPTIME-complete, i.e. no harder than solving games
with LTL winning conditions (which can be expressed in
ATL∗). Richer logics can naturally express game-theoretic
concepts such as the existence of Nash equilibria, includ-
ing ATL∗ with strategy contexts (Laroussinie and Markey
2015), which remembers past strategies when evaluating
new strategic modalities, and Strategy Logic (Chatterjee,
Henzinger, and Piterman 2010; Mogavero et al. 2014). How-
ever, these logics have nonelementary complexity: each ad-
ditional level of alternation adds one exponential to the com-
plexity of model checking (Laroussinie and Markey 2013;
Mogavero et al. 2017).

Then started a line of work that aims at taming the com-
plexity of Strategy Logic, both by studying fragments or
considering variations on the semantics. One approach is to
restrict to positional strategies, i.e., strategies that only look
at the current state rather than current history, which leads
to a PSPACE-complete model-checking problem (Čermák
et al. 2018). However, positional strategies are not ade-
quate for general LTL objectives – the memory required
may be double-exponential in the size of the formula al-
ready for very simply formulas encoding the synthesis prob-
lem (Pnueli and Rosner 1989).

Concerning fragments, the One-Goal fragment is compu-
tationally no harder than ATL∗, but it cannot express the ex-
istence of Nash equilibria. Other fragments have been intro-
duced that can express it, such as Boolean-Goals or Nested-
Goals, but their model-checking problem is nonelementary
as for the full logic (see (Mogavero et al. 2014) for a discus-
sion on these fragments).

One proposal to explain the source of complexity in such
logics is that in the usual semantics of these logics, strategies
quantified later on in the formula can depend on the entirety
of strategies quantified before. Typically, in a formula of the
form ∀s∃t φ, the action chosen by strategy t in any history
h can depend on the action chosen by s on h and its prefixes,
but also future histories of the form hh′, and even on coun-
terfactual histories that are neither prefixes of h nor contin-
uations thereof. The case was made that such dependencies
are unnatural in many cases of interest, and that avoiding
them may also reduce drastically the complexity. These de-
pendencies were studied in depth in (Mogavero et al. 2014)
and later in (Gardy, Bouyer, and Markey 2020). A semantics
in which different future and counterfactual dependencies



can be forbidden was proposed for the Nested-Goals frag-
ment, called behavioural semantics. This involves a heavy
mathematical machinery called dependence maps, related to
Skolem functions for first-order logic, and the complexity of
which explains why it was only defined for the Nested-Goals
fragment and not the full logic. We observe that although the
behavioural semantics forbids future and counterfactual de-
pendencies, it allows for concurrent ones, which is not nat-
ural in many settings (see for instance the matching penny
example in the introduction).

Our work can be seen as a novel approach to the problem
of dependencies in Strategy Logic. The black-box semantics
is natural in many concrete scenarios in multi-agent systems,
in which dependence on concurrent moves of other agents
should not be allowed. It is defined for the whole logic BSL
via intuitive evaluation games with imperfect information,
while behavioural semantics relies on complex dependency
maps and is defined only for the Nested-Goals fragment.

7 Conclusion
Strategy logic with black-box semantics is a promising logic
for reasoning about agent-based scenarios in which agents
do not announce their strategies. Its Nested-Goals fragment
is situated in a nice middle ground between the expressive-
ness of SL with white-box semantics and the elementary
complexity of ATL∗. Indeed, similarly to SL with white-
box semantics, it can express certain complex solution con-
cepts such as Nash equilibria. On the other hand, similarly to
ATL∗, it has an elementary complexity, i.e., a 3-EXPTIME-
complete model-checking problem, which is much closer to
ATL∗ (2-EXPTIME-complete) than SL with white-box se-
mantics (non-elementary).

One direction for future work is to establish the com-
plexity of model checking the full BSL with black-box se-
mantics, as well as that of the logic with mixed announce-
ments BSL□■. Another would be to draw inspiration from
independence-friendly logic (Mann, Sandu, and Sevenster
2011) and dependence logic (Väänänen 2007) to define a
team semantics for Strategy Logic with private announce-
ments. Indeed these logics study mechanisms of dependence
among variables in classical logic, which is closely related to
what we study here. Dependence logic considers semantics
based on imperfect-information games, as we do, but also
has a Tarski-style semantics based on teams: intuitively a
formula is not evaluated with respect to a single assignment
for free variables, but a set of assignments, which allows
formalizing dependencies between variables.
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