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1 Introduction

1.1 The Importance of Parity Games

Parity games are simple two-player games of perfect information played on directed
graphs whose nodes are labeled with priorities. The name parity game is due to the
fact that the winner of a play is determined according to the parities (even or odd) of
the priorities occurring in that play. In fact, it is determined by the maximal priority
occurring infinitely often.

Parity games are an interesting object of study in computer science, and the theory
of formal languages and automata in particular, for (at least) the following reasons.

• They are closely related to other games of infinite duration like mean payoff games,
discounted payoff games, stochastic games, etc. [Jur98, Pur95, Sti95].

• They are at the core of other important problems in computer science, for instance,
solving a parity game is known to be polynomial-time equivalent to model checking
for the modal µ-calculus [EJS93, Sti95].

• They arise in complementation or determinisation problems for tree automata
[GTW02, EJ91] and in emptiness and word problems for various kinds of (alter-
nating) automata [EJ91].

• Controller synthesis problems can be reduced to satisfiability problems for branching-
time logics [AAW03] which in turn require the solving of parity games because of
determinisations of Büchi word automata into parity automata [Pit06, KW08].

• Solving a parity game is one of the rare problems that belongs to the complexity
class NP∩co-NP and that is not (yet) known to belong to P [EJS93]. The variety
of algorithms that have been invented for solving parity games is surely due to the
fact that many people believe the problem to be in P.

1.2 Aim and Content of PGSolver

This variety of algorithms has provided a good understanding of the theory of parity
games even though its computational complexity has possibly not yet been determined
precisely. However, this theoretical knowledge is unmatched by the little amount of
investigation into practical aspects of solving parity games. The aim of this project is to
provide a platform for this: it should enable the comparison between different algorithms
not just by the Landau-terms for their worst-case time complexities but by their actual
performance on various classes of parity games.
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The current version of this tool contains implementations of the following algorithms
found in the literature:

• the recursive algorithm due to Zielonka [Zie98],

• the local model checking algorithm due to Stevens and Stirling [SS98],

• the strategy-improvement algorithm due to Jurdziński and Vöge [VJ00],

• the strategy-improvement algorithm due to Schewe [Sch08],

• the strategy-improvement algorithm reduction to discounted payoff games due to
Puri [Pur95],

• the randomized strategy-improvement algorithm due to Björklund and Vorobyov
[BV07],

• another randomized strategy-improvement algorithm due to Björklund, Sandberg
and Vorobyov [BSV03],

• the small progress measures algorithm due to Jurdziński [Jur00],

• the small progress measures reduction to SAT due to Lange [Lan05],

• the dominion decomposition algorithm due to Jurdziński, Paterson and Zwick
[JPZ06],

• the big-step variant of the latter due to Schewe [Sch07].

In addition, there is a new local strategy improvement algorithm by ourselves. Moreover
there is a direct reduction to SAT based on strategy iteration due to Friedmann.

Finally, there is one heuristic solvers. Such solvers are sound: the answers they pro-
vide are correct. But they are not necessarily complete, for example because they may
not terminate. Our heuristic algorithm just guesses strategies for both players until a
(partial) winning strategy has been found.

The heuristic is included because it can solve certain classes of parity games very
quickly and – most importantly – in a time that is independent of the number of priorities
present in the game. On the other hand, it is easy to construct games on which it does
not terminate, resp. infinite families of games on which the probability of termination
decreases exponentially.

1.3 Structure of this Report

Chapter 2 formally introduces parity games and standard notions around the problem
of solving them like winning regions and strategies, but also others that are needed
in order to understand the constructions implemented in various solvers like attractor
strategies, decompositions into subgames, etc. It then describes implemented meta-level
optimisations for solving parity games, i.e. optimisations that apply to any solver. Next,
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it shortly describes the implemented algorithms and heuristics. For those known before
we refer to the corresponding literature for a detailed introduction into these algorithms.
Here we only want to point out the rough functionality in order to be able to compare
these algorithms and possibly attribute slow/fast solving to certain techniques.

Chapter 3 is the user’s guide. It describes how to compile, install and run PGSolver,
as well as how to specify parity games that it takes as input and how to read its output,
etc.

PGSolver comes with programs that generate benchmarks. These are for example
random games, games constructed in a way such that they are difficult for a certain
algorithm to solve, or application-oriented games. These are described in Chapter 4.

Finally, Chapter 5 contains the developer’s guide. It explains how to integrate another
parity game solver – implemented in OCaml – into this tool.
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2 Solving Parity Games

2.1 Technicalities

2.1.1 Parity Games

A parity game is a tuple G = (V, V0, V1, E, Ω) where (V, E) forms a directed graph whose
node set is partitioned into V = V0 ∪ V1 with V0 ∩ V1 = ∅, and Ω : V → N is the priority
function that assigns to each node a natural number called the priority of the node.
We assume the underlying graph to be total, i.e. for every v ∈ V there is a w ∈ W s.t.
(v, w) ∈ E.

We also use infix notation vEw instead of (v, w) ∈ E and define the set of all successors
of v as vE := {w | vEw}, as well as the set of all predecessors of w as Ew := {v | vEw}.

The game is played between two players called 0 and 1 in the following way. Starting
in a node v0 ∈ V they construct an infinite path through the graph as follows. If the
construction so far has yielded a finite sequence v0 . . . vn and vn ∈ Vi then player i selects
a w ∈ vnE and the play continues with the sequence v0 . . . vnw.

Every play has a unique winner given by the parity of the greatest priority that occurs
infinitely often in a play. The winner of the play v0v1v2 . . . is player i iff max{p | ∀j ∈
N∃k ≥ j : Ω(vk) = p} ≡2 i (where i ≡2 j holds iff |i − j| mod 2 = 0). That is, player
0 tries to make an even priority occur infinitely often without any greater odd priorities
occurring infinitely often, player 1 attempts the converse.

In the following we will restrict ourselves to finite parity games. It is easy to see that
in a finite parity game the winner of a play is determined uniquely since the range of Ω
must necessarily be finite as well. Technically, we are considering so-called max-parity
games. There is also the min-parity variant in which the winner is determined by the
parity of the least priority occuring infinitely often. On finite graphs, though, these
two games are equivalent in the sense that a max-parity game G = (V, V0, V1, E,Ω) can
be converted into a min-parity game G′ = (V, V0, V1, E, Ω′) whilst preserving important
notions like winning regions, strategies, etc. Simply let p an even upper bound on all
the priorities Ω(v) for any v ∈ V . Then define Ω′(v) := p−Ω(v). This construction also
works the other way round, i.e. in order to transform a min-parity into a max-parity
game.

A strategy for player i is a partial function σ : V ∗Vi → V , s.t. for all sequences v0 . . . vn

with vi+1 ∈ viE for all j = 0, . . . , n − 1, and all v ∈ Vi: σ(v0 . . . vn) ∈ vnE. That is, a
strategy for player i assigns to every finite path through G that ends in Vi a successor of
the ending node. A play v0v1 . . . conforms to a strategy σ for player i if for all j ∈ N we
have: if vj ∈ Vi then vj+1 = σ(v0 . . . vj). Intuitively, conforming to a strategy means to
always make those choices that are prescribed by the strategy. A strategy σ for player i is
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a winning strategy starting in some node v ∈ V if player i wins every play that conforms
to this strategy and begins in v. We say that player i wins the game G starting in v iff
he/she has a winning strategy for G starting in v.

With G we associate two sets W0, W1 ⊆ V with the following definition. Wi is the set
of all nodes v s.t. player i wins the game G starting in v. We write WG

i in order to name
the parity game that the winning regions refer to, for example when it cannot uniquely
be identified from the context.

Clearly, we must have W0 ∩W1 = ∅ for otherwise assume that there is a node v such
that both players 0 and 1 have winning strategies σ0 and σ1 for G starting in v. Then
there is a unique play π = v0v1 . . . such that v0 = v and π conforms to both σ0 and
σ1. It is obtained by simply playing the game while both players perform their choices
according to their respective strategies. However, by definition π is won by both players,
and therefore the maximal priority occurring infinitely often would have to be both even
and odd.

On the other hand, it is not obvious that every node should belong to either of W0 or
W1. However, this is indeed the case and known as determinacy : a player has a strategy
for a game iff the opponent does not have a strategy for that game.

Theorem 1 ([Mar75, GH82, EJ91]) Let G = (V, V0, V1, E,Ω) be a parity game. Then
W0 ∩W1 = ∅ and W0 ∪W1 = V .

A strategy σ for player i is called positional or memory-less or history-free if for all
v0 . . . vn ∈ V ∗Vi and all w0 . . . wm ∈ V ∗Vi we have: if vn = wm then σ(v0 . . . vn) =
σ(w0 . . . wm). That is, the value of the strategy on a finite path only depends on the last
node on that path. An important feature of parity games is the fact that such strategies
suffice.

Theorem 2 ([EJ91]) Let G = (V, V0, V1, E,Ω) be a parity game, v ∈ V , and i ∈ {0, 1}.
Player i has a winning strategy for G starting in v iff player i has a positional winning
strategy for G starting in v.

A positional strategy σ for player i induces a subgame G|σ := (V, V0, V1, E|σ,Ω) where
E|σ := {(u, v) ∈ E | u ∈ dom(σ) ⇒ σ(u) = v}. Such a subgame G|σ is, roughly speaking,
basically the same game as G with the restriction that whenever σ provides a strategy
decision for a node u ∈ Vi all transitions from u but σ(u) are no longer accessible.

A set U ⊆ V is said to be i-closed iff player i can force any play to stay within U .
This means that player 1− i must not able to leave U but player i must always have the
choice to remain inside U :

∀v ∈ U :
(

v ∈ V1−i ⇒ vE ⊆ U
)

and
(

v ∈ Vi ⇒ vE ∩ U 6= ∅ )

Note that W0 is 0-closed and W1 is 1-closed.
A set U ⊆ V induces a subgame G|U := (U,U ∩ V0, U ∩ V1, E ∩ U × U,Ω|U ) iff the

underlying transition relation E ∩U ×U remains total i.e. for all u ∈ U there is at least
one v ∈ U s.t. uEv. Clearly, each i-closed set U induces a subgame. We often identify a
set U ⊆ V that induces a subgame w.r.t. a fixed parity game with the induced subgame
itself.
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2.1.2 Dominions

A set U ⊆ V is called an i-dominion iff U is i-closed and the induced subgame is won by
player i. Clearly, W0 is a 0-dominion and W1 is a 1-dominion. That is, an i-dominion U
covers the idea of a region in the game graph that is won by player i by forcing player
1− i to stay in U on the one hand; but on the other hand an i-dominion U is only won
by player i when using a winning strategy on U .

To see more precisely what the concept of dominions is used for we need to introduce
attractors and SCC decompositions of parity games.

2.1.3 Attractors and Attractor Strategies

Let U ⊆ V and i ∈ {0, 1}. Define for all k ∈ N

Attr0
i (U) := U

Attrk+1
i (U) := Attrk

i (U)

∪ (Vi ∩ {v | vE ∩Attrk
i (U) 6= ∅})

∪ (V1−i ∩ {v | vE ⊆ Attrk
i (U)})

Attr i(U) :=
⋃

k∈N
Attrk

i (U)

Intuitively, Attrk
i (U) consists of all nodes s.t. player i can force any play to reach U in

at most k moves.

Lemma 3 ([Zie98, Sti95]) Let G = (V, V0, V1, E, Ω) be a parity game and U ⊆ V . Let
V ′ := V \ Attr i(U). Then G′ = (V ′, V0 ∩ V ′, V1 ∩ V ′, E ∩ V ′ × V ′, Ω) is again a parity
game with its underlying graph being total.

In other words V \ Attr i(U) is (1− i)-closed; if additionally U is an i-dominion then
Attr i(U) also is an i-dominion. This yields a general procedure for solving parity games:
find a dominion in the game graph that is won by one of the two players, build its
attractor of the dominion and investigate the complement subgame.

Each attractor for player i induces an attractor strategy for player i. It is defined for
all v ∈ Attrk

i (U) ∩ Vi for any k ≥ 1 as σ(v) = w iff w ∈ Attrk−1
i (U).

2.2 Local vs. Global Solvers

The problem of solving a parity game G = (V, V0, V1, E, Ω) is, roughly speaking, to
determine which of the players has a winning strategy for that game. However, this does
not take starting nodes into account. In order to obtain a well-defined problem, this is
refined in two ways.

The problem of solving the parity game G globally is to determine, for every node
v ∈ V whether v ∈ W0 or v ∈ W1. The problem of solving G locally is to determine for
a given v ∈ V whether v ∈ W0 or v ∈ W1 holds. In addition, we require a solver to
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compute (partial) winning strategies in the following sense: a local solver should return
one strategy that is a winning strategy for player i if v ∈ Wi for the given input node
v. A global solver should return two strategies, one for each player s.t. player i wins
exactly on the nodes v ∈ Wi if he/she plays according to the strategy computed for her.

Clearly, the local and global problem are interreducible, the global one solves the local
one for free, and the global one is solved by calling the local one |V | many times. But
neither of these indirect methods is particularly clever. Thus, there are algorithms for
the global, and other algorithms for the local problem. We focus on the global problem
here, but also use local solvers. In that case we expect them to determine for at least
the given node v to which winning set it belongs but possibly and preferably also for
other nodes. These methods can then be used to solve the global problem by calling the
local algorithm at most |V | many times.

Suppose V = {v0, . . . , vn}. Then one can solve G globally using a local solver A as
follows. Start A with starting node v0. It will return two (possibly empty) winning sets
W ′

0 and W ′
1. In any case, we will have W ′

0 ∩W ′
1 = ∅, but not necessarily W ′

0 ∪W ′
1 = V .

Let W ′ := V \ (Attr0(W
′
0) ∪ Attr1(W

′
1)). Then taking out all nodes in W ′ from G will

result in a total parity game again by two applications of Lemma 3 and the fact that
Attr0(W

′
0)∩Attr1(W

′
1) = ∅. Let G′ be this game. Then the winning positions for player

i in G are Attr i(W
′
i ) plus the winning positions for him/her in G′. Since G′ will be

smaller than G this can be used iteratively or recursively, to compute the entire W0 and
W1.

The winning strategies can equally be assembled to a winning strategy σ for player i.
Let σ′ be player i’s winning strategy on the subgame G′, α be his/her attractor strategy
for reaching W ′

i , and η be the strategy that guarantees him/her to win on W ′
i . Then

define

σ(v) :=





η(v) , if v ∈ W ′
i

α(v) , if v ∈ Attr i(W
′
i ) \W ′

i

σ′(v) , if v is a node in G′

anything otherwise

The following theorem provides correctness of this construction.

Proposition 4 Let G = (V, V0, V1, E,Ω) be a parity game, let Wi be the winning set of
player i and i ∈ {0, 1}. Player i has a positional strategy σ for G s.t. σ is a positional
winning strategy for G starting in any node v ∈ Wi.

To see that this holds let σv be positional winning strategies for G starting in v for
each node v ∈ Wi (which have to exist by the former theorem). We assume all nodes
v ∈ Wi to be ordered w.r.t. a well-ordering <. A positional strategy σ winning from
each node v ∈ Wi can be defined as follows:

σ : v ∈ Wi ∩ Vi 7→ σmin<{u∈Wi|v∈dom(σu)}(v)

To see that σ indeed is a positional winning strategy for G starting in any node v ∈ Wi

let v0v1 . . . be a σ-conforming play with vj ∈ Wi for all j ∈ N. Since < is a well-ordering
σ finally simulates the strategy of σu for some u ∈ Wi and thus player i is wins this play.
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2.3 Verifying Strategies

The problem of verifying strategies is to decide whether a given partition (W ′
0,W

′
1) of

a parity game G along with two strategies σ0 : W ′
0 ∩ V0 → V and σ1 : W ′

1 ∩ V1 → V
matches the partition into winning sets, i.e. whether W ′

0 = W0 and W ′
1 = W1 as well as

σ0 and σ1 ensure the win of the respective player in the respective winning set.
The verification process basically traverses three phases. The algorithm verifies in the

first phase that σ0 and σ1 are welldefined in the sense that a strategy actually uses valid
transitions in the game graph. In the second phase the algorithm checks whether the
strategies stay in their winning regions, i.e. σi[W ′

i ] ⊆ W ′
i for both player i, as well as

whether the winning regions are closed w.r.t. the respective player.
The third phase finally checks whether the given strategies are winning strategies.

In order to solve this problem, the algorithm computes the subgames Gi := (G|W ′
i
)|σi

induced by the respective sets and strategies in question. Note that both Gi are special
games, namely one-player games. Hence, they can be solved as described above.

Since σi is a winning strategy on W ′
i iff σi is a winning strategy on Gi, it suffices to

check whether the computed winning set WGi
i correspond with W ′

i , and if they do not,
the counter strategy for player 1−i can be used to extract a cycle in G following strategy
σi that is won by 1− i.

2.4 Universal Optimisations

There are some optimisations that apply to all solvers. These universal optimisations
efficiently try to reduce the overall complexity of a given parity game in order to reduce
the effort spent by any solver. Clearly, such optimisations have to ensure that a solution
of the modified game can be effectively and efficiently translated back into a valid solution
of the original game.

In the following we describe optimisations that are implemented on top of every solv-
ing algrithm: SCC decomposition, detection of special cases, and compression. The
next section then describes a generic algorithm that uses (some of – depending on the
configuration) these optimisations in order to call a real solver on as few and little parts
of a game as possible.

2.4.1 SCC Decomposition

Let G = (V, V0, V1, E, Ω) be a parity game. A strongly connected component (SCC) is
a non-empty set S ⊆ V with the property that every node in S can reach every other
node in S, i.e. uE∗v for all u, v ∈ S (where E∗ denotes the transitive-reflexive closure
of E). A strongly connected component S is proper iff uE+v for all u, v ∈ S (where E+

denotes the transitive closure of E). In other words: An SCC S is proper iff |S| > 1 or
S = {u} and uEu.

Theorem 5 ([Tar72]) Every parity game G = (V, V0, V1, E,Ω) can, in time O(|E|), be
partitioned into SCCs S0, ..., Sn with V =

⋃
i≤n Si and Si ∩ Sj = ∅ for all i 6= j.
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Additionally there is a strict partial ordering → on these SCCs which is defined as
follows:

Si → Sj : ⇐⇒ i 6= j ∧ ∃u ∈ Si, v ∈ Sj : uEv

This strict partial ordering is generally known as the topology of the SCC decomposition.
An SCC S is called final w.r.t. → if there is no SCC T s.t. S → T . Note that every SCC
topology of a finite graph must have at least one final SCC.

SCC decomposition of parity games as a universal optimisation works as follows. First,
the game is decomposed into SCCs along with the computation of the strict partial
ordering →. Then, all final SCCs with respect to → are solved by a parity game solver.
Since these SCCs are not connected to any other SCCs, all solutions obtained in this
manner can be directly used as solutions in the global game.

Second, the attractors for both players with respect to the computed winning sets of
all maximal solved SCCs are computed and removed from the game. The remainder is
still a game, but because of the removal some of the original SCCs may not be SCCs
anymore. All “damaged” ex-SCCs are again decomposed into SCCs and replaced by the
new respective decomposition. In this way, the remaining decomposition can be used
again to solve the rest of the game, again starting with those SCCs that are now final.

With this SCC decomposition it is not necessary to require solvers to solve an entire
SCC let alone an entire game. Instead it suffices to have them solve at least a dominion
for one of the players. Given an SCC S and two dominions D0, D1 ⊆ S with D0 ⊆ W0

and D1 ⊆ W1, one simply computes the attractors Ai := Attr i(Di) and considers the
induced subgame (S \ A0) \ A1 which can be recursively solved by decomposition into
SCCs etc.

2.4.2 Detection of Special Cases

There are certain kinds of special games that can be solved very efficiently by the fol-
lowing procedures. W.l.o.g. we can assume games to be proper strongly connected
components. Remember that SCCs which are not proper consist of a single node v only
that does not have an edge back to itself. The winner of v is the owner iff there is a
successor that he/she wins. Since all successors belong to topologically greater SCCs we
can assume them to be solved already, and thus, the winner of v is easily determined.

• Self-cycle games: Suppose there is a node v such that vEv. Then there are two
cases depending on the node’s owner p and the parity of the node’s priority. If
Ω(v) 6≡2 p then taking the edge (v, v) is always a bad choice for player p and
this edge can be removed from the game for as long as totality is preserved. If
Ω(v) ≡2 p then taking this edge is always good in the sense that {v} is a dominion
for player p. Hence, its attractor can be removed as described above.

• One-parity games: If all nodes in a proper SCC have the same parity, the whole
game is obviously won by the corresponding player no matter which transition the
player uses. Hence, a winning strategy can be found by random choice.
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• One-player games: A game G is a one-player game for player i iff for all v ∈ V1−i

we have |vE| = 1. Such a one-player game that is an SCC can be solved using
a simple fixed-point iteration. Player i wins the game iff there is a node u with
Ω(u) ≡2 i and u is reachable from itself on a path that does not contain a priority
greater than Ω(u). If there is such a cycle won by player i then the rest of the SCC
lies in the attractor of the cycle (since player i is the only one to make choices);
otherwise, if there is no cycle won by player i, the whole game is won by player
1− i.

2.4.3 Priority Compression

The complexity of a parity game rises with the number of different priorities in the game.
This optimisation step attempts to reduce this number. Note that it is not the actual
values of priorities that determine the winner. It is rather their parity on the one hand
and their ordering on the other. For instance, if there are two priorities p1 < p2 in a
game with p1 ≡2 p2 but there is no p′ such that p1 < p′ < p2 and p′ 6≡2 p1 then every
occurrence of p2 can be replaced by p1.

In general, let P = (p0, . . . , pk) be the list of all the priorities occurring in a game
G = (V, V0, V1, E, Ω) s.t. pi−1 < pi for all 0 ≤ i < k. W.l.o.g. we assume p0 to be even.
If the least priority occurring in G is odd, then simply add p0 = 0 to this list which
does not affect the construction in any way. We will also use P to denote the set of all
elements in P .

Take a decomposition of P into maximal sublists of elements with the same parity,
i.e.

P = (p0,0, . . . , p0,m0 , p1,0, . . . , p1,m1 , . . . , pn,0, . . . , pn,mn)

with pi,j ≡2 pi,j′ for all 0 ≤ i ≤ n, 0 ≤ j < j′ ≤ mi and pi,mi 6≡2 pi+1,0 for all 0 ≤ i < n.
This defines a partial mapping ω : N→ N as

ω(p) =

{
i , if p = pi,j for some j

undefined , otherwise

Note the following facts about ω:

• ω is defined on all priorities occurring in G;

• ω is decreasing : we have ω(p) ≤ p for all p ∈ P ;

• ω is monotone: for all p, p′ with p ≤ p′ we have ω(p) ≤ ω(p′);

• ω preserves parities: we have ω(p) ≡2 p for all p ∈ P ;

• ω is dense: for all p, p′ ∈ P with ω(p)+1 < ω(p′) there is a p′′ with ω(p) < ω(p′′) <
ω(p′).

Now define another parity game G′ := (V, V0, V1, E,Ω′) with Ω′(v) := ω(Ω(v)). I.e.
G′ results from G by reducing the priorities according to the function ω. Then G′ is
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equivalent to G in the sense that the players’ winning regions coincide in the two games,
and a winning strategy σ for some player i in G is also a winning strategy for him/her
in G′ and vice-versa. This is guaranteed by the properties of ω identified above: due to
monotonicity and preservation of parities, the greatest priority ocurring in an infinite
play in G is even iff it is even in the same play in G′. The property of being decreasing
guarantees that this should in general be an optimisation, and density says that G′ is
optimal w.r.t. this optimisation.

2.4.4 Priority Propagation

Note that any play visiting a node v has to – due to totality – also visit one of the
successors of v. Now suppose that the priorities of all successors of v are greater than
the priority of v itself. Then v’s priority is irrelevant in the sense that no play is won
by either player because v’s priority occurs in it. For those plays not visiting v at all
this is trivial and for those plays that do visit v this is simply because v is certainly not
the geatest priority occurring in this play, let alone occurring infinitely often. Hence, v’s
priority can be replaced by a greater one.

In general, let G = (V, V0, V1, E, Ω). Applying backwards propagation in node v results
in the game G′ = (V, V0, V1, E, Ω′) where Ω′ = Ω[v 7→ max{Ω(v),min{Ω(w) | w ∈ vE}}].
Similarly, forwards propagation replaces v’s priority with the minimum of all priorities
of its predecessors if that is greater than its current priority. It is equally sound because
any play that visits v infinitely often must visit one of its predecessors infinitely often
too.

Both backwards and forwards propagation can be iterated and combined thus reducing
the range of priorities in a game.

2.5 The Generic Solver

Solving a parity game is done by a central module called the generic solver. It combines
the universal optimisations described above with any of the implemented algorithms of
heuristics described above. This is realised by taking a solver, i.e. one of these algorithms
or heuristics as a parameter. Then it roughly works as follows.

1. Self-cycles are eliminated from the game, and attractors of nodes for which the
self-cycle is part of a winning strategy are computed and removed.

2. The entire game is decomposed into SCCs.

3. Terminal SCCs are solved as follows.

a) Priorities are compressed.

b) The SCC is checked for being a special case of a game.

• If it is, winning regions and strategies are constructed accordingly.

• Otherwise, the solver given as the parameter is used to solve this SCC.
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c) Attractors of the computed winning regions are also computed, together with
corresponding strategies which are added to the winning regions and strate-
gies.

d) The computed winning regions are removed from the game.

e) All non-terminal SCCs which have lost some nodes in the removal of these
attractors are again decomposed into more fine-grained SCCs.

4. Step 3 is repeated until the entire game is solved.

Note that the removal of terminal SCCs will make other, previously non-terminal SCCs
terminal. Also, note that this scheme is sound – the regions and strategies it computes
are in fact winning regions and winning strategies for the corresponding players on the
given game – if the parameter solver is sound. Hence, it can also be used with sound
heuristics. Furthermore, it is complete if it is guaranteed that the parameter solver solves
at least one node of every SCC that it is given. Hence, the solvers used as backends
need not be complete for the generic solver to be complete. This is why this scheme can
solve whole games using heuristics that are incomplete themselves.

We also note that the features SCC decomposition, detection of special cases, and
priority compression can be switched off via command-line options. This may be useful
when the performance of an algorithm on its own is to be measured. In addition, it
is possible to turn the feature priority propagation on in which case it is done before
priority compression. However, in general this does not seem to be an optimisation since
it slows down virtually any backend.

2.6 Implemented Algorithms

We shortly describe the algorithms that are implemented in PGSolver. The aim is
not to give a complete description of these algorithms. For details and an account
of the theory behind them please follow the literature. We just give an idea of how
these algorithms work, in order to be able to name implementation details and the
optimisations that are carried out.

For the terms describing the asymptotic time and space complexities of these algo-
rithms we introduce the convention that n denotes the number of nodes in a game, e
denotes the number of edges, and d denotes the number of priorities.

2.6.1 The Recursive Algorithm

This algorithm falls out of the constructive determinacy proof for parity games due to
Zielonka. It decomposes the game at hand to smaller ones recursively by simultaneous
induction on the number of priorities and the number of nodes in the game. In the
base cases, if the game only has one node or one priority, the winner and corresponding
strategy can easily be obtained, in the latter case as a random strategy for example.
In the other cases a winning strategy can be assembled out of strategies for smaller
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subgames and an attractor strategy for one of the players reaching the set of nodes with
maximal priority in the game.

Algorithm 1 (Recursive Algorithm)

Author(s) W. Zielonka

Literature [Zie98]

Short description Decomposition into subgames with recursion on
number of nodes and priorities

Time complexity O(e · nd)

Space complexity O(e · n)

2.6.2 The Local Model Checking Algorithm

The only algorithm solving parity games locally in our collection is the µ-calculus model
checker due to Stevens and Stirling. Since a parity game can be regarded as the product
of an unknown transition system and an unknown µ-calculus formula (even though there
may not exists such factors), this algorithm can also be used to solve parity games. It
basically explores a game depth-first and whenever it reaches a cycle it stops, storing
the node starting the cycle along with a cycle progress measure as an assumption for the
cycle-winning player. Then, the exploration is backtracked in the sense that if the losing
player could have made other moves they are again explored depth-first. If this leads
to a cycle-win for the other player, the whole process starts again, now with respect
to the other player. Whenever the backtracking finally leads to the starting node of a
cycle the node is registered as a decision for the player which basically can be seen as
being a preliminary winning node for the respective player. Additionally, if there are
assumptions of the other player for the respective node, these assumptions are dropped,
and all depending assumptions and decisions are invalidated.

Algorithm 2 (Model Checking Algorithm)

Author(s) P. Stevens and C. Stirling

Literature [SS98]

Short description Exploring the game depth-first, detecting cycles
and backtracking subsequently for other possible
moves

There are no sensible estimations on the worst-case time and space complexities of this
algorithm in the literature.
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2.6.3 The Strategy Improvement Algorithm

The strategy improvement algorithm due to Jurdziński and Vöge picks a strategy for
one of the two players, say for player 0, and computes a valuation of the strategy-
induced subgame. This valuation is used to select a new strategy for player 0 by choosing
transitions from player 0 choice points maximizing the valuation for the respective target
node.

The process of valuating the current strategy and subsequently picking a new one is
iterated until all transitions of the new strategy are not assigned better valuations than
the transitions of the former strategy. The final valuation is then used to infer winning
sets and winning strategies for both players.

Algorithm 3 (Strategy Improvement Algorithm)

Author(s) M. Jurdziński and J. Vöge

Literature [VJ00, SV00]

Short description Iteratively improves an initialization strategy
until it satisfies a winning-strategy-predicate

Time complexity O(2e · n · e)
Space complexity O(n2 + n · log d + e)

2.6.4 The Optimal Strategy Improvement Method

This strategy improvement algorithm due to Schewe guarantees to select, in each im-
provement step, an optimal combination of local strategy modifications. The estimation
produced in each iteration step are used to infer winning regions along with winning
strategies for both players.

Algorithm 4 (Optimal Strategy Improvement Method)

Author(s) S. Schewe

Literature [Sch08]

Short description Iteratively improves an estimation until a fixed
point is reached

Time complexity O(e · (n+d
d )d · log(n+d

d ))

Space complexity O(n2)
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2.6.5 The Strategy Improvement by Reduction to Discounted Payoff Games

This algorithm translates the given parity game to a corresponding discounted payoff
games and solves the latter by Puri’s algorithm. The winning regions as well as winning
strategies for the discounted payoff games directly correspond to those of the original
parity game.

Algorithm 5 (Strategy Improvement for DPGs)

Author(s) A. Puri

Literature [Pur95]

Short description Iteratively improves an estimation until a fixed
point is reached

2.6.6 Probabilistic Strategy Improvement

A probabilistic strategy iteration method that has an subexponential upper bound on
the number of expected iterations that are required to solve the game.

Algorithm 6 (Probabilistic Strategy Improvement)

Author(s) H. Björklund and S. Vorobyov

Literature [BV07]

Short description Iteratively improves an estimation until a fixed
point is reached

2.6.7 Probabilistic Strategy Improvement 2

Another probabilistic strategy iteration method that has an subexponential upper bound
on the number of expected iterations that are required to solve the game.

Algorithm 7 (Probabilistic Strategy Improvement 2)

Author(s) H. Björklund, S. Sandberg and S. Vorobyov

Literature [BSV03]

Short description Iteratively improves an estimation until a fixed
point is reached
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2.6.8 Local Strategy Improvement

A local version of the strategy iteration paradigm.

Algorithm 8 (Local Strategy Improvement)

Author(s) O. Friedmann and M. Lange

Short description Iteratively improves an estimation until a fixed
point is reached

2.6.9 The Small Progress Measures Algorithm

The existence of a winning strategy for either of the players can be characterised be a
condition that is local to the nodes of the parity game. Each node carries a tuple of
values, and those values have to be larger than one or all of the values in successor nodes
depending on the own of the node and its priority. It can be shown that the values in
a node can be bounded by a number depending on the nodes reachable from the one at
hand.

Jurdziński suggest to find these values iteratively starting with 0 everywhere and
increasing them whereever necessary to respect their relation. Non-existence of a winning
strategy on certain parts of the game is found when the iteration tries to increase values
beyond their pre-computed maxima.

Algorithm 9 (Small Progress Measures Algorithm)

Author(s) M. Jurdziński

Literature [Jur00]

Short description Iteratively increase lexicographically ordered tu-
ples

Time complexity O(d · e · (n
d )d/2)

Space complexity O(d · n · log n)

Optimisations tight computation of maximal values

The performance of the algorithm depends very much on a good approximation of the
maximal values in these tuples since this directly affects the maximal running time.
Suppose this algorithm is used to find a winning strategy for player 0. Then each tuple
contains a field for every odd priority that occurs in the game. The maximal value in
the field p of the tuple at node v for some odd priority p is 1 plus the number of nodes
of priority p in the same SCC as v that are reachable from v without passing through a
node with a priority higher than p.
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Our implementation performs two iterations – one for each player. Note that the
original exposition of the small progress measures algorithm allows to compute the win-
ning region and a strategy for one of the players. Clearly, the winning region for the
other player can easily be inferred from this but his/her strategy cannot. One possibility
would be to rerun the algorithm on the winning region for the other player measuring
the progress for him/her. Another possibility is to iterate the progress measures for both
players in all nodes right away from the beginning.

2.6.10 The Small Progress Measures Reduction to SAT

Since solving parity games is known to be in NP there must be a polynomial reduction
to SAT, the satisfiability problem for propositional logic. Such a reduction is basically
given by the small progress measures algorithm. Instead of iteratively computing values
one lets a SAT solver find them. Since these values can be bounded, there is a finite
number of bits representing these numbers, and these bits can be seen as propositional
variables for the SAT solver. The necessary relations between the numbers are only less-
than and less-than-or-equals, and it is not difficult to write down propositional formulas
which describe such relations between natural numbers in terms of constraints on their
bits.

Again, this is supposed to be a global parity game solver. Hence, it has to report
winning regions and strategies for both players. As said above, Jurdziński’s original
characterisation of these in terms of small progress measures caters for one of the players
only, and therefore needs space linear in dd

2e. In order to obtain strategies for both
players one has to use the algorithm twice. The same holds for the symbolic execution
by a reduction to SAT. The obvious choice here is to simply create constraints for
two sets of progress measures. But then the reduction technically does not map into
the satisfiability problem for propositional logic because the resulting formula is always
satisfiable, and a satisfying variable assignment encodes both the partition into winning
regions and the positional strategies.

Algorithm 10 (Small Progress Measures Reduction to SAT)

Author(s) M. Lange

Literature [Lan05]

Short description Symbolic encoding in propositional logic of the
small progress measure algorithm

Time complexity O(e · d) + running time of the SAT solver

Space complexity O(e · d) + space needed by the SAT solver
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2.6.11 The Direct Reduction to SAT

This formalises in propositional logics the existing of strategies and requires them to be
winning by checking that every cycle which is reached by following the strategy for one
of the players sees has a greatest priority which is good for that player. As with the
previous reduction, the resulting formula is always satisfiable.

Algorithm 11 (Direct Reduction to SAT)

Author(s) O. Friedmann

Short description Symbolic encoding in propositional logic of the
a direct predicate

Time complexity O(n3) + running time of the SAT solver

Space complexity O(n3) + space needed by the SAT solver

2.6.12 The Dominion Decomposition Algorithm

This algorithm is the first deterministic subexponential algorithm for parity games. It
basically refines the recursive algorithm due to Zielonka. First, one searches for small
(≤ √

2 · n) dominions by simply building each small subset, checking whether it is closed
w.r.t. player 0 or player 1 and if so checking whether the closed small subset is an i-
dominion by using the original recursive algorithm. If it actually is a dominion the
attractor is built and the complement subgame recursively solved. If there is no small
dominion the algorithm switches to the original recursive algorithm (and searches for
smaller dominions in subsequent recursive calls).

Algorithm 12 (Dominion Decomposition Algorithm)

Author(s) M. Jurdziński, M. Paterson, and U. Zwick

Literature [JPZ06]

Short description Brute-force search for small dominions with sub-
sequent decomposition into subgames with re-
cursion on number of nodes and priorities

Time complexity nO(
√

n)

Space complexity O(e · n)

2.6.13 The Big-Step Algorithm

This algorithm refines the dominion decomposition algorithm by replacing the brute-
force search for small dominions by a restricted run of the small progress measures
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algorithm. Basically, the sum of the entries in a small progress measure is limited by
the size of the largest dominion that is searched for ( 3

√
n2 · d). Hence, the small progress

measures algorithm identifies all dominions less or equal to that limit. If there is no
small dominion the algorithm switches to the original recursive algorithm (and searches
for smaller dominions in subsequent recursive calls).

Algorithm 13 (Big-Step Algorithm)

Author(s) S. Schewe

Literature [Sch07]

Short description Small progress measures-based search for small
dominions with subsequent decomposition into
subgames with recursion on number of nodes
and priorities

Time complexity O(e · n 1
3
d)

Space complexity O((e + d · log n) · n)

2.7 Implemented Heuristics

In addition to the algorithms described above, there is also one heuristics implemented
in PGSolver. Heuristics are not necessarily supposed to compete with the proper
algorithms but are interesting on their own because they can provide insight into the
difficulty of solving certain parity games, as well as be very quick on certain classes of
games.

As with heuristics in general, it can be difficult to give estimations on their worst-case
time complexities. They may even be non-terminating. We classify them according to
three properties: being sound, i.e. if they claim that a node belongs to the winning region
of one of the players then it really does so; being complete, i.e. finding those regions; and
being terminating.

We distinguish completeness and termination explicitly because a heuristic may be
terminating but incomplete, for example when it realises that it cannot solve the game
at hand. In this case it notionally provides a don’t know answer and practically one of
the algorithms above is used to solve the game.

2.7.1 The Strategy Guessing Iteration

This heuristic guesses random strategies for both players and computes the winning
regions w.r.t. these strategies. If the winning regions are not empty, the algorithm
returns these sets. Otherwise the whole process starts all over again.
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Heuristic 1 (Strategy Guessing Iteration)

Author(s) O. Friedmann

Short description tries to find dominions by selecting a random
strategies

Space complexity O(n)

Soundness yes

Completeness no

Termination no
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3 User’s Guide

3.1 License

This software is distributed under the BSD license.

Copyright (c) 2008-2010 Oliver Friedmann and Martin Lange
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3.2 Change Log

Changes are classified according to their importance. Changes effecting only the perfor-
mance of parts of the tool or are less important otherwise are marked with one asterisk
(∗). Changes that are worth noting like the addition of new features etc. are marked
with two asterisks (∗∗). Finally, major changes that would effect usability, for example
breaks in backwards compatibility, changes in the user interface, etc., are marked with
three asterisks (∗ ∗ ∗)
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Changes incorporated into version 3:

∗∗ PGSolver is now linkable as library.

∗ A new local strategy improvement algorithm has been added.

∗∗ Local Solving of Games has been enabled.

∗ Generators can now be linked directly into PGSolver.

∗ Two new randomized strategy improvement algorithms have been incorporated.

∗ The lists of solvers and generators are now maintained in ./Solvers and ./Generators
respectively.

∗ Printing and parsing of solution and strategies.

∗ Conversion between min-parity and max-parity games as a new transformer fea-
ture.

∗ Two new generators: Towers of Hanoi as a reachability game and a fairness verifi-
cation of an elevator system.

Changes incorporated into version 2:

∗ In order to allow more efficient parsing, the specification format for parity games
has been extended. It is now possible to include at the beginning of the specification
the maximal index of a node in the game. If this is done, then parsing will be
quicker.

∗ All the random game generators are now based on a more efficient generation of
sets of random numbers.

∗ The computation of attractor regions has been improved.

∗ ∗ ∗ Confusing terminology has been clarified: the algorithm due to Stevens and Stirling
[SS98] is now referred to as the model checker rather than the former game-based
algorithm. Command line parameters to pgsolver have been changed accordingly.

∗∗ A useful benchmarking tool has been included in the distribution.

∗ This change log has been included in this documentation – in case you hadn’t
noticed.

3.3 Installation Guide

3.3.1 Obtaining the Relevant Parts

You can obtain the source code of the PGSolver library from
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http://www.tcs.ifi.lmu.de/pgsolver

Download and unpack the archive.

~> tar xzvf pgsolver.tgz

Unpacking will create a directory pgsolver and various subdirectories in it.
In order to compile PGSolver from source code you will need

• the OCaml compiler; we recommend version 3.09.2 or higher, but earlier versions
may just as well be fine. You can get it from

http://caml.inria.fr

• GNU make; we recommend version 3.81 or higher but earlier ones may suffice as
well. You can get it from

http://www.gnu.org/software/make

• (optionally) one ore more SAT solvers. Note that this is only necessary if you
want PGSolver to also contain the algorithms relying on SAT solving backends.
You can compile it without. Although it should be possible to integrate almost
every linkable SAT solver, there are three SAT solver backends that are already
supported by PGSolver:

– the SAT solver zChaff developed in Princeton. It is available from

http://www.princeton.edu/~chaff/zchaff.html

We recommend version 2007.3.12. Earlier version will probably not suffice.

– the SAT solver PicoSAT developed in Linz. It is available from

http://fmv.jku.at/picosat

We recommend version 632. Earlier version will probably not suffice.

– the SAT solver MiniSat developed in Göteborg. It is available from

http://minisat.se

We recommend the C-version of 1.14. Other version will probably not work
with our interface.

• (optionally) a C++ compiler like g++ for example. This is only necessary to compile
zChaff and the parts of PGSolver that link it. You can get it from

http://gcc.gnu.org

We assume that the OCaml compiler as well as GNU make are installed. A quick instal-
lation guide for the mentioned SAT solvers is provided below. If you want PGSolver
to contain the reductions to SAT you obviously need to install at least one SAT solver
before compiling PGSolver.
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3.3.2 Compiling PGSolver

Now change into the directory created by unpacking the PGSolver source code.

~> cd pgsolver

The first (and probably most important) step consists of adjusting the Config files.
There are two config files, ./Config.default and ./satsolvers/Config.default, that
have to be edited. It is highly recommended to create a copy of both files with the name
Config in the respective directory that is to be edited instead of the original versions.
The Makefile checks whether a customized configuration file named Config exists and
if so it is used instead of the default versions.

Both configuration files start with declarations about where to find all the programs
necessary to build the executable PGSolver.

TAR=tar
OCAMLOPT=ocamlopt
OCAMLLEX=ocamllex
OCAMLYACC=ocamlyacc
CPP=g++
OCAMLOPTCPP=g++

Change these lines to point to the full path in which the OCaml compiler, lexer and
parser generator are installed unless they are in the current PATH. The lines pointing
to the C++ compiler only need to be configured if there is at least one sat solver that
is to be linked with PGSolver.

You need to give the full path of you OCaml installation directory.

OCAML_DIR=/usr/lib/ocaml

For each supported SAT solver, there are some lines that need to be configured in
order to use the include the respective SAT solver.

WITH_RESPECTIVE_SAT_SOLVER=YES
PATH_TO_OBJECT_FILE=...

If you do want to have support for the reductions to SAT then make sure that at least
one SAT solver is properly configured and enabled.

Once you have adjusted both Config files accordingly you can now compile PGSolver
by simply calling the make program.

~/pgsolver> make

This is the same as

~/pgsolver> make pgsolver
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After successful compilation, the executable can be found as pgsolver in the subdirec-
tory bin.

You can delete all files that have been created during the compilation process by
running

~/pgsolver> make clean

If you ever encounter error message like

The files obj/paritygame.cmi and obj/transformations.cmi
make inconsistent assumptions over interface Paritygame

during the compilation process, which should only occur when the source code has been
changed, then use this to get rid of them.

If you also want to have executable programs that create the benchmarks described
in the next chapter as well as some possibly useful tools that massage parity games then
run

~/pgsolver> make generators

and

~/pgsolver> make tools

Finally,

~/pgsolver> make all

is a synonym for make pgsolver; make generators; make tools.

3.3.3 Integrating SAT solvers

PGSolver currently supports three backend SAT solvers, namely zChaff, PicoSAT and
MiniSat. It should be also possible to integrate other SAT solvers; see the Developer’s
Guide for more information on that subject. In order to integrate one of them into
PGSolver, you need to follow these steps:

1. Download and compile the respective SAT solver.

2. Adjust the satsolvers/Config file s.t. the usage of the respective SAT solver is
enabled and all required links point to the correct target.

3. Remove the current compilation of PGSolver: make cleanall.

4. Recompile PGSolver: make all.
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Compiling zChaff

Obtain the source code of zChaff (we recommend at least version 2007.3.12), unpack
it and consult the included README file for instructions on how to compile it. If you are
lucky then a simple

~/zchaff> make

will do the job.
The compilation of zChaff produces an executable zchaff. However, PGSolver

uses the library version which can be linked into the program directly. This is usually
called libsat.a and is also produced by zChaff’s compilation process. Make sure that
the variable ZCHAFFLIB in PGSolver’s satsolvers/Config file points to the directory
in which libsat.a can be found, for example

#######
# ZCHAFF
#######
ZCHAFFLIB=/usr/local/lib/zchaff-2007-3-12/libsat.a
WITH_ZCHAFF=YES

Compiling PicoSAT

Obtain the source code of PicoSAT (we recommend at least version 632), unpack it and
consult the included README file for instructions on how to compile it. Usually,

~/picosat> ./configure && make

will do the job.
The compilation of PicoSAT produces an executable picosat. However, PGSolver

uses the object files which can be linked into the program directly. Make sure that the
variable PICOSATDIR in PGSolver’s satsolvers/Config file points to the directory in
which the object files can be found, for example

#######
# PICOSAT
#######
PICOSATDIR=/usr/local/lib/picosat-632
WITH_PICOSAT=YES

Compiling MiniSat

Obtain the source code of MiniSat (we recommend the C-version 1.14), unpack it and
consult the included README file for instructions on how to compile it. Usually,

~/minisat/core> make
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will do the job.
The compilation of MiniSat produces an executable minisat. However, PGSolver

uses the object files which can be linked into the program directly. Make sure that
both MINISAT variables in PGSolver’s satsolvers/Config file point to the respective
directories, for example

#######
# MINISAT
#######
MINISATDIR=/usr/local/lib/minisat/core
MINISATMTL=/usr/local/lib/minisat/mtl
WITH_MINISAT=YES

3.4 Running PGSolver

3.4.1 Invocation

A successful compilation produces an executable binary called pgsolver which, unless
specified otherwise in Makefile, resides in the subdirectory bin. Type

~/pgsolver> bin/pgsolver --help

or

~/pgsolver> bin/pgsolver -help

for a list of command-line options and a description of the command-line parameters
that the program expects.

The specification of the parity game to be solved – cf. Sect. 3.5 – can either be given
in a file or through stdin. The latter case is the default, and to switch to the former
one only needs to give the name of the file including the specification as a command-line
argument.

~/pgsolver> bin/pgsolver tests/test1.gm

3.4.2 Command-Line Parameters

PGSolver’s behaviour can be changed through command-line parameters. In particu-
lar, you can determine the algorithm that is used for solving, specify whether or not you
want to view the result in text mode or graphically, etc. Command-line parameters can
be given in any order, although some are conflicting and in that case the latter overrides
the former; for example when you specify more than one algorithm that should be used
for solving. The currently understood command-line parameters are:

〈filename〉
Tells pgsolver to look for the specification of the parity game to solve in the file
〈filename〉.
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-v 〈level〉
Sets the verbosity level, valid arguments are 0–3, the default is 1. With verbosity
level 0, pgsolver will be very humble and not bother stdout with its pathetic
goobledigook. With verbosity level 1, it will tell you what it does and what the
winning regions and strategies are. With verbosity level 2, it will tell you a bit
more, but this very much depends on which algorithm is chosen for solving etc.
It may for example tell you something it has found out about the SCC structure
or priority distribution in the game. Verbosity level 3 is for debugging purposes.
Again, this very much depends on the solving algorithm.

--quiet
Causes the program to be quiet, same as -v 0.

--verbose
Causes the program to be verbose, same as -v 2.

--debug
Causes the program to be very verbose, same as -v 3.

-d 〈filename〉
Tells pgsolver to open the file 〈filename〉 for writing and print into it the dot-code
of the parity game as a graph, see also Sect. 3.6. If the game has been solved during
this invocation then the graphical presentation will display the winning regions and
strategies. You can use option -n in combination with this one to display a pure
parity game, i.e. without the winning information.

-n
Tells pgsolver to suppress solving. This can be used to simply draw a parity game
in dot-format without the information about winning regions and strategies. This
is a default selection, i.e. PGSolver will not solve a game unless you specify ex-
plicitly which algorithm it should use. See below for the command-line parameters
that let you do so.

--disableglobalopt or -dgo
Tells pgsolver to completely disable any global optimisations. Global optimisation
is enabled by default.

--disableuselesscycles or -dul
Tells pgsolver to disable to automatic deletion of useless self cycles. This is a
global optimisation and is enabled by default.

--disableusefulcycles or -duf
Tells pgsolver to disablee the automatic utilisation of useful self cycles. This is a
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global optimisation and is enabled by default.

--disablesccdecomposition or -dsd
Tells pgsolver to decompose the game into strongly connected components. This
is enabled by default.

--disablelocalopt or -dlo
Tells pgsolver to completely disable any local optimisations. Local optimisation
is enabled by default.

--enableprioprop or -pp
Tells pgsolver to enable priority propagation. This is a local optimisation and is
disabled (!) by default.

--disablepriocomp or -dcp
Tells pgsolver to disable priority compression. This is a local optimisation and is
enabled by default.

--disablespecialgames or -dsg
Tells pgsolver to completely disable any algorithms solving special instances. This
is enabled by default.

--disablesingleparity or -dpa
Tells pgsolver to disable the automatic solving of single parity instances. This is
a special instance solving optimisation and is enabled by default.

--disablesingleplayer or -dpl
Tells pgsolver to disable the automatic solving of single player instances. This is
a special instance solving optimisation and is enabled by default.

--verify or -ve
This causes pgsolver to perform, after solving, an additional check that the re-
ported winning strategies are correct; useful for finding bugs in new algorithm
implementations.

--verify2 or -ve
Same as --verify but use a different verification method; useful for finding bugs
in new algorithm implementations if you have used --verify but want to be really
sure.

31



--verify3 or -ve
Still the same as --verify or --verify2 but uses yet again a different verification
method; useful for finding bugs in new algorithm implementations if you have used
--verify and --verify2 but generally have issues with trust.

--justheatCPU or -jh
On large parity games, printing the winning information can take a long time be-
cause of the bottleneck stdout. This option turns the printing of that information
off. Useful if one is interested in running times only for instance.

--changesat 〈satsolver〉 or -cs 〈satsolver〉
Selects the SAT solver backend that is to be used. Only affects parity game solving
algorithms that depend on SAT solving. If there are less than two SAT solvers
linked into PGSolver, this parameter is disabled.

--viasat or -vs
Use the small progress measure encoding for propositional logic and a reduction
to SAT due to Lange. Also see the command-line parameters that select the SAT
solver to be used. This parameter is only available if there is at least one SAT
solver linked into PGSolver.

--stratimprove or -si
Use the strategy improvement algorithm due to Jurdziński and Vöge.

--optstratimprov or -os
Use the strategy improvement algorithm due to Schewe.

--smallprog or -sp
Use the small progress measure algorithm due to Jurdziński.

--satsolve or -ss
Tells pgsolver to encode a direct NP predicate that is to be solved due To Fried-
mann. This parameter is only available if there is at least one SAT solver linked
into PGSolver.

--recursive or -re
Use the recursive algorithm due to Zielonka.

--modelchecker or -mc
Use the µ-calculus model checker due to Stevens and Stirling.
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--dominiondec or -dd
Use the dominion decomposition algorithm due to Jurdziński, Paterson, and Zwick.

--bigstep or -bs
Use the big-step procedure due to Schewe.

--guessstrategy or -gs
Use the strategy guessing heuristic.

3.4.3 Output

An invocation of

~/pgsolver> bin/randomgame 10 10 2 4 | bin/pgsolver --recursive

will typically create output on stdout like this:

PGSolver Collection Ver. 3: Parity Game Solver
Authors: Oliver Friedmann and Martin Lange, University of Munich,
2008-2010
http://www.tcs.ifi.lmu.de/pgsolver

Parsing ..................... 0.00 sec
Chosen solver ‘recursive’ ..... 0.00 sec

Player 0 wins from nodes:
{0,2,5,6,7,8}

with strategy
[0->6,2->2,5->0,6->2,7->7,8->8]

Player 1 wins from nodes:
{1,3,4,9}

with strategy
[1->9,3->9,4->3,9->9]

It reports the times it took to parse the input and to solve the game specified in this
input as well as which solver has been used. Then it reports for both players the sets
of winning regions in the game as a list of natural numbers (each node’s index in the
game) in ascending order. The positional strategies are reported as a list of pairs of the
form x->y meaning that in node x, the player at hand should move to node y. This list
is also sorted in ascending order w.r.t. x. Furthermore, the set of nodes given as x’s in
this list is exactly the set of nodes belonging to that player.
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3.5 Specifying Parity Games

PGSolver expects the parity game it should solve or display to be given in its own
specification language. There, a parity game consists of an optional header line and a list
of node specifications. The header line tells PGSolver the highest occurring identifier
in the game helping to speed up the parsing process. Each node specification contains
an identifier of a node (a natural number), its priority, the player who owns the node,
the list of its successors and, optionally, a symbolic name of the node. The format can
easily be described in EBNF.

〈parity game〉 ::= [parity 〈identifier〉 ;] 〈node spec〉+

〈node spec〉 ::= 〈identifier〉 〈priority〉 〈owner〉 〈successors〉 [〈name〉] ;

〈identifier〉 ::= N

〈priority〉 ::= N

〈owner〉 ::= 0 | 1
〈successors〉 ::= 〈identifier〉 (, 〈identifier〉)∗

〈name〉 ::= " ( any ASCII string not containing ‘"’) "

There must be whitespace characters between the following pairs of tokens: 〈identifier〉
and 〈priority〉, 〈priority〉 and 〈owner〉, 〈owner〉 and 〈identifier〉.

The identifier – in effect a natural number – that is given at the beginning of the
specification after the keyword parity allows more efficient parsing. It should be the
maximal identifier of a node in the game. If it is smaller, parsing will fail. If it is bigger
then parsing will be successful and solving should be possible as well, but internally the
game will be blown up with undefined nodes. For large games we recommend adding the
parity 〈identifier〉 at the beginning. Note that currently, the old format without the
size specification is still supported but may be dropped in a future version of PGSolver.

In order to give a precise semantics to this syntax we introduce the following notation.
Let G = (V, V0, V1, E, Ω) be a parity game with V ⊆ N, and α := (v, p, i, s) ∈ N × N ×
{0, 1} × N+. Then G + α is defined as the parity game (V ′, V ′

0 , V
′
1 , E

′,Ω′) where

V ′ := V ∪ {v}

V ′
0 := V0 ∪

{
{v} , if i = 0
∅ , otherwise

V ′
1 := V1 ∪

{
{v} , if i = 1
∅ , otherwise

E′ := (E ∩ (V \ {v})2) ∪ {(v, w) | s = . . . , w, . . .}

Ω′(w) :=

{
p , if w = v

Ω(w) , otherwise
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Africa: 6

Antarctica: 5

Asia: 7

America: 8

Australia: 6

Figure 3.1: An example of a parity game.

Now let G0 := (∅, ∅, ∅, ∅,⊥) with ⊥ being the empty function. Then we can recursively
define the semantics of a parity game specification as follows. Let ε denote the empty
list of node specifications.

[[ε]] := G0

[[l (v p i s n;)]] := [[l]] + (v, p, i, s)
[[l (v p i s;)]] := [[l]] + (v, p, i, s)

Note that the EBNF definition of the syntax does not ensure well-formedness of a parity
game. For instance, one can list identifiers in the successors list of a node that do not
have node specifications for themselves. PGSolver assumes the input games to be
well-formed in that sense. Otherwise it will terminate with an error message.

Example 6 The parity game depicted in Fig. 3.1 can, for example, be specified as
follows.

parity 4;
1 3 0 1,3,4 "Europe";
0 6 1 4,2 "Africa";
4 5 1 0 "Antarctica";
1 8 1 2,4,3 "America";
3 6 0 4,2 "Australia";
2 7 0 3,1,0,4 "Asia";
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Nodes belonging to player 0 are shown in diamond shape, the others in box shape. The
label in each node is composed of the node’s name and its priority. Note that symbolic
names are optional.

Currently, parity games are stored as arrays of node specifications. The index in
that array at which a node is stored, equals its identifier. This has two important and
noteworthy consequences.

• As noted above, using identifiers multiply leads to overriding of nodes. If the parity
game contains more than one node specification with the same identifier then the
last node specification determines the properties of the node with that index.

• The size of the array that is allocated to store a parity game is always n + 1
where n is the maximal identifier occurring in the game’s specification. To avoid
unnecessary waste of space you should ensure that the nodes’ identifiers in a parity
game occupy a closed interval of the natural numbers of the form {0, 1, 2, . . . , n}.

3.6 Viewing Parity Games

PGSolver can display parity games in two different ways: textually and graphically.
The former can be invoked using the command-line option -f.

~/proj/pgsolver> bin/pgsolver -f

This results in a simple reprinting of the parity game to be solved at the end of PG-
Solver’s usual output. The format is the same as the input format described in the
previous section.

In order to display parity games graphically one needs the graphviz package, available
for free from

http://www.graphviz.org/

PGSolver can create output in the dot-format which can be displayed using dotty
from the graphviz package for example. The relevant command-line parameter is -d
with a filename which tells PGSolver to write the dot code into that file after solving
the game. Beware that you need to tell PGSolver explicitly (how) to solve the game.
If you omit this, PGSolver will parse the input but not solve the game. However, this
can be used to display the game as it is.

~/proj/pgsolver> bin/pgsolver -d graph.dot tests/test1.gm

Then, in order to view it, try

~/proj/pgsolver> dotty graph.dot

PGSolver can also display a game together with the winning information. This happens
when you tell it to create dot-code for the game and tell it to solve it.
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~/proj/pgsolver> bin/pgsolver --recursive -d graph.dot tests/test1.gm

Again, the result can be viewed using

~/proj/pgsolver> dotty graph.dot

for example. However, now nodes and some edges are coloured according to the following
specification.

• The winning region for player 0, i.e. all nodes from which he/she can win the game,
is coloured green. The winning region for player 1 is coloured red.

• An edge coloured green belongs to the positional strategy for player 0 that is
winning on his/her winning region. An edge coloured red belongs to player 1’s
respective winning strategy.

An example display of a solved parity game is given on the title page.

3.7 Additional Tools

3.7.1 Obfuscator

This tool randomly permutes the identifiers of nodes as well as the order of nodes’
successors in a parity game. This is useful to confuse algorithms which perform very
well on certain benchmarks because of the order in which nodes and successors are given.

Example 7 Take the ladder game of index 4, as introduced in Sect. 4.5 below. In
PGSolver’s specification format it looks like this.

~/pgsolver> bin/laddergame 4
parity 7;
0 0 0 1,2;
1 1 1 2,3;
2 0 0 3,4;
3 1 1 4,5;
4 0 0 5,6;
5 1 1 6,7;
6 0 0 7,0;
7 1 1 0,1;

Each player owns 4 out of the eight nodes. Since all nodes have outdegree 2, there are
24 = 16 strategies for each of the player. In general, there are 2n different strategies in
the game of index n but only one of them is a winning strategy. However, the winning
strategy for player 0 for example is an obvious one in this case. It consists of always
choosing the first node in the list of successors. Equally, the winning strategy for player
1 consists of always choosing the last node in each list. This is hardly a good hiding of
the winning strategies.
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Obfuscator employs a random generator to destroy the order of the successors and the
order in which the nodes are given. A typical obfuscation of the ladder game of index 4
would be the following.

~/pgsolver> bin/laddergame 4 | bin/obfuscator
parity 7;
0 1 1 6,1;
1 1 1 7,5;
2 1 1 3,0;
3 0 0 0,6;
4 0 0 2,3;
5 1 1 4,2;
6 0 0 1,7;
7 0 0 5,4;

Obfuscator is automatically built through make obfuscator, make tools, or make all.
It takes a parity game on stdin in the specification format described above and returns
the permuted game on stdout. The currently understood command-line parameters are:

--disablenodeobfuscation or -dn
Disables the obfuscation of the ordering of nodes.

--disableedgeobfuscation or -de
Disables the obfuscation of the ordering of the edges.

3.7.2 Compressor

This tool compresses a given parity game s.t. the winning sets and strategies of the
resulting game equal those of the original game.

Example 8 Take the Jurdziński game of J1,2, as introduced in Sect. 4.6 below. In
PGSolver’s specification format it looks like this.

~/pgsolver> bin/jurdzinskigame 1 2
parity 11;
0 1 0 5;
2 1 0 7;
4 2 1 5,0;
6 2 1 5,7,2;
5 2 0 4,6,9;
7 2 0 7,6;
8 4 0 9;
10 4 0 9,11;
9 3 1 8,10,5;
11 3 1 10,11,7;
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It is possible to push priorities along edges overriding smaller priorities. It is also possible
to reassign priorities just keeping parities and the order inbetween them. This leads to
the following game:

~/pgsolver> bin/jurdzinskigame 1 2 | bin/compressor -pr -pp
parity 11;
0 0 0 5;
2 0 0 7;
4 0 1 5,0;
5 0 0 4,6,9;
6 0 1 5,7,2;
7 0 0 7,6;
8 2 0 9;
9 1 1 8,10,5;
10 2 0 9,11;
11 1 1 10,11,7;

It is also possible to compress the original game’s identifier space eliminating unused
node indetifiers.

~/pgsolver> bin/jurdzinskigame 1 2 | bin/compressor --nodes
parity 9;
0 1 0 3;
1 1 0 5;
2 2 1 3,0;
3 2 0 2,4,7;
4 2 1 3,5,1;
5 2 0 5,4;
6 4 0 7;
7 3 1 6,8,3;
8 4 0 7,9;
9 3 1 8,9,5;

Note that the original game does not possess a node called 1 for instance.

Compressor is automatically built through make compressor, make tools, or make all.
It takes a parity game in the specification format described above on stdin or from a
given file, and returns the compressed game on stdout. The currently understood
command-line parameters are:

〈filename〉
Tells the tool to look for the specification of the parity game to transform in the
file 〈filename〉.

--priorities or -pr
It reduces the priority of each node preserving their parities as well as the relation
≤ among priorities of nodes within an SCC of the game graph.

39



--priopropagation or -pp
It tries to reduce the overall number of priorities occurring in the game by pushing
priorities along edges of the game graph overriding smaller ones. If all nodes
leading to a node v have a greater priority than the node itself, the priority of this
node is altered to the least predecessing priority. Similarly the priority of a node
is adapted if all successors of a node have a greater priority than the node itself.
This process is iterated until stability is reached.

Obviously, this process may destroy the preservation of parities and the less-or-
equals relation among priorites described above.

--antipropagation or -ap
It tries to set the priority of as many nodes as possible to zero. If all nodes leading
to a node v have a greater priority than the node itself, the priority of this node
can be set to zero. Similarly the priority of a node is adapted if all successors of
a node have a greater priority than the node itself. This process is iterated until
stability is reached.

--fakealt or -fa
Keep fake alternation w.r.t. priorities. If this option is enabled the compaction
of priorities never assigns the same priority to nodes that had different priorities
before, even if there is no other priority occurring inbetween and both priorities in
question are of the same parity.

--wholegame or -pp
The compression of priorities is usually done independently for each SCC of the
game graph. This switch causes the graph’s SCC decomposition to be ignored.
This will in general result in a worse compression rate.

--nodes or -no
Performs a compression of the space of identifiers of a parity game, resulting in a
possible down-shift of identifiers.

--minmaxswap or -mm
Transforms a min-parity game into a max-parity one and vice versa.

3.7.3 Combinator

This tool combines two or more parity games into one single parity game by shifting
the node numbers. Neither additional edges between the games are added nor other
modifications are done.

Example 9 We just create two small random games and combine them to see what
happens.
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~/pgsolver> bin/randomgame 5 5 2 3 | tee game1.gm
parity 4;
0 1 1 3,4 "0";
1 4 0 1,4 "1";
2 5 0 0,2,4 "2";
3 1 0 0,2,4 "3";
4 0 1 0,1,3 "4";

~/pgsolver> bin/randomgame 5 5 2 3 | tee game2.gm
parity 4;
0 4 0 2,3 "0";
1 5 0 0,4 "1";
2 4 1 0,2,3 "2";
3 4 0 2,4 "3";
4 4 1 0,3 "4";

A combination of both games can be achieved as follows:

~/pgsolver> bin/combine game1.gm game2.gm
parity 9;
0 1 1 3,4 "0";
1 4 0 1,4 "1";
2 5 0 0,2,4 "2";
3 1 0 0,2,4 "3";
4 0 1 0,1,3 "4";
5 4 0 7,8 "0";
6 5 0 5,9 "1";
7 4 1 5,7,8 "2";
8 4 0 7,9 "3";
9 4 1 5,8 "4";

Combine is automatically built through make combine, make tools, or make all.
It takes arbitrarly many parity games as command-line parameters and returns the
combined game on stdout. There are no other command-line parameters.

3.7.4 Transformer

This tool transforms a given parity game into an (somehow) equivalent parity game
fulfilling certain properties – depending on the user’s command line specification. The
transformed parity game can be associated with the original game s.t. winning sets and
strategies can be easily back-transformed.

Example 10 Again, take the ladder game of index 3, as introduced in Sect. 4.5 below.
In PGSolver’s specification format it looks like this.
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~/pgsolver> bin/laddergame 3
parity 5;
0 0 0 1,2;
1 1 1 2,3;
2 0 0 3,4;
3 1 1 4,5;
4 0 0 5,0;
5 1 1 0,1;

The game is obviously total but not choice-alternating as node 0 is directly connected
to node 2 with both of them belonging to player 0. A choice-alternation version of this
game can obtained as follows:

~/pgsolver> bin/laddergame 3 | bin/transformer --alternating
parity 11;
0 0 0 1,6;
1 1 1 2,7;
2 0 0 3,8;
3 1 1 4,9;
4 0 0 5,10;
5 1 1 0,11;
6 0 1 2;
7 0 0 3;
8 0 1 4;
9 0 0 5;
10 0 1 0;
11 0 0 1;

Transformer is automatically built through make transformer, make tools, or make all.
It takes a parity game in the specification format described above on stdin or from a file,
and returns the transformed game on stdout. The currently understood command-line
parameters are:

〈filename〉
Tells the tool to look for the specification of the parity game to transform in the
file 〈filename〉.

--total or -to
Perform a totality transformation on the given parity game.

--alternating or -al
Perform a choice-alternation transformation on the given parity game.
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--singlescc or -scc
Perform a simple transformation that results in a single-scc-parity game. The
winning sets and strategies of the original game and the transformed game match.

--prioalignment or -pa
Performs a transformation s.t. the parity of each node of the resulting game
matches its player unless its priority is zero.

--dummynodes or -dn
Performs a transformation that divides each edge by an additional node with pri-
ority 0.

--uniquizeprios or -up
Performs a transformation of the occurring priorities s.t. every occurring priority
occurs only once.

--cheapescapecycles or -ce
Adds two low-priority cycles c0 and c1 to the game that are profitable for either
one of the player (c0 for player 0 and c1 for player 1). All nodes in the original
belonging to player 0 get additional edges leading to c1 and all nodes belonging to
player 1 get additional edges leading to c0.

--bouncingnode or -bn
Replaces every self-cycle by a bouncing node.

--increasepriorityoccurrence or -ip
Increases the occurrence of all priorities by one by simply inserting a long cycle
that is not connected to the rest of the game.

--antiprioritycompactation or -ap
Adds additional nodes that prohibits any priority compactation.

Note that the command-line parameters that are specified are carried out in the same
ordering as they appear in the call of the transformer tool. It is also possible to specify
a parameter more than once.

3.7.5 Benchmark Tool

This tool helps the user to carry out benchmarks and to compare the different solvers
with each other. You can specify a list of games that are to be benchmarked with a list
of solver that also has to be specified.
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You can either choose to receive a verbose output showing the exact timing of each
case or a simple line containing data that can be easily parsed by gnuplot. The latter
output option is usually to be used in combination with a shell script creating a whole
benchmark series.

Example 11 The following example shows how to benchmark the recursive and the
strategy improvement algorithm on a random game with 1000 nodes. To smooth multi-
tasking interference factors, each test case is carried out 3 times.

~/pgsolver> bin/randomgame 1000 1000 2 4 | bin/benchmark -re -si -t 3
Benchmarking stratimprove...
Game # 0, Iteration #1...0.02 sec
Game # 0, Iteration #2...0.02 sec
Game # 0, Iteration #3...0.02 sec
Finished. Best: 0.02 sec Avg: 0.02 sec Worst: 0.02 sec

Benchmarking recursive...
Game # 0, Iteration #1...0.01 sec
Game # 0, Iteration #2...0.00 sec
Game # 0, Iteration #3...0.01 sec
Finished. Best: 0.00 sec Avg: 0.01 sec Worst: 0.01 sec

+-----------------------------------------------------------+
| Benchmark Statistics |
+-----------------------------------------------------------+
| Solver | Best | Average | Worst |
+-----------------------------------------------------------+
| recursive | 0.00 sec | 0.01 sec | 0.01 sec |
| stratimprove | 0.02 sec | 0.02 sec | 0.02 sec |
+-----------------------------------------------------------+

Benchmark is automatically built through make benchmark, make tools, or make all.
It takes one ore more parity games in the specification format described above on stdin
or from files, and carries out the benchmark. The currently understood command-line
parameters are:

〈filename〉
Tells the tool to look for the specification of the parity game in the file 〈filename〉.

--all or -a
Benchmark all available parity games solvers.

--〈solver〉
Benchmark the specified solver. All solvers that are compiled into PGSolver are
available here.
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--silent or -s
Only print the final statistics on stdout.

--gnuplotformat or -gp
Only print a gnuplot-compatible line.

--timeout 〈timeout〉 or -t 〈timeout〉
If one of the solvers requires more than t seconds on one of the test cases, the
solver is ignored for the rest of the series. There is no timeout by default.

--name 〈title〉 or -n 〈title〉
Specifies the title of the benchmark that is to be printed in the final statistics.

--times 〈n〉 or -t 〈n〉
Specifies the number of iterations a single test case is carried out per algorithm.
By default, n is 10.

--〈optimisation − option〉
All optimisation options that are available to pgsolver are also available here.
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4 Benchmarks

The PGSolver library contains a few programs that create benchmarks for the parity
game solvers. They are built using the command

~/pgsolver> make generators

and reside afterwards in the subdirectory bin.
Additionally, it is possible to compile all generators directly into PGSolver by setting

the variable LINKGENERATORS to YES in the ./Config-file. This has the advantage that
the process of generating and solving a game is not slowed down by formatting the game
first and parsing it afterwards again into the same data structure.

4.1 Random Games

Randomly generated parity games are the simplest form of benchmarking utility to
assess the performance of game solvers. The ones used here are parametrized by four
parameters: the number n of nodes in the game, the highest priority p, a lower and an
upper bound l and u on the out-degree of each node. The call

~/pgsolver> bin/randomgame 1000 200 2 5

creates a random game with 1000 nodes as follows: for each node v,

• the priority Ω(v) is uniformly chosen among {0, . . . , 200};
• node v belongs to player 0 with probability 0.5 and therefore to player 1 with

probability 0.5 as well;

• a number d is uniformly chosen in the range {2, . . . , 5}, and d pairwise different
nodes are uniformly chosen as v’s successors.

Beware that bin/randomgame may crash or not terminate if the lower bound on the
outdegree is greater than the upper bound or that one is greater than the number of
nodes.

4.2 Clustered Random Games

Almost every game created by the random generator above consists of a single big SCC
and many adhesive chains.

Therefore this generator uses an other random model that accomplishes to bring a bit
more structure into its instances. It depends on nine parameters: The number of nodes n,
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the highest possibly occurring priority p, an out-degree range (l;h), a recursion depth r,
a recursion breadth range (a; b) and an interconnection range (x; y). An instance of Gc

(n,r)

with c = (p, l, h, a, b, x, y) can be generated as follows. If r = 0 or a > n simply return a
randomly generated game with n nodes, highest priority p and out-degree bounds l and
h as above. If r > 0 and a ≤ n,

• a number d is uniformly chosen in the range {a, . . . ,min(b, n)};
• d numbers k0, . . . , kd−1 are uniformly chosen in the range {0, . . . , n−1} s.t.

∑d−1
i=0 ki =

n;

• d instances G0, . . . , Gd−1 are chosen, where Gi is chosen from Gc
(ki,r−1) (we assume

the nodes of all Gi to be pairwise different);

• a game G is created by the union of all Gi;

• a number e is uniformly chosen in the range {x, . . . , y};
• e additional uniformly chosen edges in G are added to G;

• the game G is returned.

Basically, this recursive approach creates a topological tree structure that is partially
intercepted by adding the additional interconnection edges.

A clustered random game with 1000 nodes, highest priority 2, out-degree bounds 2
and 5, recursion depth 3, recursion breadth between 4 and 6 and interconnection degree
between 11 and 22 is created using the call

~/pgsolver> bin/clusteredrandomgame 1000 200 2 5 3 4 6 11 22

4.3 Steady Random Games

The Steady Random Generator tries to circumvent many universal optimisations in
order to particularly benchmark the backend solvers. The Steady Random Generator is
parametrized by five parameters: the number n of nodes (and different priorities) in the
game, a lower and an upper bound and on the out-degree of each node and a lower and
an upper bound and on the in-degree of each node. The call

~/pgsolver> bin/steadygame 1000 2 4 3 5

creates a random game with 1000 nodes as follows: for each node v,

• the priority Ω(v) is simply v;

• node v belongs to player 0 with probability 0.5 and therefore to player 1 with
probability 0.5 as well;

• a number d is uniformly chosen in the range {2, . . . , 4}, and d pairwise different
nodes are uniformly chosen in v’s subgame as v’s successors;
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• a number d is uniformly chosen in the range {3, . . . , 5}, and an attempt is made
to ensure that v has d pairwise different predecessors.

All edges are iteratively determined as long as there are at least two different nodes with
one of them violating a lower bound and the other one being below the opposite upper
bound uniformly between two such nodes.

4.4 Clique Games

The clique game of order n is Gn = ({0, . . . , n− 1}, {0, 2, 4, . . .}, {1, 3, 5, . . .}, E, Ω) with
E = {(v, w) | v 6= w} and Ω(v) = v. It forms a clique in a directed graph without
self-cycles. Clique games exhibit a large amount of cycles in the game which may pose
difficulties for certain solvers. Note that adding self-cycles to the nodes will result in
easy solving because self-cycles are partial winning strategies in this case, and then all
other nodes would lie in the attractor of these winning regions.

The clique game of order 50 for instance is generated as follows.

~/pgsolver> bin/cliquegame 50

The clique game of order 50 with self-cycles can also be generated.

~/pgsolver> bin/cliquegame 50 self

4.5 Ladder Games

The name of these games is derived from their structure which is reminiscent of a ladder.
The ladder game of index n is Gn = (V, V0, V1, E,Ω), defined as follows.

• V = {0, . . . , 2n− 1},
• V0 = {0, 2, 4, . . . , 2n− 2}, V1 = {1, 3, 5, . . . , 2n− 1},
• E = {(v, w) | w ≡2n v + i for some i ∈ {1, 2} },
• Ω(v) = v mod 2.

where ≡2n means equality modulo 2n.
It is not hard to see that player 0 wins on V0 and player 1 wins on V1 since both can

stay within these regions and only see the priorities 0, resp. 1.
Ladder games are chosen as benchmarks because in Gn there are 2n many positional

strategies for each player but only one of them is a winning strategy. Not surprisingly,
ladder games are very difficult to solve for the strategy guessing heuristic for example.

The ladder game of index 19 is created using the call

~/pgsolver> bin/laddergame 19
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4.6 Jurdziński Games

Jurdziński has defined a family of games on which the small progress measures algorithm
exhibits an exponential running time [Jur00]. The Jurdziński game Jd,w of depth d and
width w forms a rectangle of dimension (2d+1)×(2w). For instance, J50,100 is generated
by calling

~/pgsolver> bin/jurdzinskigame 50 100

4.7 Recursive Ladder Games

The recursive ladder games form a family on which the recursive algorithm exhibits an
exponential running time. The recursive ladder game of index n has size 5 · n− 3. The
recursive ladder game of index 4 results in 17 nodes and is generated by calling

~/pgsolver> bin/recursiveladder 4

4.8 Exponential Strategy Improvement Games

The exponential strategy improvement games form a family on which both strategy
improvement algorithms exhibit an exponential running time (in the index of the game)
[Fri09]. The exponential strategy improvement game of index n has size 14 · n + 11. A
game of index 4 results in 67 nodes and is generated by calling

~/pgsolver> bin/expstratimpr 4

In order to verify that the strategy iteration indeed requires exponential runtime on
these games, you need to either disable all generic optimisations or transform the game
using the transformer tool with the parameters -ss -ap -bn.

4.9 Model Checker Ladder Games

The model checker ladder games form a family on which the model checker algorithm
exhibits an exponential running time. The model checker ladder game of index n has
size 4 · n. A model checker ladder game of index 3 results in 12 nodes and is generated
by calling

~/pgsolver> bin/modelcheckerladder 3

4.10 Tower of Hanoi

The Towers of Hanoi problem can be seen as a reachability game in the graph of game
configurations. The problem of size n has n disks that are to be moved from the first to
the third rod. A problem of size 3 is generated by calling

~/pgsolver> bin/towersofhanoi 3
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4.11 Fairness Verification of an Elevator System

We encode a simple fairness verification problem as a parity game. States of a transition
system modelling an elevator for n floors are of type {1, . . . , n}×{o, c}× (

⋃{Perm(S) |
S ⊆ {1, . . . , n}). The first component describes the current position of the elevator as
one of the floors. The second component indicates whether the door is open or closed.
The third component – a permutation of a subset of all available floors – holds the
requests, i.e. those floors that should be served next. The transitions on these are as
follows.

• At any moment, any request or none can be issued. For simplicity reasons, we
assume that at most one floor is added to the requests per transition. Note that
nondeterministically, no request can be issued, and a request for a certain floor
that is already contained in the current requests does not change them.

• If the door is open then it is closed in the next step, the current floor does not
change.

• If it is closed, the elevator moves one floor (up or down) into the direction of the
first request. If the floor reached that way is among the requested ones, the door is
opened and that floor is removed from the current requests. Otherwise, the door
remains closed.

We consider two different implementations of this elevator model: the first one stores
requests in FIFO style, the second in LIFO style. The games Gn (with FIFO), resp. G′

n

(with LIFO) result from encoding the model checking problem for this transition system
and the CTL∗ formula A(GFisPressed → GFisAt) as a parity game [Sti95]. Proposition
isPressed holds in any state s.t. the request list contains the number n, and isAt holds in
a state where the current floor is n. Hence, this formula requires all runs of the elevator
to satisfy the following fairness property: if the top floor is requested infinitely often then
it is being served infinitely often. It can easily be formulated in the modal µ-calculus
using a formula of size 11 and alternation depth 2 (of type ν–µ–ν). Hence the resulting
parity games have constant index 3. Note that Gn encodes a positive instance of the
model checking problem whereas G′

n encodes a negative one. The game G4 is generated
by calling

~/pgsolver> bin/elevatorverification 4

and the game G′
5 by calling

~/pgsolver> bin/elevatorverification -u 5
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5 Developer’s Guide

The purpose of this chapter is to provide enough insight into the structure of the PG-
Solver tool such that it becomes possible to extend it with a new algorithm. We assume
reasonable OCaml programming skills and some familiarity with parity games, though.

Implementing a new algorithm requires two steps only.

1. Create an OCaml source code file that contains the solver. This is just a function
which takes a parity game and returns a partition of (a subset of) its node set into
winning regions and winning strategies for the two players. It must reside in a new
module.

2. Integrate this function into the main program such that the new solver can be
used by giving pgsolver a certain command-line argument. Then adjust the
SolverList such that the new module is compiled with the rest of the tool.

5.1 Structure of the Source Code

In the following, all references to files are given relatively to the directory into which
PGSolver was unpacked during the installation process. There, the subdirectory src
is the important one for this step. It contains the source files of all the modules that
make up the PGSolver library. They are organised into the following subdirectories
respectively. Note that, when we speak of modules we often refer to files only that
implicitly count as a module in OCaml.

generators contains modules that make up the benchmark generators;

tools contains tools for the creation or manipulation of parity games;

paritygame contains modules that define parity games as a data structure and provide
functionality for that, e.g. in the form of procedures that compute SCC decompo-
sitions etc.;

pgsolver contains modules for the actual program pgsolver;

solvers contains the parity game solvers, each in a separate module;

5.2 Definitions of Important Data Types

The signature file
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src/paritygame/paritygame.mli

contains the definition of parity games as a data structure.

type paritygame = (int * int * int array * string option) array

A parity game is internally stored as an array of node definitions. Hence, the size of the
array is at least the number of nodes in the game. A node is a value of type int – it is
implicitly assumed that the nodes’ names in a game are 0, . . . , n for some n ∈ N. The
value stored in the array at position i defines the node i in the game. Such a value is of
the form (priority, player, successors, name) where

• priority is a value of type int defining the node’s priority. Admissible values are
0, 1, 2, . . .

• player is a value of type int determining whether or not node i belongs to V0 or
V1. Admissible values are only 0 or 1.

• successors is an array with entries of type int defining the outgoing edges of
node i. There is an edge to node j iff j occurs somewhere in the array. Multiple
occurrences of successor nodes in such an array are not explicitly forbidden. Hence,
it is actually possible to define a multi-graph. However, it is easy to see that
multiple edges do not affect the winning regions or strategies.

• name of type string option is an optional name for the node which can be used
in displaying the game. The default value is None representing no name. A value
of the form Some("Europe") declares the string Europe as the symbolic name of
node i.

Example 12 The parity game in Ex. 6 whose graph is shown in Fig. 3.1 on page 35
would, for example, be represented as the following array.

[| (6,1,[|4;2|],Some("Africa")); (8,1,[|2;4;3|],Some("America"));
(7,0,[|3;1;0;4|],Some("Asia")); (6,0,[|4;2|],Some("Australia"));
(5,1,[|0|],Some("Antarctica")) |]

It is possible to leave nodes undefined by given them the value (-1,-1,[||],None)
for example.

The signature file

src/paritygame/paritygame.mli

also contains two type definitions for a parity game’s solution – the node set’s partition
into winning regions – and positional strategies.

type solution = int array
type strategy = int array
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Internally, both simply are arrays with entries of type int. Note that a solution or a
strategy only makes sense in the context of a parity game, but this is not respected by
this definition of data structures. The program itself has to ensure that it does not lose
the connection between a solution array and the corresponding game for example.

Given a parity game, represented as an array of length n as above, a solution to this
is an int array s of length n as well. The entry at position i in s is either 0 or 1 –
indicating whether or not node i belongs to W0 or W1. The value −1 is also allowed,
enabling partial solving. This is used to indicate that a solution for node i has not been
computed.

An array of type strategy contains, in effect, two positional strategies – one for each
player. Again, such strategies are only well-defined in the context of a given parity
game, although this is not reflected by the typing. Remember that the node set V of
a parity game is partitioned into V0 and V1, assigning an owner to each node in the
game. If there are n nodes, then a valid strategy array is also of size n. Let game be the
array representation of a parity game as described above. Now take some i < n and let
(priority,player,succs,name) be the definition of node i, i.e. the entry at position
i in the array game. Remember that succs is, again, an array with entries of type int
that contains the indices of all the successors of i. Now the array strategy defines two
positional strategies σ0 and σ1 for players 0 and 1 in the following sense. The entry at
position i is j iff player σp(i) = k where k is the value of the succs-array at position
j, and p is the value of player. In other words, the strategy array contains for every
node the index of the outgoing edge that the owner of the node should take in a move.

Clearly, the strategies represented by such arrays need not be winning strategies. It
is assumed, though, that, in the context of a solution array, the strategies are winning
strategies on those parts of the game that are won by each player respectively. Hence,
admissible values for entries in a strategy array are 0, 1, . . . but values j ≥ 1 may lead
to exceptions due to array indices that are out of bounds. The value −1 is also allowed
to indicate that a strategy is not defined for a certain node. This enables partial solving
and should only occur in conjunction with a −1 in the corresponding position of the
solution array indicating that the node has not been solved by a solver.

5.3 Implementing a New Solver

We will exemplarily describe how to implement and integrate a new algorithm that solves
parity games. There is more than one way to do so but there is a unique easiest way
which we will follow here.

Suppose you have finally come up with a deterministic polynomial time algorithm.
Surely this cannot miss in the PGSolver library. It is also quite probable that the
algorithm is complex – for otherwise someone else would have found it before. There-
fore you cannot wait for us to implement it. By the time we have understood all the
algorithm’s subtleties our programming skills will have bitten the dust. In that case you
better do it yourself.

Find an expressive name for your algorithm that will be used to create a module
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and also later a command-line parameter for the pgsolver program. Say Deterministic
Polynomial Time Solver was a good name. Then create two files in the src/solvers
subdirectory, for example called

detpoly.ml
detpoly.mli

The signature file detpoly.mli must look like this.

val solve : Paritygame.paritygame ->
Paritygame.solution * Paritygame.strategy

The name of the function is actually irrelevant, but calling it solve is not a bad idea.
Its type is mandatory though. It must take a parity game and return a pair of a solution
and a strategy using the data types described above.

Now sit down and hack the code for the implementation of your solver into the file
detpoly.ml. In the simplest form this will look like

open Paritygame ;;
let solve game = ...

However, note that this function will be called in the main program, and as the argument
game it will receive the parity game from the input. Hence, this does not automatically
make use of the universal solver described in Sect. 2.4. This is because one cannot
guarantee that the universal optimisations compression, SCC decomposition and solving
of special cases speed up any solver.

If your algorithm turns out to be that quick you might not want the universal optimisa-
tions in which case you can skip the following description of how to employ the universal
solver with your new algorithm as a backend and continue with the next section.

So you are still with us – thanks for the trust you have in our universal solver! Now, you
will still have to implement your algorithm in a function of type Paritygame.paritygame
-> Paritygame.solution * Paritygame.strategy but it may be better to choose a
different name. For instance, create a function

let my_solver game = ...

in detpoly.ml that contains the implementation of your solver. This may now assume
that the argument game consists of a single SCC only such that the priorities of at least
two nodes have different parities and it is not just one player who has real choices in all
the nodes in this game.

Now all you have to do is to make sure that the solve-function declared in detpoly.mli
calls the universal solver using your solver as a backend. This is easily done, detpoly.ml
should look like this.

let solve = Univsolve.universal_solve
(Univsolve.universal_solve_init_options_verbose
!Univsolve.universal_solve_global_options)
my_solver
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Note that, if your solver implemented in my_solver is recursive, it can also call solve
instead of my_solver recursively in order to have the universal optimisations done in
every step.

5.4 Integrating the New Solver

Continuing with the example of the previous section we assume that you have im-
plemented a solver in the file src/solvers/detpoly.ml. In particular, this file con-
tains a function solve of type Paritygame.paritygame -> Paritygame.solution *
Paritygame.strategy which is declared in src/solvers/detpoly.mli.

You will have to ensure that your file does automatically get compiled when PG-
Solver is being built using the make command. In SolverList you will find a variable
declaration listing all the modules that make up the entire program. It should look like
this.

PGSOLVERSLIST=
obj/recursive.cmx \
obj/stratimprovement.cmx \
...
obj/stratimprlocal.cmx \
obj/stratimprdisc.cmx

Append to this list obj/detpoly.cmx. It need not be at the end of this list but you
have to make sure that it occurs behind any other module that contains code which is
used by your solver. This could be the paritygame and univsolve part for example
and will most certainly be the solvers part. Now running make should compile the
detpoly-module as well.

At last, you have to integrate your algorithm into the program so that it can be used
through the pgsolver program when given a certain command-line option. This could
not be an easier. Add to your file detpoly.ml the following code after your solve
function.

let _ = Solvers.register_solver
solve
"detpoly"
"dp"
"use the brand-new deterministic polytime algorithm"

The function register solver from the module solvers.ml does everything for you.
You simply have to give it four arguments.

• The first one, here solve is the function of the type described above that imple-
ments your algorithm.

• The second one is a string which should contain a concise but reasonably expressive
synonym for your algorithm. It must not contain white spaces because it will be
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prefixed by two dashes “--” and used as a command-line parameter that tells
pgsolver to use your algorithm.

• The third one is a string which contains an even shorter synonym for your algo-
rithm. It will be prefixed by a single dash symbol “-” and used as a command-line
parameter for pgsolver with the same effect.

• The fourth argument is again a string which contains a description of what pgsolver
does when given any of the the command-line parameters derived from the second
or third argument.

After compilation, called bin/pgsolver --help should result in output containing the
following lines.

PGSolver Collection Ver. 3: Parity Game Solver
Authors: Oliver Friedmann and Martin Lange, University of Munich,

2008-2010
http://www.tcs.ifi.lmu.de/pgsolver

Usage: pgsolver [options] [infile]
Solves the parity game given in <infile>. If this argument is omitted it
reads a game from STDIN.

Options are
-v <level>

sets the verbosity level, valid arguments are 0-3, default is 1
...
--detpoly, -dp

use the brand-new deterministic polytime algorithm

Finally, calling bin/pgsolver -dp or bin/pgsolver --detpoly will solve a parity game
using your algorithm.

We leave it up to you to find the right bits in the code that you have to edit in order
to make pgsolver say that you have also contributed to the tool.

5.5 Useful Functions

When designing a new solver you may need some functionality that other solvers rely on
as well. In that case there is a good chance that one of the modules already contains the
function you are looking for, and you do not have to re-implement it. In the following we
describe some of the implemented functions that are most likely to be useful for solving
parity games in general. All path names are relative to the subdirectory src, i.e. when
we speak about module Basics in the paritygame directory for example then this can
be found in the file src/paritygame/basics.ml.
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5.5.1 The Basics Module

This module in the subdirectory utils contains only one function at the moment which
is used to output string messages to STDOUT depending on the configured verbosity level.

val message : int -> (unit -> string) -> unit
Calling message v (fun _ -> s) outputs the string s on STDOUT if the currently
set verbosity level is greater or equal than v.

val verbosity_level_verbose : verbosity_level
Predefined verbosity level constant for verbose output (2).

val verbosity_level_default : verbosity_level
Predefined verbosity level constant for debug output (3).

5.5.2 The Paritygame Module

This module in the paritygame subdirectory contains many useful routines for creating,
accessing, manipulating, printing, decomposing and generally handling parity games.
Some of the most useful functions are as follows:

val print_game : paritygame -> unit
Calling print_game game prints game on STDOUT s.t. it could be parsed again.

val pg_max_prio : paritygame -> int
Calling pg_max_prio game returns the greatest priority occurring in the game.

val pg_min_prio : paritygame -> int
Calling pg_min_prio game returns the least priority occurring in the game.

val pg_max_prio_for : paritygame -> int -> int
Calling pg_max_prio_for game player returns the greatest reward for player
occurring in the game.

val pg_get_index : paritygame -> int
Calling pg_get_index game returns the index of the game.

val pg_remove_nodes : paritygame -> int list -> unit
Calling pg_remove_nodes game node_list removes all nodes specified in node_list.

val pg_remove_edges : paritygame -> (int * int) list -> unit
Calling pg_remove_edges game edge_list removes all edges specified in edge_list.

val collect_max_prio_nodes : paritygame -> int list
Calling collect_max_prio_nodes game returns all nodes with greatest priority.
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val subgame_by_list : paritygame -> int list -> paritygame
Calling subgame_by_list game nodes returns a compressed subgame induced and
ordered by the nodes-list

val merge_strategies_inplace : strategy -> strategy -> unit
Calling merge_strategies_inplace strat1 strat2 adds all strategy decisions
from strat2 to strat1. Throws an Unmergable-Exception if the domain of both
strategies is not empty, i.e. if there is an index i such that the values of strat1
and strat2 at index i are both not −1.

val merge_solutions_inplace : solution -> solution -> unit
Calling merge_solutions_inplace sol1 sol2 adds all solution informations from
sol2 to sol1. Throws an Unmergable-Exception if the domain of both solutions
is not empty, see above.

val game_to_transposed_graph : paritygame -> int list array
Calling game_to_transposed_graph game returns the transposed graph associ-
ated with the game. It is stipped of information about nodes’ owners and priorities.
At index i it contains a list containing the identifiers of all predecessors of node i
in game.

val game_to_graph : paritygame -> int list array
Calling game_to_graph game returns the graph associated with the game. See the
former function for a description of how graphs are represented.

val strongly_connected_components: paritygame ->
int list array *
int array *
int list array *
int list

Calling strongly_connected_components game decomposes the game into its SCCs.
It returns a tuple (sccs, sccindex, topology, roots) where sccs is an array
mapping each SCC to its list of nodes, sccindex is an array mapping each node
to its SCC (represented by an integer value), topology is an array mapping each
SCC to the list of its immediate successing SCCs and roots is the list of SCC
having no predecessing SCCs.

val attr_closure_inplace: paritygame -> strategy ->
int -> int list -> int list

Calling attr_closure_inplace game strategy player region returns the at-
tractor for the given player and region. Additionally all necessary strategy de-
cisions for player leading into the region are added to strategy.
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5.5.3 The Univsolve Module

This module in the paritygame subdirectory contains the universal solver and some
possibly helpful functions for the universal solving process:

val universal_solve :
universal_solve_options -> (paritygame -> solution * strategy) ->

paritygame -> solution * strategy

Calling universal_solve verbosity solver game starts the universal solving
process using solver as a backend. It returns the solved game as a pair of solution
and strategy.

val universal_solve_by_player_solver :
universal_solve_options ->

(paritygame -> int -> solution * strategy) ->
paritygame -> solution * strategy

Calling universal_solve_by_player_solver verbosity player_solver game
starts the universal solving process using player_solver as a backend. Instead of
a solver backend that solves arbitrary SCCs player_solver is supposed to solve
an SCC w.r.t. a given player, for instance if player_solver scc 0 is called, the
backend is supposed to determine whether a node is won by player 0 (return 0
for this node) or not (return −1 for this node). The strategy that is returned by
player_solver is only considered w.r.t. the given player. The function returns
the solved game as a pair of solution and strategy.

val universal_solve_trivial :
verbosity_level -> paritygame -> solution * strategy

Calling universal_solve_trivial verbosity game starts the universal solving
process with a trivial i.e. not-solving backend. This function is legal to be called
when game can be completely solved by the universal solving process without re-
quiring the backend. Calling universal_solve_trivial returns the solved game
as a pair of solution and strategy.

val compute_winning_nodes :
verbosity_level -> paritygame -> strategy -> int -> int list

Calling compute_winning_nodes verbosity game strategy player considers
the subgame of game w.r.t. the strategy decisions for player; the strategy is
assumed to be total w.r.t. player. It returns the list of nodes player wins on the
game following strategy.

In all these cases the argument verbosity is used to determine whether or not statistics
should be printed at the end.
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and M. Jurdziński, editors, Proc. Int. Workshop on Games in Design and
Verification, GDV’05, 2005.

[Mar75] D. A. Martin. Borel determinacy. Ann. Math., 102:363–371, 1975.

[Pit06] N. Piterman. From nondeterministic Büchi and Streett automata to deter-
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