

SMF

Mapping Reducibility

- Ridurre un problema A ad un problema B usando una mapping reducibility ⇒ esiste una funzione calcolabile che converte istanze del problema A in istanze del problema B.
- Se abbiamo una tale funzione di conversione, chiamata riduzione, possiamo risolvere A risolvendo B.
- Una qualsiasi istanza del problema A può essere risolta usando prima la riduzione per convertire A in una istanza di B e poi risolvendo B.

Funzioni calcolabili

• Definizione:

una funzione $f: \Sigma^* \to \Sigma^*$ è una funzione calcolabile (**computable function**) se esiste qualche macchina di Turing *M* che, su ogni input w, si ferma con f(w) sul suo nastro.

• Esempio:

Tutte le consuete operazioni aritmetiche sugli interi sono funzioni calcolabili. Per esempio, possiamo costruire una macchina che prende in input $\langle m, n \rangle$ e restituisce m+n, la somma di m e n.

SMT

Definizione formale di mapping reducibility

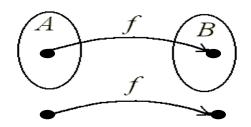
• Definizione:

Un linguaggio A è *mapping reducible* ad un linguaggio B, si scrive $A \leq_m B$, se esiste una funzione calcolabile $f: \Sigma^* \to \Sigma^*$, tale che per ogni W,

$$w \in A \Leftrightarrow f(w) \in B$$
.

• La funzione f è chiamata una riduzione di A a B.

La seguente figura illustra una mapping reducibility



La Funzione f riduce A a B.

- 1. Una mapping reduction da *A* a *B* fornisce un modo per convertire il problema di testare l'appartenenza ad A nel problema di testare l'appartenenza a B.
- 2. Per testare se $w \in A$, usiamo la riduzione f per mappare w con f(w) e testiamo se $f(w) \in B$.

Decidibilità e ≤_m

• Teorema:

Se $A \leq_m B$ e B è decidibile, allora A è decidibile.

Dimostrazione:

Sia M un decisore per B e f una riduzione da A a B. Un decisore N per A è il seguente:

N = "Su input w:

- 1. Calcola f(w).
- 2. esegui M su input f(w) e restituisci l'output di M."

Chiaramente, se $w \in A$, allora $f(w) \in B$ perchè f è una riduzione da A a B. Dunque, M accetta f(w) se $w \in A$.

• Corollario:

If $A \leq_m B$ e A è indecidibile, allora B è indecidibile.

• Dimostrazione:

se A è indecidibile e B è decidibile allora si contraddice il precedente teorema

Mapping reducibility e complementazione

• Teorema:

Se $A \le_m B$, allora anche per i complementi $(\Sigma^* \setminus B) \le_m (\Sigma^* \setminus B)$

• Dimostrazione:

sia f la funzione di riduzione da A a B con $w \in A \Leftrightarrow f(w) \in B$.

• Per questa stessa funzione vale che $w \in (\Sigma^* \backslash A) \Leftarrow f(w) \in (\Sigma^* \backslash B)$, per ogni $w \in \Sigma^*$

Mapping reducibility per HALT_{TM}

- Rivediamo alcune delle dimostrazioni che usano il metodo della riduzione per fare alcuni esempi di mapping riducibilità
- ullet Cominciamo con l'indecidibilità di HALT_{TM} attraverso la riduzione da A_{TM}
- Possiamo dimostrare una mapping riduzione usando una funzione calcolabile f che prende un input di forma (M, w) e ritorna un output di forma (M', w'), dove

$$\langle M, w \rangle \in A_{TM}$$
 se e solo se $\langle M', w' \rangle \in HALT_{TM}$.

- La seguente macchina F calcola una riduzione f.
 - F ="su input $\langle M, w \rangle$:
 - 1. Si costruisce la seguente macchina M', tale che:

M' = "Su input x:

- 1. si esegue M su x.
- 2. se *M* accetta, allora M' accetta.
- 3. se *M* rifiuta, allora M' entra in loop."
- 2. Restituisci $\langle M', w \rangle$."

SMF

Mapping reducibility per EQ_{TM}

• Consideriamo ora l'indecidibilità di EQ_{TM} attraverso una riduzione da E_{TM} una mapping riduzione f da E_{TM} a EQ_{TM} mappa gli input $\langle M \rangle$ con gli output $\langle M, M_1 \rangle$, dove M_1 è la macchina che va in reject su tutti gli input.

$$\langle M \rangle \in E_{TM}$$
 se e solo se $\langle M, M_1 \rangle \in EQ_{TM}$.

- La seguente macchina F calcola una riduzione f.
 - F ="su input $\langle M \rangle$:
 - 1. Costruisce M_1 che rifiuta tutti gli input.
 - 2. Costruisce M' tale che

M' ="su input (M, M_1) :

- 1. se M accetta, accetta. (perché L(M)=L(M₁))
- 2. se *M* rifiuta, rifiuta."
- 3. Restituisce $\langle M', M_1 \rangle$."

Riconoscibilità and ≤_m

- Teorema
 - se $A \le B$ è Turing-riconoscibile, allora A è Turing-riconoscibile.
- Dimostrazione:
 - sia M la TM che riconosce B e f la funzione di riduzione da A a B. Allora M su input w:
 - 1. Calcola f(w)
 - 2. Simula M su f(w) e restituisce lo stesso risultato.
- Dalla definizione di f: w ∈ A è equivalente con f(w) ∈ B.
- M "accetta" f(w) se w ∈ A, e
- M "rifiuta" f(w)/non si ferma su f(w) se w∉A.
- Corollario:
 - se $A \leq_m B$ e A non è Turing-riconoscibile, allora B non è Turing-riconoscibile.
- dimostrazione:
 - Il linguaggio A non è Turing-riconoscibile e se B fosse riconoscibile si contraddirebbe il teorema precedente

Riconoscibilità e ≤_m

- Teorema :
 - se $A \le_m B$ e A non è co-Turing riconoscibile, allora B non è co-Turing-riconoscibile.
- Dimostrazione:
 - Se A non è co-Turing-riconoscibile, allora il complemento ($\Sigma^*\A$) non è Turing-riconoscibile
- da $A \leq_m B$ sappiamo che $(\Sigma^* \setminus A) \leq_m (\Sigma^* \setminus B)$.
- Dal corollario precedente: ($\Sigma^*\B$) non è Turing-riconoscibile, quindi B non è co-Turing-riconoscibile.

 EQ_{TM}

- Teorema:
 - EQ_{TM} non è né Turing-riconoscibile né co-Turing-riconoscibile. Dimostrazione:

Come prima cosa mostriamo che EQ_{TM} non è Turing-riconoscibile, per fare questo mostriamo che $A_{TM} \leq_m comp(EQ_{TM})$.

(questo equivale a dimostrare che comp $(A_{TM}) \leq_m EQ_{TM}$ e noi sappiamo che comp (A_{TM}) è co-Turing-riconoscibile)

La funzione di riduzione f è la seguente:

F = "su input $\langle M, w \rangle$ dove M è una TM e w una stringa:

- 1. Costruisce le seguenti 2 macchine M_1 e M_2 .
 - M_1 = "su ogni input:
 - 1. Rifiuta."
 - M_2 = "su ogni input:
 - 1. esegui M su w. se M accetta, accetta."
 - 2. ritorna $\langle M_1, M_2 \rangle$."

SMT

comp(EQ_{TM}) non è Turing-riconoscibile

Per mostrare che comp(EQ_{TM}) non è Turing-riconoscibile vediamo che $A_{TM} \leq_m EQ_{TM}$.

La seguente G calcola la funzione di riduzione g:

G = "su input $\langle M, w \rangle$ dove M è una TM e w una stringa:

1. Costruisce le seguenti 2 macchine M_1 e M_2 .

 M_1 = "su ogni input:

1. Accetta."

 M_2 = "su ogni input:

1. esegui M su w. se M accetta , accetta."

2. ritorna $\langle M_1, M_2 \rangle$."

Linguaggi senza mapping riduzione

- L'indecidibilità di E_{TM} mostrata nella precedente lezione, mostra invece la differenza tra la nozione formale di "mapping reducibility" e quella informale di riducibilità mostrata precedentemente
- La dimostrazione mostra che E_{TM} è indecidibile tramite una riduzione da A_{TM} .
- Vediamo se riusciamo a trasformare questa riduzione in una mapping riduzione.
- Dall'originale riduzione possiamo facilmente costruire una funzione f che prende in input (M, w) e restituisce (M_1) , dove M_1 è la TM tale che $L(M_1)$ è non vuoto $(L(M_1) = \{w\})$ iff $w \in L(M)$.
- Dunque f è una "mapping riduzione" da A_{TM} a comp (E_{TM}) .
- Questo dimostra ancora che E_{TM} è indecidibile perché la decidibilità non è affetta dalla complementazione, ma f non è certamente una mapping reduction da A_{TM} a E_{TM} .
- Infatti è possibile mostrare che una tale riduzione non può esistere:
- Supponiamo per assurdo che A_{TM}<_m E_{TM} tramite una riduzione f. Per definizione di mapping reducibility segue che comp(A_{TM})<_mcomp(E_{TM}) attraverso la stessa funzione di riduzione f.
- Ma $comp(E_{TM})$ è Turing-riconoscibile e $comp(A_{TM})$ non è Turing-riconoscibile, contraddicendo il precedente teorema sulla turing-riconoscibilità nella slide 9.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.