Monte Carlo based CT Simulation of Virtual Patient Geometries

<u>Simon Kirchhof</u>, Kristina Giske, Lucas N. Burigo Division of Medical Physics in Radiation Oncology, DKFZ

> GERMAN CANCER RESEARCH CENTER IN THE HELMHOLTZ ASSOCIATION

Research for a Life without Cancer

Monte Carlo User Application of Triangular- and Tetrahedral-Mesh Virtual Patient Geometries

<u>Simon Kirchhof</u>, Kristina Giske, Lucas N. Burigo Division of Medical Physics in Radiation Oncology, DKFZ

> GERMAN CANCER RESEARCH CENTER IN THE HELMHOLTZ ASSOCIATION

Research for a Life without Cancer

Trend: Surface-Mesh Phantoms

Conversion of ICRP reference phantom [1]

Radiation worker organ dosimetry [2]

[1] Kim et al. 2017, [2] Yeom et al. 2013

Advantages to Exploit

- VS.

Urinary bladder wall [2]

Representation of thin organs

Advantages to Exploit

Representation of thin organs

Urinary bladder wall [2]

Modeling of movement

RT Example: 4D Mesh Phantom

[3] Han et al. 2015

RT Example: 4D Mesh Phantom

Patient-specific 4D tetrahedral mesh phantom [3]

Our Work

Our Patient-Specific Modeling

Diagnostic images of a patient (MR, CT, etc.)

Virtual patient (K. Giske):

- Surface-mesh phantom
- Patient specific organ sizes

Unstructured Meshes in GPMC

	Mesh-Support		Solutions	
	Polygon	Polyhedra	Library	Application
MCNP6	yes	yes	native	native
PENELOPE	yes	no	PenMesh	-
Geant4	yes	no	-	GATE
	yes	no	-	TOPAS
	yes	yes (via tetgen)	CADMesh	-
	yes	no	DAGSolid	

Unstructured Meshes in GPMC

	Mesh-Support		Solutions	
	Polygon	Polyhedra	Library	Application
MCNP6	yes	yes	native	native
PENELOPE	yes	no	PenMesh	-
Geant4	yes	no	-	GATE
	yes	no	-	TOPAS
	yes	yes (via tetgen)	CADMesh	-
	yes	no	DAGSolid	

GOAL: Integrate proxy library and user application

Implementation Architecture

16/10/17 Slide 12

[4] Poole et al. 2012, [5] Jan et al. 2011

Implementation Architecture

Implementation Architecture

HIGH-LEVEL USER SCRIPT (GATE)

HIGH-LEVEL USER SCRIPT (GATE)

HIGH-LEVEL USER SCRIPT (GATE)

Energy:100 kVp spectrumAngles:isotropicDetector:ideal integrator

Simulated projection

FDK reconstruction using RTK [6]

[6] Rit et al. 2014

16/10/17 Slide 20

	Mesh-Support		Solutions	
	Polygon	Polyhedra	Library	Application
Geant4	yes	yes	CADMesh-fork	GATE-fork

If accepted (on github):

Available through new GATE and CADMesh release.

16/10/17 Slide 24

Acknowledgements

Thanks to Lucas N. Burigo for sharing his Geant4 expertise.

Thanks to Kristina Giske for her conceptual work on this project.

Thank you for your attention!

References

- [1] Kim et al., Phys. Med. Biol. 62, 2017.
- [2] Yeom et al., Phys.Med. Biol. 58, 2013.
- [3] Han et al., Phys. Med. Biol. 60, 2015.
- [4] Poole et al., Australas. Phys. Eng. Sci. Med. 35, 2012.
- [5] Jan et al., Phys. Med. Biol. 56, 2011.
- [6] Rit et al., J. Phys. Conf. Ser. 489, 2014.

Back-up slides

Navigation (Geant4)

16/10/17

Smart voxel

hierarchy

Tetrahedral geometry

Distance checks: ~ log(n)

Stepping (Geant4)

Graphic from Yeom et al., Phys. Med. Biol. 59, 2014.