

MCMA2017, Napoli, Italy October 17th, 2017

Investigating the physics of a CBCT projection shading correction based on a prior CT

<u>Guillaume Landry</u> (1), Christoph Zoellner (1), Christopher Kurz (1,2), Gloria Vilches-Freixas (3), George Dedes (1), Florian Kamp (2), Claus Belka (2), Simon Rit (3) and Katia Parodi (1)

 (1) Ludwig-Maximilians-Universität München (LMU Munich), Department of Medical Physics, Faculty of Physics, Munich, Germany
 (2) LMU Munich, Department of Radiation Oncology, Munich, Germany
 (3) Universite de Lyon, CREATIS, Lyon, France

Introduction

- May be restored by **plan adaptation**
- Requires **frequent** imaging and accurate **up to date 3D dose** calculation

CBCT imaging

- **CBCT** imaging provides:
 - Bony anatomy position
 - Gross volume changes
 - Treatment position

- **CBCT** imaging **does not** provide:
 - Soft tissue contrast for delineation
 - Reliable **electron densities**

Utilization of CBCT images in IMPT requires intensity correction

Recently published methods have relied on prior CT

Aim at reproducing equivalent SFUD proton range and

delineation accuracy

T CBCT vs rpC1

Virtual CT

Virtual CT (vCT)

- **Deformable** image registration of **pCT** to daily **CBCT** → **vCT**
- Use Morphons algorithm (REGGUI package^{*})
- Yields up-to-date contours
- Validated and found accurate for H&N^[1],

*REGGUI kindly shared and developed at ICTEAM/UCL, Belgium

[1] G Landry et al, 2015. Investigating CT to CBCT image registration for head and neck proton therapy as tool for

daily dose recalculation. Med. Phys. 42(3)

G. Landry et al., MCMA2017

Virtual CT

Virtual CT (vCT)

- **Deformable** image registration of **pCT** to daily **CBCT** → **vCT**
- Use Morphons algorithm (REGGUI package^{*})
- Yields up-to-date contours
- Validated and found accurate for H&N^[1], extension to prostate showed limitations

*REGGUI kindly shared and developed at ICTEAM/UCL, Belgium

[1] Ğ Landry et al, 2015. Investigating CT to CBCT image registration for head and neck proton therapy as tool for

daily dose recalculation. Med. Phys. 42(3)

Scatter corrected CBCT (CBCT_{cor})

- vCT as prior: Forward projection of vCT according to CBCT geometry
 - I_{vCT}
- Scatter estimate by subtracting I_{vCT} from scaled daily CBCT projections I_{CBCT} and smoothing

 $I_{SCA} = f(CF \times I_{CBCT} - I_{vCT})$

• Subtract scatter map from daily CBCT projections, reconstruct corrected CBCT

 $CBCT_{cor} = FBP(CF \times I_{CBCT} - I_{SCA})$

• Validated for H&N and abdominal sites^[2]

MU KLINIKUM der universität münchen [2] Y K Park et al, 2015. Proton dose calculation on scatter-corrected CBCT image: Feasibility study for

adaptive proton therapy. Med. Phys. 42(8)

G. Landry et al., MCMA2017

CBCT_{cor} validation

- CBCT_{cor} validated for LMU on-board CBCT using phantom data
- H&N gammex phantom

Insert	CT HU	CBCT _{cor} HU
Lung	-588±18	-585±36
Adipose	-114±3	-104±31
Solide Water	4±3	15±32
Cort. Bone	1517±12	1481±94

• Gammex phantom

CT

Insert	CT HU	CBCT _{cor} HU
Lung	-562±19	-571±34
Adipose	-101±16	-93±50
Solide Water	-9±16	0±42
Cort. Bone	1249±17	1317±96

CBCT_{cor} and vCT

• H&N

Physical basis

• Does the scatter correction have a physical basis?

$$I_{SCA} = f(CF \times I_{CBCT} - I_{vCT})$$
 CBCT_{cor} = FBP(CF × I_{CBCT} - I_{SCA})

- The SCA in fact performs scatter correction as well as beam hardening correction, in addition to other low frequency errors
- Perform Monte Carlo simulation of the scatter distribution to compare to the SCA's correction

XVI parameter optimization¹

- SpelkCalc² source model vs ion chamber measurements
 - mm Al
 - mm Cu
 - Anode angle
- GATE detector model vs flat panel measurements³

- CsI length

¹Vilches-Freixas G, Létang JM, Brousmiche S, Romero E, Vila Oliva M, Kellner D, Deutschmann H, Keuschnigg P, Steininger P, Rit S. Medical physics. 2016 Sep 1;43(9):5199-204.

²Poludniowski G, Landry G, DeBlois F, Evans PM, Verhaegen F. SpekCalc: a program to calculate photon spectra from tungsten anode x-ray tubes.
 Physics in medicine and biology. 2009 Sep 1;54(19):N433.
 ³Granton PV, Podesta M, Landry G, Nijsten S, Bootsma G, Verhaegen F.

Medical physics. 2012 Jul 1;39(7):4155-66.

XVI parameter optimization¹

- SpelkCalc² source model vs ion chamber measurements
 - mm Al
 - mm Cu
 - Anode angle
- GATE detector model vs flat panel measurements³
 - CsI length

¹Vilches-Freixas G, Létang JM, Brousmiche S, Romero E, Vila Oliva M, Kellner D, Deutschmann H, Keuschnigg P, Steininger P, Rit S. Medical physics. 2016 Sep 1;43(9):5199-204.

²Poludniowski G, Landry G, DeBlois F, Evans PM, Verhaegen F. SpekCalc: a program to calculate photon spectra from tungsten anode x-ray tubes. Physics in medicine and biology. 2009 Sep 1;54(19):N433.

³Granton PV, Podesta M, Landry G, Nijsten S, Bootsma G, Verhaegen F. Medical physics. 2012 Jul 1;39(7):4155-66.

XVI parameter optimization¹

- SpelkCalc² source model vs ion chamber measurements
 - mm Al
 - mm Cu
 - Anode angle
- GATE detector model vs flat panel measurements³
 - CsI length

¹Vilches-Freixas G, Létang JM, Brousmiche S, Romero E, Vila Oliva M, Kellner D, Deutschmann H, Keuschnigg P, Steininger P, Rit S. Medical physics. 2016 Sep 1;43(9):5199-204.

²Poludniowski G, Landry G, DeBlois F, Evans PM, Verhaegen F. SpekCalc: a program to calculate photon spectra from tungsten anode x-ray tubes. Physics in medicine and biology. 2009 Sep 1;54(19):N433.

³Granton PV, Podesta M, Landry G, Nijsten S, Bootsma G, Verhaegen F. Medical physics. 2012 Jul 1;39(7):4155-66.

GATE MC simulation

- Fixed forced detection actor
 - Deterministic primary using ray tracing

XVI parameter optimization¹

- SpelkCalc² source model vs ion chamber measurements
 - mm Al
 - mm Cu
 - Anode angle
- GATE detector model vs flat panel measurements³

- CsI length

¹Vilches-Freixas G, Létang JM, Brousmiche S, Romero E, Vila Oliva M, Kellner D, Deutschmann H, Keuschnigg P, Steininger P, Rit S. Medical physics. 2016 Sep 1;43(9):5199-204.

²Poludniowski G, Landry G, DeBlois F, Evans PM, Verhaegen F. SpekCalc: a program to calculate photon spectra from tungsten anode x-ray tubes. Physics in medicine and biology. 2009 Sep 1;54(19):N433.

³Granton PV, Podesta M, Landry G, Nijsten S, Bootsma G, Verhaegen F. Medical physics. 2012 Jul 1;39(7):4155-66.

GATE MC simulation

- Fixed forced detection actor
 - Deterministic primary using ray tracing

$$\Phi = \Phi_0 \exp\left(-\int_L \mu(\boldsymbol{x}, \boldsymbol{E}) \, \mathrm{d} \boldsymbol{I}\right)$$

applied for each pixel of the detector and each energy in the spectrum.

 μ computed using Geant4 material definition and physics list

Ray casting using the Reconstruction Toolkit (www.openrtk.org)

XVI parameter optimization¹

- SpelkCalc² source model vs ion chamber measurements
 - mm Al
 - mm Cu
 - Anode angle
- GATE detector model vs flat panel measurements³

- CsI length

¹Vilches-Freixas G, Létang JM, Brousmiche S, Romero E, Vila Oliva M, Kellner D, Deutschmann H, Keuschnigg P, Steininger P, Rit S. Medical physics. 2016 Sep 1;43(9):5199-204.

²Poludniowski G, Landry G, DeBlois F, Evans PM, Verhaegen F. SpekCalc: a program to calculate photon spectra from tungsten anode x-ray tubes. Physics in medicine and biology. 2009 Sep 1;54(19):N433.

³Granton PV, Podesta M, Landry G, Nijsten S, Bootsma G, Verhaegen F. Medical physics. 2012 Jul 1;39(7):4155-66.

GATE MC simulation

- Fixed forced detection actor
 - Fixed forced detection simulation of scatter events

Retrieve at every interaction

- interaction type (Compton, Rayleigh or Fluorescence),
- position,
- direction,
- energy.

XVI parameter optimization¹

- SpelkCalc² source model vs ion chamber measurements
 - mm Al
 - mm Cu
 - Anode angle
- GATE detector model vs flat panel measurements³
 - CsI length

¹Vilches-Freixas G, Létang JM, Brousmiche S, Romero E, Vila Oliva M, Kellner D, Deutschmann H, Keuschnigg P, Steininger P, Rit S. Medical physics. 2016 Sep 1;43(9):5199-204.

²Poludniowski G, Landry G, DeBlois F, Evans PM, Verhaegen F. SpekCalc: a program to calculate photon spectra from tungsten anode x-ray tubes. Physics in medicine and biology. 2009 Sep 1;54(19):N433.

³Granton PV, Podesta M, Landry G, Nijsten S, Bootsma G, Verhaegen F. Medical physics. 2012 Jul 1;39(7):4155-66.

GATE MC simulation

- Fixed forced detection actor
 - Fixed forced detection simulation of scatter events

Probability of a photon to reach pixel after an interaction:

$$d\boldsymbol{\rho} = rac{1}{\sigma(E^b)} rac{d\sigma(\theta, E^b)}{d\Omega} \exp\left(-\int_L \mu(\boldsymbol{x}, E^a) dI
ight) d\Omega$$

XVI parameter optimization¹

- SpelkCalc² source model vs ion chamber measurements
 - mm Al
 - mm Cu
 - Anode angle
- GATE detector model vs flat panel measurements³
 - CsI length

¹Vilches-Freixas G, Létang JM, Brousmiche S, Romero E, Vila Oliva M, Kellner D, Deutschmann H, Keuschnigg P, Steininger P, Rit S. Medical physics. 2016 Sep 1;43(9):5199-204.

²Poludniowski G, Landry G, DeBlois F, Evans PM, Verhaegen F. SpekCalc: a program to calculate photon spectra from tungsten anode x-ray tubes. Physics in medicine and biology. 2009 Sep 1;54(19):N433.

³Granton PV, Podesta M, Landry G, Nijsten S, Bootsma G, Verhaegen F. Medical physics. 2012 Jul 1;39(7):4155-66.

GATE MC simulation

- Fixed forced detection actor
 - Fixed forced detection simulation of scatter events

Position (mm)

XVI parameter optimization¹

- SpelkCalc² source model vs ion chamber measurements
 - mm Al
 - mm Cu
 - Anode angle
- GATE detector model vs flat panel measurements³

- CsI length

¹Vilches-Freixas G, Létang JM, Brousmiche S, Romero E, Vila Oliva M, Kellner D, Deutschmann H, Keuschnigg P, Steininger P, Rit S. Medical physics. 2016 Sep 1;43(9):5199-204.

²Poludniowski G, Landry G, DeBlois F, Evans PM, Verhaegen F. SpekCalc: a program to calculate photon spectra from tungsten anode x-ray tubes. Physics in medicine and biology. 2009 Sep 1;54(19):N433.

³Granton PV, Podesta M, Landry G, Nijsten S, Bootsma G, Verhaegen F. Medical physics. 2012 Jul 1;39(7):4155-66.

GATE MC simulation

- Fixed forced detection actor
 - Deterministic primary using ray tracing
 - Fixed forced detection simulation of scatter events
- 15 cm diameter PMMA phantom with 4 inserts of known density and composition

Transverse projection profiles across each inserts

- Good agreement (<3%)
- Bone insert has largest error

Transverse projection profiles across each inserts

- Good agreement (<3%)
- Bone insert has largest error

SCA correction vs MC correction

Transverse projection profiles across each inserts

- Good agreement (<3%)
- Bone insert has largest error

SCA correction vs MC correction

Remove MC scatter

LUDWIG-

Monte Carlo simulation

Transverse projection profiles across each inserts

- Good agreement (<3%)
- Bone insert has largest error

SCA correction vs MC correction

- **Remove MC scatter**
- Apply beam hardening correction

LUDWIG-MAXIMILIANS

MÜNCHEN

Monte Carlo simulation

Transverse projection profiles across each inserts

- Good agreement (<3%)
- Bone insert has largest error

SCR correction vs MC correction

- **Remove MC scatter**
- Apply beam hardening correction

Good agreement between:

- CT DRR
- **CBCT** corrected by SCA
- CBCT corrected by MC

Undo the **beam hardening** component from I_{SCA} to **obtain** I_{SCA}' with eq 1

Undo the **beam hardening** component from I_{SCA} to **obtain** I_{SCA}' with eq 1

I_{sca}' is the SCA based estimation of scatter signal

Scatter/total projection

Undo the **beam hardening** component from I_{SCA} to **obtain I_{SCA}'** with eq 1

I_{sca}' is the SCA based estimation of scatter signal

Transverse profiles through inserts

Undo the **beam hardening** component from I_{SCA} to **obtain I_{SCA}'** with eq 1

I_{sca}' is the SCA based estimation of scatter signal Longitudinal profile through inserts

Discussion

Despite good
 agreement, residual
 errors in the prior CT
 image affect the
 CBCT_{COR}

 Especially for beam hardening

Incorrect beam hardening

Conclusions

- Monte Carlo simulations of CBCT projections based on source and detector model optimization are accurate
- The SCA corrected CBCT projections are equivalent to those corrected with MC simulation
- The SCA correction can be approximated by separate beam hardening and scatter corrections

Acknowledgement

- Many thanks to
- Department of Medical Physics, LMU, Munich
 - Abdulaziz Alhazmi
- Aarhus University
 - David Hansen
- MGH Boston
 - Yang-Kyun Park
 - Brian Winey
 - Greg Sharp

- Maastro Clinic
 - Mark Podesta
 - Frank Verhaegen
- Department of Radiation Oncology, LMU, Munich
 - Minglung Li
 - Jan Hofmaier
 - Sebastian Neppl

This work was funded by:

- German Research Foundation: Cluster of Excellence MAP
- Bayerisch-Französisches Hochschulzentrum (BFHZ)

CBCT_{cor} and vCT

- CBCT_{cor} and vCT comparison in terms of proton SFUD range difference
- H&N

Pat	RD<2mm	Med. RD
HN1	99%	0.1mm
HN2	91%	0.1mm
HN3	99%	0.3mm

• Prostate

