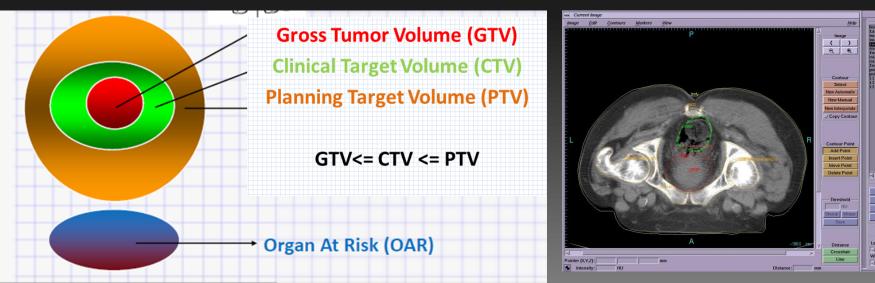


MCMA2017

A ROBUST MONTE CARLO TREATMENT PLANNING OPTIMIZATION ALGORITHM FOR DOSE PAINTING CLINICAL IMPLEMENTATION

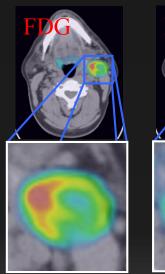
Elisa Jiménez-Ortega^{a,b,*}, Ana Ureba^{b,c}, Ana Rita Barbeiro^{a,b}, Marcin Balcerzyk^d, Ángel Parrado Gallego^d, Amadeo Wals-Zurita^e, Francisco Javier García-Gómez^f, Antonio Leal^{a,b}.

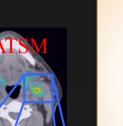
- a. Dpto. Fisiología Médica y Biofísica, Universidad de Sevilla, Seville (Spain).
- b. Instituto de Biomedicina de Sevilla, IBIS, Seville (Spain).
- c. Medical Radiation Physics, Stockholm University, Karolinska Institutet, Stockholm (Swedend).
- d. Centro Nacional de Aceleradores (CNA). Seville (Spain).
- e. Hospital Universitario Virgen Macarena, Servicio de Radioterapia, Seville (Spain).
- f. Hospital Universitario Virgen Macarena, Servicio de Medicina Nuclear, Seville (Spain).



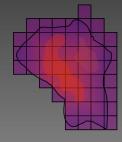
Medical imaging in radiotherapy treatment planning.

- Classic role
- Delimitation based on morphological information
- Margins for incorporating functional information (movements, extension)

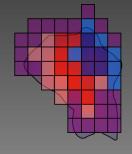




- New role → Functional Information
 Evolution and characteristics of the lesion
- PET
 - Metabolism
 - Proliferation
 - O₂ concentration
 - Differentiation...
- SPECT
- fMRI



BTV


(Biological Target Volume)

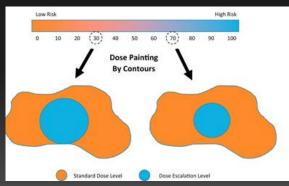
Conventional

- Homogeneous dose to volumes
- Few targets
- Conventional prescription

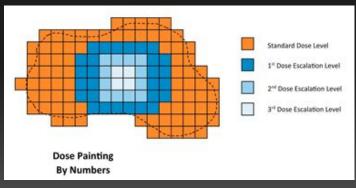
Dose Painting


- Heterogeneous doses
- Multiple targets
- Dose escalation according to functional information

New concepts and protocols



Heterogeneous distributions



Dose Painting by Contour (DPBC)

- Dose escalation based on thresholds
- Dose-to-volume restrictions
- Simultaneous boost strategies in TPS

Dose Painting by Numbers (DPBN)

- Dose escalation based on individual values: TRUE DP
- Dose-to-voxel restrictions
- Commercial TPS: approximations based on dose-volume optimization

<u>DP means a new scenario for planning RT</u> New tools should be incorporated to TPS (Our proposal) **Dose calculation:** Higher dose gradients within the target require the most accurate dose calculation engine: Monte Carlo Treatment Planning (MCTP) **Optimization procedure:** A more important role for image into the algorithms BIOMAP New restrictions and robustness at the voxel level Linear Programming (LP)

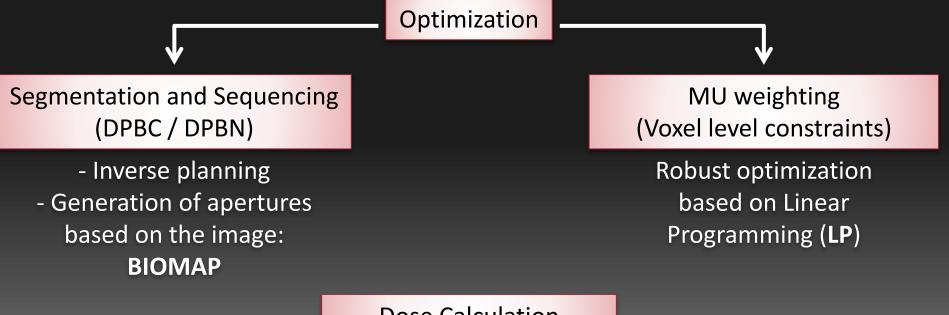
A robust MC treatment planning optimization algorithm for dose painting clinical implementation

Material and Methods

http://grupos.us.es/medicalphysics/

Full Monte Carlo Treatment Planning System

- MATLAB platform
- Image processing
- fMC planning
- Optimization
- Evaluation



PLANNING PROCESS

Functional image processing

Reconstruction protocols and uncertainty assessment

Dose Calculation

As accurate as possible \rightarrow Full Monte Carlo planning

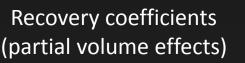
8

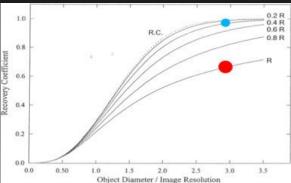
Material and Methods

Functional imaging processing

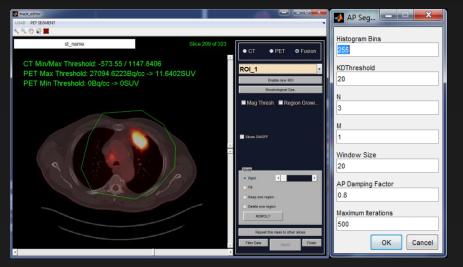
PET/CT Images (Siemens Biograph mCT 64 scanner of CNA):

- Location and size of the disease
- Prescription of the dose

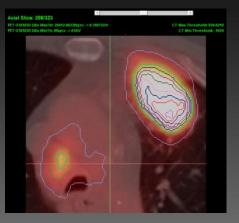

Need for standardized accreditation


PET reconstruction protocols: EARL / "Radiotherapy"

- Patient protocol simulation
- RT table fitting
- Study of different reconstructions
- Assessment of uncertainties


Adapted from: M.E. Phelps. PET: Molecular Imaging and Its Biological Applications (2004)

• Functional imaging processing



SEGMENTATION ALGORITHM

(Foster et al., IEEE Trans Biomed Eng, 2014):

- Clustering according to SUV
- Based on affinity propagation
- Taking into account diffusion PET
- Reduction of uncertainties

Dose prescription map generation

ST_by_AP_Segmentation_5 5.8823 8.3578 68.0 ST_by_AP_Segmentation_6 6.0196 9.8687 ST_by_AP_Segmentation_7 4.4403 11.3754 71.1	0 66 2961
ST_by_AP_Segmentation_4 6.1111 6.8982 67.1 ST_by_AP_Segmentation_5 5.8823 8.3578 68.0 ST_by_AP_Segmentation_6 6.0196 9.8687 ST_by_AP_Segmentation_7 4.4403 11.3754 71.1	2961
ST_by_AP_Segmentation_5 5 8823 8.3578 68 0 ST_by_AP_Segmentation_6 6 0196 9.8687 ST_by_AP_Segmentation_7 4.4403 11.3754 71.3	
ST_by_AP_Segmentation_6 6.0196 9.8687 ST_by_AP_Segmentation_7 4.4403 11.3754 71.1	
ST_by_AP_Segmentation_7 4.4403 11.3754 71.	6247
	70
ST by AP Segmentation 8 3 5248 12 8997 72	3715
	7590
ST_by_AP_Segmentation_9 2.0599 14.3269 74.0	0581
ST_by_AP_Segmentation_10 0.4120 15.7546 75.1	3577

$$D_i = D_{low} + \frac{S_i - S_{low}}{S_{high} - S_{low}} (D_{high} - D_{low}),$$

for
$$S_{low} \leq S_i \leq S_{high}$$
, $i = 1, ..., N$

Material and Methods PLANNING PROCESS Functional image processing Reconstruction protocols and uncertainty assessment Optimization Segmentation and Sequencing **MU** weighting (Voxel level constraints) (DPBC / DPBN) - Inverse planning **Robust optimization** - Generation of apertures based on Linear based on the image: Programming (LP) **BIOMAP Dose Calculation**

As accurate as possible \rightarrow Full Monte Carlo planning

Optimization: Segmentation and sequencing

Dose Painting By Contours

- Conventional distribution of prescription doses
- Weight optimization: Dose-volume restrictions
- Two planning options:

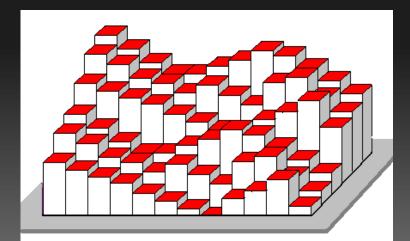
INVERSE PLANNING

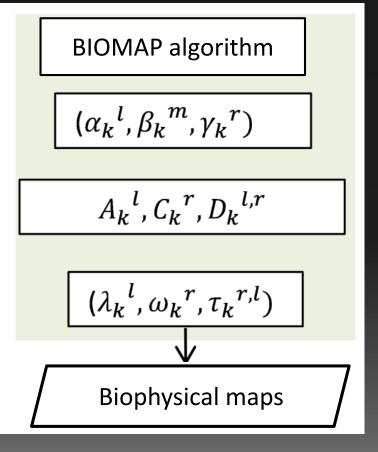
CONTOURS

PLANNING BASED ON DIRECT APERTURES

BIOMAP algorithm

Ureba et al., Med Phys, 2014

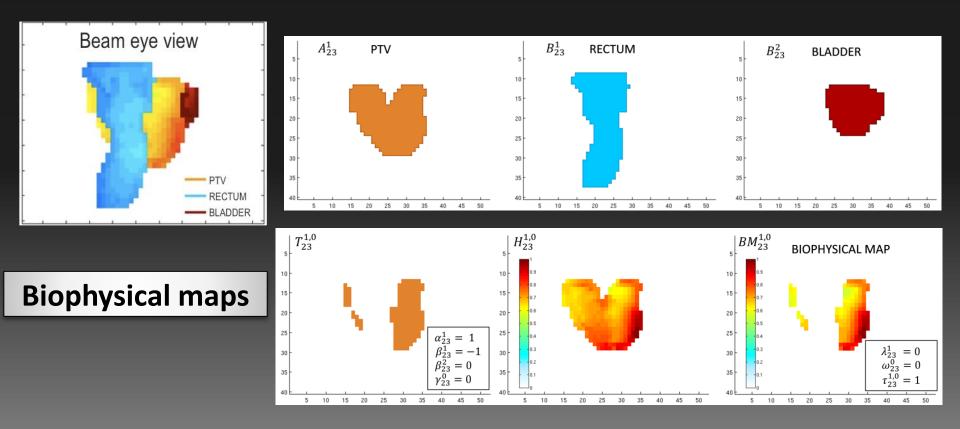



Optimization: Segmentation and sequencing

BIOMAP algorithm Ureba et al., Med Phys, 2014

- Based on matrix generation
- Morphological and functional information recruitment

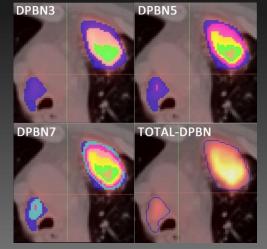
Biophysical maps



• Optimization: Segmentation and sequencing

BIOMAP algorithm Ureba et al., Med Phys, 2014 Based on morphological and functional images: Adaptive radiation therapy

Optimization: Segmentation and sequencing


Dose Painting By Numbers

- Heterogeneous distribution of prescription doses
- Weights optimization: dose-voxel restrictions
- Two planning options

INVERSE PLANNING

- LP optimization of beamlets fluence
- Segmentation and sequencing
- 2nd LP optimization of apertures

CLUSTERING

Jiménez-Ortega et al., Phys Med, 2017

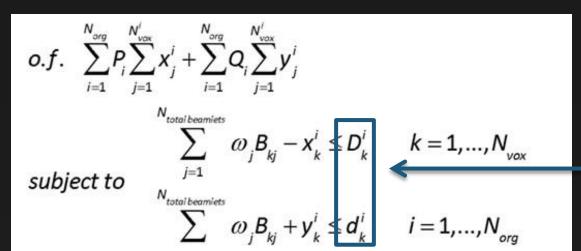
PLANNING BASED ON DIRECT APERTURES

BIOMAP algorithm Ureba et al., Med Phys, 2014

Clusters for apertures generation

Material and Methods PLANNING PROCESS Functional image processing Reconstruction protocols and uncertainty assessment Optimization **MU** weighting Segmentation and Sequencing (Voxel level constraints) (DPBC / DPBN) - Inverse planning **Robust optimization** - Generation of apertures based on Linear based on the image: Programming (LP) BIOMAP **Dose Calculation**

As accurate as possible \rightarrow Full Monte Carlo planning



A robust MC treatment planning optimization algorithm for dose painting clinical implementation

Material and Methods

• Optimization: Monitor Units Weighting

Ureba et al., Med Phys, 2014

LINEAR PROGRAMMING (LP) OPTIMIZATION

Simplification of the problem by random selection of voxels

> Dose constraints at the voxel level, rather than volumes

TRUE DPBN option

Optimization: Monitor Units Weighting

$$\begin{array}{l} \min \ o.f. \equiv P_{target}^{max} \sum_{i=1}^{N_{target}} x_i + P_{target}^{min} \sum_{i=1}^{N_{target}} y_i + P_{OAR}^{max} \sum_{i=N_{target}+1}^{N} x_i \\ sujeto \ a \\ \\ \sum_{j=1}^{M} \omega_j d_{ij} - x_i \leq D_i^{max} \Delta_i \\ \sum_{j=1}^{M} \omega_j d_{ij} + y_i \geq D_i^{min} \Delta_i \\ \\ \sum_{j=1}^{M} \omega_j d_{ij} - x_i \leq D_{OAR}^{max} \\ \end{array} \quad i = 1, \dots, N_{target} \\ i = 1, \dots, N_{target} \\ i = N_{target} + 1, \dots, N \\ x_i, y_i, \omega_i \geq 0 \ \forall i, j \end{array}$$

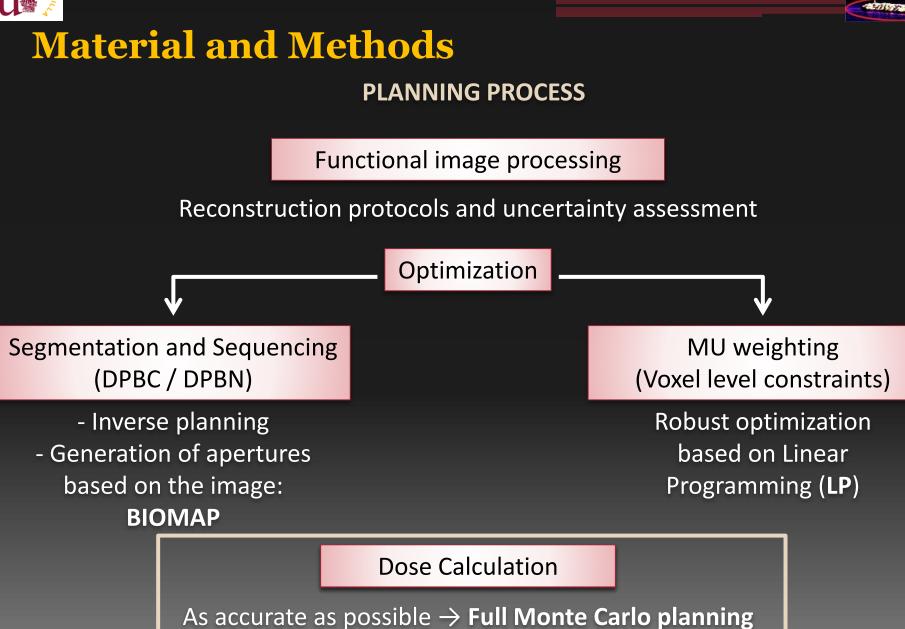
LINEAR PROGRAMMING (LP) OPTIMIZATION

Simplification of the problem by random selection of voxels

> Dose constraints at the voxel level, rather than volumes

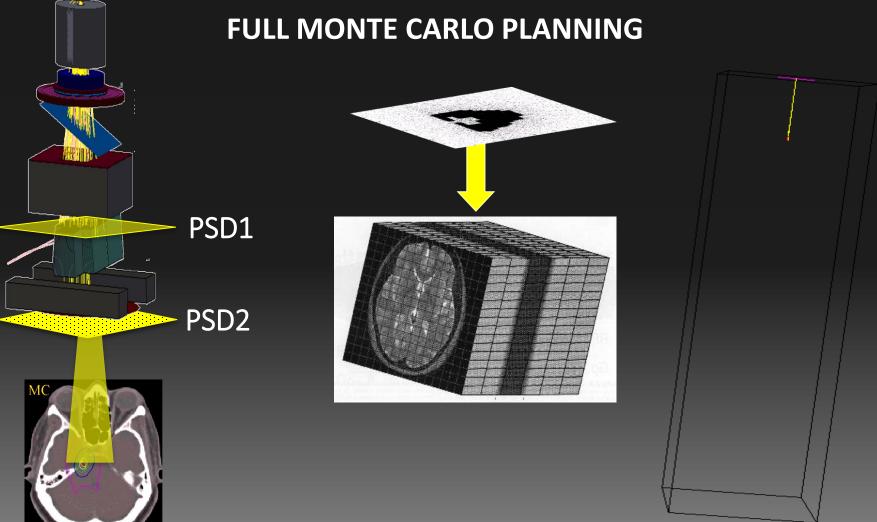
TRUE DPBN option

Jiménez-Ortega et al., Phys Med, 2017

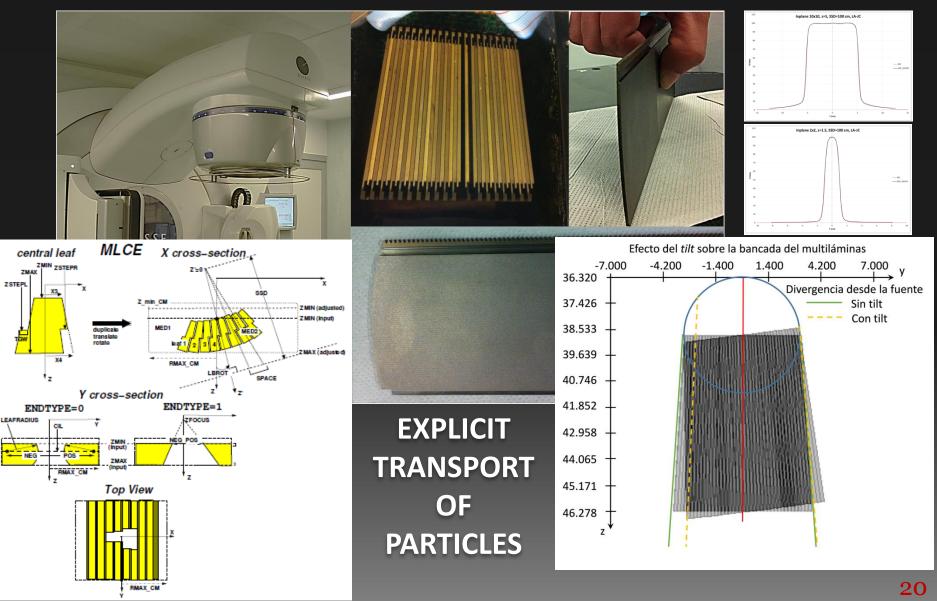

ROBUST OPTIMIZATION

- Image uncertainties (dose prescription)
- Geometric uncertainties (positioning / movement)

- VOXEL LEVEL



A robust MC treatment planning optimization algorithm for dose painting clinical implementation


Material and Methods

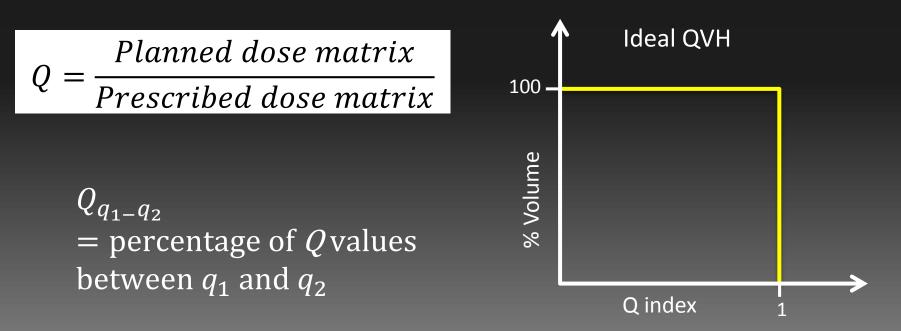
• Dose Calculation

Dose Calculation

EGSnrc/DOSXYZnrc/BEAMDOSE

- Linac head: BEAMnrc (Rogers et al., 2011; Walters et al., 2009)
- CT patient: BEAMDOSE (Salguero Castaño, 2008)
- Parallel Computing (Leal et al., 2004b; Leal et al., 2001b)

HP ProLiant DL585 G7 Performance 4 processors Opteron 2.2 GHz with 12 nodes



• Dose Calculation: Evaluation

Dose Painting By Numbers

NEW EVALUATION Quality index per voxel (Q) \rightarrow QVH

ROBUSTNESS

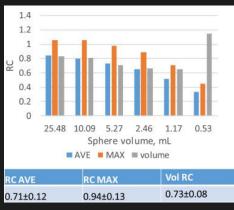
CONSIDERATION OF SYSTEMATIC AND RANDOM ERRORS FOR CLINICAL IMPLEMENTATION

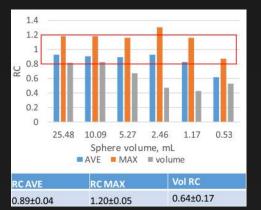
Image processing

- Reconstruction protocol: EARL / Radiotherapy
- Segmentation algorithm (Affinity propagation clustering by Foster)

Full Monte Carlo

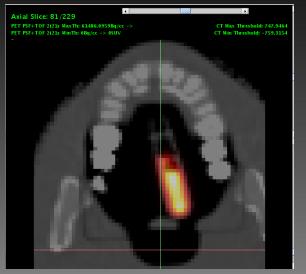
- Statistical errors in dose calculation (parallelized framework)
- Adaptive anisotropic diffusion filtering (and others)


LP Robust Optimisation min $o.f. \equiv P_{target}^{max} \sum_{i=1}^{N_{target}} x_i + P_{target}^{min} \sum_{i=1}^{N_{target}} y_i + P_{OAR}^{max} \sum_{i=N_{target}}^{N} x_i$ Voxel uncertainty subject to
$$\begin{split} &\sum_{j=1}^{m} \omega_j d_{ij} - \mathbf{x}_i \leq \mathsf{D}_i^{\max} \Delta_i \quad i = 1, \dots, \mathsf{N}_{\text{target}} \\ &\sum_{i=1}^{M} \omega_j d_{ij} + y_i \geq \mathsf{D}_i^{\min} \Delta_i \quad i = 1, \dots, \mathsf{N}_{\text{target}} \end{split}$$
Dose prescription $\sum_{i=1}^{M} \omega_{i} d_{ij} - x_{i} \leq D_{OAR}^{max} \qquad i = N_{target} + 1, \dots, N$ Geometric uncertainties $x_i, y_i, \omega_i \ge 0 \quad \forall i, j$ **Evaluation of results** $D = MC \text{ dose } (\Delta D \text{ statistical error})$ D_p = Prescribed dose (ΔD_p systematic error) $Q(D,D_p) = \frac{D}{D_{ii}};$ $\Delta Q(D, D_p) = \sqrt{\left(\frac{\partial Q}{\partial D}\right)^2 (\Delta D)^2 + \left(\frac{\partial Q}{\partial D_n}\right)^2}$

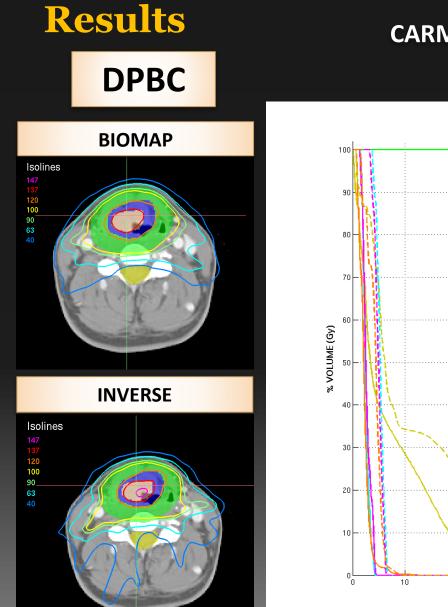

Results

• Functional imaging processing

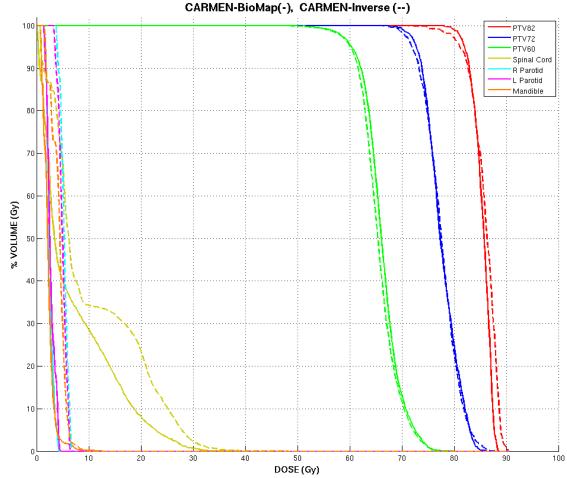
EARL

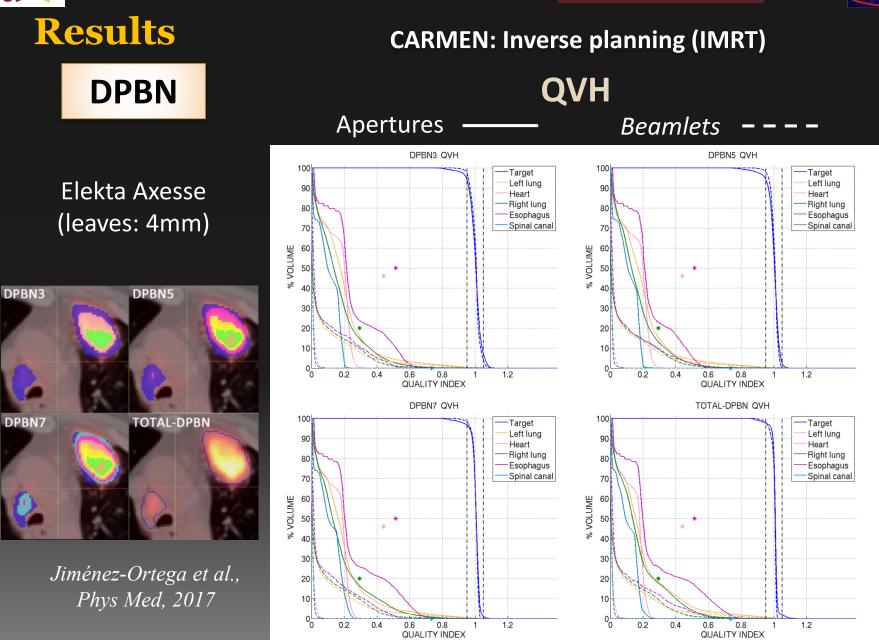

RADIOTHERAPY

Balcerzyk et al., Nuclear Instruments and Methods A, 2017

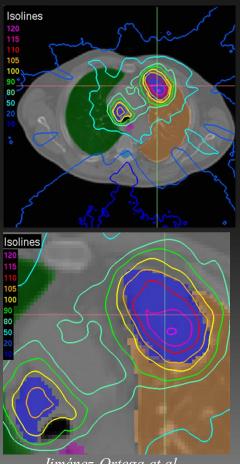


Study of uncertainties in SUV values

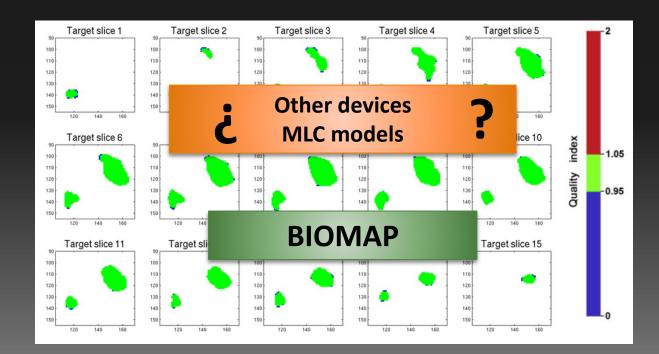



CARMEN: BIOMAP vs Inverse planning **DVH**

25



Results


DPBN

Jiménez-Ortega et al., Phys Med, 2017

CARMEN: Inverse planning (IMRT)

Study	Q _{0.95-1.05} (beamlets)	Q _{0.95-1.05} (segments)	Segments number	MU/fraction
DPBN3	93.3%	86.9%	235	2337
DPBN5	97.7%	91.8%	235	2286
DPBN7	98.1%	95.6%	291	2157
TOTAL-DPBN	97.8%	95.7%	351	2057

Results BIOMAP Algorithm and Robust LP Optimization DPBN QVH BIOMAP **INVERSE** $BM_{23}^{1,0}$ ✓TARGET ✓left_lung 15 Meart 20 ✓right_lung 75 ✓esophagus 25 $\lambda_{23}^{1} = 0 \\ \omega_{23}^{0} = 0 \\ \tau_{23}^{1,0} = 1$ = 0✓spinal_canal ٧ 35 0 L U M E (%) 20 ĩ٨ 0.1 Study Q_{0.95-1.05} (segments) MU/fraction $Q_{0.95-1.05}$ (beamlets) Segments number DPBN3 93.3% 86.9% 235 2337 DPBN5 97.7% 91.8% 235 2286 DPBN7 95.6% 291 2157 98.1% TOTAL-DPBN 97.8% 95.7% 351 2057

BIOMAP

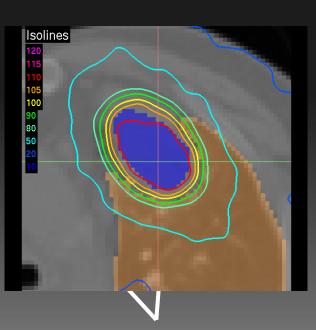
98.7%

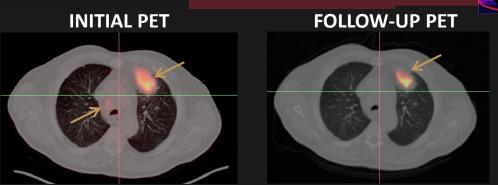
63

699

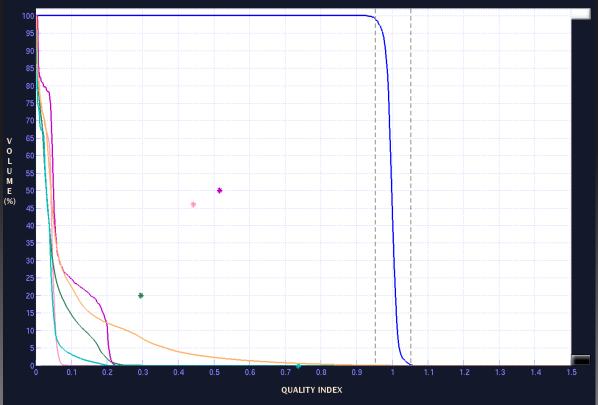
CLINICALLY ACCEPTABLE

28


A robust MC treatment planning optimization algorithm for dose painting clinical implementation


Results

DPBN

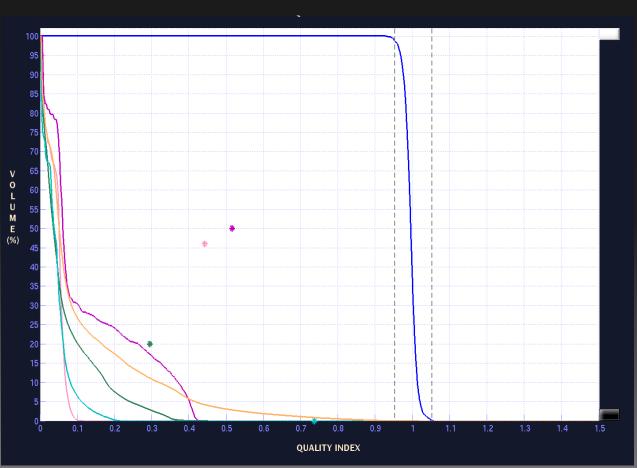

Changes in images: New biological targets and dose prescription map

Normal tissue overdosage

CONSEQUEARCES OR TNOLAD APPROXIDA.

Results

DPBN


Adaptive RT by BIOMAP at the voxel level

VOXEL LEVEL: DEFORMABLE REGISTRATION NOT NECESSARY

TOTAL TREATMENT EVALUATION $Q_{\nu} = \sum_{i=1}^{N} f_i Q_{\nu}^i$

 Q_v : Q index of voxel v f_i : fraction weight N: number of fractions Q_v^i : Q index of voxel v in fraction i

> Q_{0.95-1.05}=98.9% Q_{0.97-1.03}=96.2%

Conclusions

- In these conditions of accuracy and robustness (through fMC planning, LP-based optimization and BIOMAP algorithm), we feel confident to move our system for DPBN application into the clinical environment.
- The BIOMAP algorithm, based on the image information, allows the **adaptive** radiation therapy planning at voxel level.
- This solution can be easily extended to other types of functional information such as MRI.

Thanks for your attention

Unión Europea

Fondo Europeo de Desarrollo Regional Fondo Social Europeo

FISEVI 552 PIE 2012 LEAL PLAZA ANTONIO CTS-2482 G-MC 15/06/2016

MINISTERIO DE EDUCACIÓN, CULTURA Y DEPORTE