Impact of the true sensitive volume on ion chamber response in magnetic fields

Victor N. Malkov, David W. O. Rogers

Carleton Laboratory for Radiation Physics, Carleton University

MCMA 2017

Combining MRI + Radiation Therapy

- Magnetic resonance guided radiation therapy (MRgRT)
- Sources: Co-60, linacs (6 MV, 7 MV)
- Magnetic fields strengths: 0.35 1.5 T

- Combining MRI + Radiation Therapy
 - Magnetic resonance guided radiation therapy (MRgRT)
 - Sources: Co-60, linacs (6 MV, 7 MV)
 - Magnetic fields strengths: 0.35 1.5 T
- The B-field distorts electron trajectories
 - Local hot/cold spots in the dose distribution

- Combining MRI + Radiation Therapy
 - Magnetic resonance guided radiation therapy (MRgRT)
 - Sources: Co-60, linacs (6 MV, 7 MV)
 - Magnetic fields strengths: 0.35 1.5 T
- The B-field distorts electron trajectories
 - Local hot/cold spots in the dose distribution
 - Changes in ion chamber dose

- Combining MRI + Radiation Therapy
 - Magnetic resonance guided radiation therapy (MRgRT)
 - Sources: Co-60, linacs (6 MV, 7 MV)
 - Magnetic fields strengths: 0.35 1.5 T
- The B-field distorts electron trajectories
 - Local hot/cold spots in the dose distribution
 - Changes in ion chamber dose

Need correction factors!

• All simulations are performed using egs_chamber

- All simulations are performed using egs_chamber
- Magnetic field effects are accounted for using a recently implemented and validated set of macros.

- All simulations are performed using egs_chamber
- Magnetic field effects are accounted for using a recently implemented and validated set of macros.

Charged particle transport in magnetic fields in EGSnrc

V. N. Malkov^{a)} and D. W. O. Rogers^{a)} Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada

(Received 7 January 2016; revised 30 May 2016; accepted for publication 8 June 2016; published 29 June 2016)

- All simulations are performed using egs_chamber
- Magnetic field effects are accounted for using a recently implemented and validated set of macros.

Charged particle transport in magnetic fields in EGSnrc

V. N. Malkov^{a)} and D. W. O. Rogers^{a)} Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada

(Received 7 January 2016; revised 30 May 2016; accepted for publication 8 June 2016; published 29 June 2016)

Passes the Fano test at the 0.1% level

- All simulations are performed using egs_chamber
- Magnetic field effects are accounted for using a recently implemented and validated set of macros.

Charged particle transport in magnetic fields in EGSnrc

V. N. Malkov^{a)} and D. W. O. Rogers^{a)} Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada

(Received 7 January 2016; revised 30 May 2016; accepted for publication 8 June 2016; published 29 June 2016)

Passes the Fano test at the 0.1% level

Agreement with experiment excellent to about 1T

- Air gaps around the chamber
- Direction of the incoming beam

Compare to recent experiments by Agnew et al. [1]

Compare to recent experiments by Agnew et al. [1]

M(B)

 $\overline{M(0 T)}$

Compare to recent experiments by Agnew et al. [1]

Compare to recent experiments by Agnew et al. [1]

Orientation is used in all published experiments

Compare to recent experiments by Agnew et al. [1]

- Orientation is used in all published experiments
- Noted several percent discrepancies

 Fringing of the charge collecting electric field inside the ion chamber. [2]

 Fringing of the charge collecting electric field inside the ion chamber. [2]

- Fringing of the charge collecting electric field inside the ion chamber. [2]
- Monte Carlo usually uses the geometric sensitive volume instead of the potentially unknown true sensitive volume.

- Fringing of the charge collecting electric field inside the ion chamber. [2]
- Monte Carlo usually uses the geometric sensitive volume instead of the potentially unknown true sensitive volume.
- Not an issue in the absence of a magnetic field

 Simulate with 0 mm, 0.5 mm, or 1 mm of "dead" region excluded from the sensitive volume

- Simulate with 0 mm, 0.5 mm, or 1 mm of "dead" region excluded from the sensitive volume
- Results shown for PTW 31010 and 31006

Sensitive volume – results

Sensitive volume – results

 "Dead" region does not reflect the true sensitive volume exactly

Sensitive volume – results

- "Dead" region does not reflect the true sensitive volume exactly
- Simulate the E-field or find an optimal orientation

$$D_w = M N_{D,w}^{Co60} k_Q \qquad \qquad \mathsf{B} =$$

0 T

$$D_{w} = MN_{D,w}^{Co60}k_{Q} \qquad \mathbf{B} = \mathbf{0} \mathbf{T}$$

with magnetic field

$$D_w = M N_{D,w}^{Co60} k_Q^{mag}$$

B > 0 T

quality and B-field corr. factor

$$k_Q^{mag} = \frac{\left(\frac{D_w}{D_{cha}}\right)_Q^B}{\left(\frac{D_w}{D_{cha}}\right)_{60}^{B=0T}}$$

$$k_Q^{mag} = \frac{\left(\frac{D_w}{D_{cha}}\right)_Q^B}{\left(\frac{D_w}{D_{cha}}\right)_{^{60}Co}}$$

$$k_Q^{mag} = \frac{\left(\frac{D_w}{D_{cha}}\right)_Q^B}{\left(\frac{D_w}{D_{cha}}\right)_{^{60}Co}}$$

Water dose is scored in a water cylinder

30 cm

Ē

$$k_Q^{mag} = \frac{\left(\frac{D_W}{D_{cha}}\right)_Q^B}{\left(\frac{D_W}{D_{cha}}\right)_{60}^{B=0T}}$$

- Water dose is scored in a water cylinder
- ⁶⁰Co at 0.35 T

photon beam

$$k_Q^{mag} = \frac{\left(\frac{D_w}{D_{cha}}\right)_Q^B}{\left(\frac{D_w}{D_{cha}}\right)_{^{60}Co}}$$

- Water dose is scored in a water cylinder
- ⁶⁰Co at 0.35 T
- Results for PTW 31010

photon beam

Rotating chamber

Rotating chamber

Rotating chamber

k₀^{mag} - sensitive volume

 Calculate k^{mag}_Q as a function of angle with either 0 mm or 1 mm "dead" region

Sensitive volume important for magnetic fields

- Sensitive volume important for magnetic fields
- Optimal orientation (parallel to magnetic field):
 - Magnetic field effect is reduced
 - Sensitive volume not as important

- Sensitive volume important for magnetic fields
- Optimal orientation (parallel to magnetic field):
 - Magnetic field effect is reduced
 - Sensitive volume not as important
- Future work:
 - Comparison to other MC codes
 - Experimental results in the optimal orientation

- Sensitive volume important for magnetic fields
- Optimal orientation (parallel to magnetic field):
 - Magnetic field effect is reduced
 - Sensitive volume not as important
- Future work:
 - Comparison to other MC codes
 - Experimental results in the optimal orientation

Code availability:

- Available as a branch of the EGSnrc github code
- At the CLRP website:

http://physics.carleton.ca/clrp/EMFmacros

Acknowledgements

 This work is supported by the Canada Research Chair program, Canada Foundation for Innovation, NSERC, OGS, and a Queen Elizabeth II GSST scholarship.

Thank you !

Victor Malkov - MCMA 2017

