

Monte Carlo calculation of absorbed doses due to imaging sessions delivered to patients during Tomotherapy Image-Guided RadioTherapy courses

Vincent Passal¹, Guillaume Boissonnat², Sophie Chiavassa¹, Delphine Lazaro², *Grégory Delpon*¹

1 ICO, Centre René Gauducheau, Nantes Saint-Herblain, France 2 CEA, LIST, LM2S, Saclay, France

Aim of the study

- In clinical practice, for Tomotherapy treatments:
- Daily MVCT in-room imaging sessions
- Additional dose
 - Not prescribed
 - Not calculated
 - Not reported

Calculation of the MVCT absorbed dose distribution

- Model the Tomotherapy MVCT with GATE
- Validate the model on anthropomorphic phantoms
- Evaluate the dose distribution for clinical cases

TOMOTHERAPY[®] Image-guided radiotherapy (IGRT)

Helical scanner imaging

Acquisition of the anatomical volume by slice requiring a translation of the couch and several rotations

MVCT beam collimation:

Field of 0.4x40cm² (J1) at isocenter source-isocenter distance = 85cm

Gantry rotation: 10 sec (36°/sec) *Couch translation:* Normal = 8mm/rotation (0.8mm/sec) *Slice thickness:* 2mm (pitch normal)

GATE model

Source

Definition of the spectrum point by point from Jeraj et al. Source shape defined by double gaussian

Geometry

Jaws (blue): four symmetrical volumes inclined two by two on the side MLC (white): one volume, repeated N times with translation

rotation

Output Screen (Blue): Stop unnecessary particles

Physics

Standard model suitable for the energy range (MeV)

For dose measurements in static conditions, use of a second beam 5x40cm² corresponding to fully opened jaws.

X axis

Measurements either in water or solid water

	Field	Detectors
PDD (SSD 80cm)	5x40cm ²	A1SL
	0.4x40cm ²	A1SL and EBT3
Profile (SSD 80cm SAD 85cm)	5x40cm ²	A1SL and EBT3
	0.4x40cm ²	EBT3
Reference Dose Rate (SSD 80cm SAD 85cm)	5x40cm ²	A1SL
OF (SSD 80cm SAD 85cm)	$5x40cm^{2}$	EBT3 and Diamond

Corresponding simulations either in water or solid water

Two models: 0.4x40cm² and 5x40cm² Voxel volume: 0.25³ mm³ to 2³mm³ Simulated particles: 10⁹ to 10¹¹ GateLab Calculation Grid

Measurements in anthropomorphic phantom STEEV

STereotactic End-to-End Validation phantom (CIRS)

Anthropomorphic head phantom Interchangeable inserts (63.5 x 63.5 x 63.4 mm³) Dose measurement at isocenter with external marks

Nanodot dosimetry

2D point-to-point dosimetry in two orthogonal directions with 27 OSL

Measurements in clinical conditions (Normal mode)

- -couch translation normal (0.8mm/s)
- -slice reconstruction 2mm

Corresponding simulation

Integration of the acquired MVCT scan in the simulation 1 Assignment of materials in each voxel according to MVCT grey level Resolution of output voxels: 2x2x0.8mm³ Parameters

-couch translation 0.8mm/s Beam rotation 36deg/s -discretization of the simulation in « second »

Duration

About 30h simulation using the GateLab

16 to 27

Measurements in anthropomorphic phantom GRANT

CIRS ATOM® 5-year old pediatric anthropomorphic phantom

Height 110 cm, weight 19 kg Tissue-equivalent epoxy resins 26 slabs (thickness 25 mm)

Nanodot dosimetry

180 OSL available inserts
39 point measurements in different anatomical regions (Head, Thorax, Abdomen, Pelvis)

Corresponding simulation

For a static beam, good agreement between measurements and simulations (deviation < 2% in high dose regions)

Longitudinal beam profile 0.4x40cm² EBT3 vs GATE virtual water

Reference Dose rate and Output Factor

Reference dose rate field 5x40cm²

Water-60 seconds

SSD 80cm

SAD 85cm

D_{A1SL} = **37.2 cGy/min**

OF results

	OF
EBT3	0,49
Diamond	0,50
Gate	0,50

Reference dose rate field 0.4x40cm²

D_{A1SL} x OF = 18.6 cGy/min

Satisfactory results in water for relative measurements (PDD, OAR) Calculation of the dose rate in our reference settings

Phantom STEEV results

Institut de Cancérologie de l'Ouest

Two directions, 27 OSL

Deviation Measurement / Simulation	Measurement Point	
0–5%	15	
5-10%	9	
>10%	3	
max	11.8%	
mean	3.7%	

12

Phantom Grant results

Deviation Measure / Simulation	Measurement Point	
0–5%	27	
5-10%	9	
>10%	3	
max	11.9%	
mean	4.0%	

Head: OSL 1-13

Thorax: OSL 14-26

Pelvis: OSL 33-39

Uncertainties:

OSLMeasurement uncertainties 5% (according to Landauer)GATEStatistical uncertainties voxel dose 3.5% (mean)Additional uncertainties due to partial volume effect and angular samplingAcceptable uncertainties for imaging dose calculation

Absorbed dose measurements:

Satisfactory agreement between measurements and simulations in anthropomorphic phantoms. No correlation between measurement/simulation deviation and material area (bone, water, air...)

Similar results for STEEV and Grant phantoms

max deviation: 12% and mean deviation: 4%

Dmin=1.4cGy Dmax=2.5cGy

Validation of the model in anthropomorphic phantoms

Example on a clinical case: Medulloblastoma

Treatment: 36 Gy in 20 fractions Imaging: 1 Daily MVCT, but 2 sites

Planned Dose Distribution

Mean absorbed dose (cGy)					
ROI	Treatment Imaging		Increase		
Bladder	680	34	+5.0%		
Chiasm	3660	38	+1,0%		
Brain	Brain 3610		+1.1%		
Eye	Eye 2420		+1.7%		
Lens	1190	42	+3.5%		
Optic nerve	3610	38	+1.1%		
Optic tract	3620	40	+1.1%		
Parotid Gland	1340	42	+3.1%		

Institut de Cancérologie de l'Ouest

MVCT Dose Distribution

Example on a clinical case: Head and Neck cancer 70Gy/35 fx

Dose Volume Histogram Treatment: solid lines Treatment+Imaging: dotted lines itut de

concérologie

de l'Ouest

Example on a clinical case: Head and Neck cancer 70Gy/35 fx

Treatment (TT) 35 fractions + 35 MVCT Dose increase between (TT) and (TT+MVCT)

		D98 (Gy)	Average (Gy)	D2 (Gy)
Cochlea R	TT	1.94	2.34	2.81
	TT+MVCT	2.48	2.85	3.30
	Increase	27.8%	21.8%	17.4%
Maxillary articulation	ТТ	2.07	3.83	7.40
	TT+MVCT	2.62	4.40	8.03
	Increase	26.6%	14.9%	8.5%
Brain	ТТ	0.26	1.27	10.33
	TT+MVCT	0.27	1.32	10.94
	Increase	3.8%	3.9%	5.9%
Parotid gland L	тт	6.99	24.24	53.91
	TT+MVCT	7.62	24.88	54.58
	Increase	9.0%	2.6%	1.2%
CTV70Gy	тт	68.74	70.25	72.08
	TT+MVCT	69.37	70.90	72.73
	Increase	0.9%	0.9%	0.9%

Conclusion

Creation of a Monte Carlo model of the TomoTherapy imaging system

Validation by comparing measurements and simulations **Simple and Complex geometries**

Predict the dose distribution due to imaging sessions in patients

Add absorbed dose due to imaging sessions in reporting

This work is part of the AID-IGRT Project led by Delphine Lazaro (CEA, France):

Additional doses related to in-room imaging systems in IGRT

Systems: Tomotherapy, OBI, XVI, CyberKnife, ExacTrac

Données cartographiques @2017 GeoRasis-DE/RKG