

Biophysical modeling of the radiosensitizing effect of gold nanoparticles (GNP)

Conference MCMA2017 – 17/10/2017

Floriane POIGNANT, PhD student at the IPNL Supervisor : Michael BEUVE, Co-supervisor : Etienne TESTA Financial Support : LabEx PRIMES

Contexte

Résultats

Nanoparticles and radiotherapy

Matériel &

méthode

State of

the art

 Radiosensitizer : used to increase the effect of dose within the tumor, by confining the product inside the cancer cells

Nanoparticles :

Objectif

- Radiosensitizing effect observed both in vivo/vitro
- Origin still under investigation

Context

Goal

Results

Physical and chemical origin of radiosensitization?

Material &

method

State of

the art

- Time scale: from 10⁻¹⁸ second
- Spatial scale: nano-dosimetry

Study with Monte Carlo simulations

- 1. **Quantify**, at nanometric scale, the **impact of nanoparticles** on physical and chemical radio-induced processes
- 2. Implement the results in a **biophysical model** to reproduce experimental radiosensitizing effects

(1) Gervais B *et al*, Numerical simulation of multiple ionization and high LET effects in liquid water radiolysis, *Radiat. Phys. Chem.* **75** 493–513, 2006
 (2) B. Gervais *et al.*, Production of HO2 and O2 by multiple ionization in water radiolysis by swift carbon ions, *Chemical Physics Letters*, 410 330-334, 2005
 (3) M Cunha *et al*, NanOx, a new model to predict cell survival in the context of particle therapy, *Phys. Med. Biol.* **62** 1248, 2017

Context

Results

State of the art

Material &

method

<u>Most elaborated micro/nano-dosimetric study [4]</u>:

State of

the art

	Model [4]	Limits
MC Simulation	Geant4 + Geant4- DNA	 Atomic physical model for gold Energy cut in gold 250 eV
Biophysics	LEM	 Average radial dose Chemistry not applied

Goal

Results

Nanodosimetry study

State of

the art

System

Context

 GNP of a given radius R_{GNP} of 5 to 50 nm in water

Goal

- Photons (20 keV 90 keV) decomposed in subcontributions
- Target (10 nm)³ at

 $R_{GNP} < d_{target} < R_{GNP} + 200 \text{ nm}$

- Irradiation of a few Gy
- Dose in the target at d_{target} ?
 = Specific energy
- Computing time challenging

Material &

method

Illustration of nanodosimetric study in sensitive cell targets

 Context
 Goal
 State of the art
 Material & method
 Results

Positioning wrt state of the art

	Model [4]	Limits	Our model	Improvement
MC Simulation	Geant4 + Geant4- DNA	 Atomic physical model for gold Energy cut in gold 250 eV 	MDM + CHEM	 Solid state model for gold Down to thermalization
Biophysics	LEM	 Average radial dose Chemistry not applied 	NanOx	Closer to biological realityRadical species

- Nanodosimetry and Oxidatve stress: biophysical model predicting cell survival upon irradiation
- Goal: calculation of the mean number of cells killed by a given dose
- Postulate: cell survival expressed in terms of components related to:
 - Local lethal events inducing direct cell killing
 - Non-local events (e.g. free radical stress)
- Originally for hadrontherapy

91

(3) M Cunha *et al*, **NanOx**, **a new model to predict cell survival in the context of particle therapy**, *Phys. Med. Biol.* **62** 1248, 2017

Context

Goal

State of the art

Material & method

Results 1/3

Physical models for gold/particles

		MIDIM		Standard Simulation	
Particle	Process	Metal (gold)	Water	Metal (gold)	Water
Electrons	Phonons	<u>++</u>		+	
	Plasmons (surface, volume)				
	(solid physics model)				
	Core Ionization				
	(atomic model)	ΤT	TT	ΤT	ΤŦ
	Elastic scattering	++	++	++	++
	Auger and fluorescence	++	++	++	++
	Double ionization		++		
	Electrons attachment		++		++
	Molecule vibration		++		++
	Electronic excitation		++		++
	Surface barrier				
	affinity function				
Photons	Compton scattering	++	++	++	++
	Photoelectric effect	++	++	++	$\left[\frac{10}{10} \right]$

- Yield = $\frac{Number of electrons backscattered/transmitted}{Number of electrons sent}$
- Energy distribution
- Experimental work from literature
- MDM results with/without surface plasmons

(5) Reimer, L. and Drescher, **H. Secondary electron emission of 10-100 kev electrons from transparent films of al and au**, *Journal of Physics D: Applied Physics*, 10(5):805, 1977

(5) Reimer, L. and Drescher, **H. Secondary electron emission of 10-100 kev electrons from transparent films of al and au,** *Journal of Physics D: Applied Physics*, 10(5):805, 1977

151

Cu), Surface and interface analysis, vol. 25, 17-24, 1997

Conclusion on MC validation

- Results in close agreement with experience for [0-90] keV for electron/gold interaction
 - For electron yields
 - For energy spectra
- Test limited to macroscopic or 1D-nanoscopic scale, but convincing enough to go to nanometric scale
- Surface plasmons do not impact much yields, but have consequences on energy distribution
- Ongoing publication

[18]

[18]

Conclusion regarding nanodosimetry

- Local boost of dose deposition in nano-targets similar to hadrontherapy
- The boost depends :
 - On the size of the GNP mostly
 - Energy if large GNP

Range of action

- 20 nm for R_{GNP} =5 nm
- 200 nm for R_{GNP} =50 nm
- Biological consequences: the GNP must be close to a target if R_{GNP} small

- Free radical species production
 - H₂O₂
 - OH[.]
 - e_{aq}
- For different GNP concentration, times
- (for now) the radical species produced do not interact with the GNP

Contexte Objectif State of the art Matériel & méthode Résultats Free radical production at 1 mg/mL

Radius GNP	5 nm	12,5 nm	25 nm	50 nm
mg/mL	1	1	1	1
nM of GNP	164	10	1,3	0,16
N GNP in (10 µm) ³ cell	~ 100 000	~ 6 000	~ 800	~ 100

[24]

Contexte

|25|

Résultats

Comparison to experience OH[.] at 10⁻⁶ s at 20 keV for R_{GNP} = 16,25 nm

State of

the art

Objectif

Matériel &

méthode

(6) C. Sicard-Roselli, et al, A New Mechanism for Hydroxyl Radical Production in Irradiated Nanoparticle Solutions, Small, 10, No. 16, 2014, Pages 3338-3346

Context

Results 3/3

Material &

- Increase of free radical production (H_2O_2 , OH^{-})
 - More efficient for small GNP at fixed massic concentration

State of

Underestimation of OH[•]
 Scenario 1: interaction of radical species with GNP

Goal

- Test with arbitrary constants
- Ongoing collaboration with ENS, DFT calculation for gold/water interface
- Measurement of reaction constants ?

Scenario 2: impact of the measurement technic

- Need for extra experiments with different technics

- Implement in NanOx
- Obtain cell survival
- Answer questions:
 - Physical effect: which biological target for which effect?
 - Chemical effect: quantify the consequences

Thanks for listening!

Aknowledgement : PJ Lartaud, H. Charfi, B. Gervais, A. Ipatov, M. Cunha, C. Monini, T. Bacle, E. Testa, M. Beuve.

In collaboration with the Labex PRIMES groups : LRCM (C. Rodriguez), LPC (G. Montarou), GIN (F. Esteve), LAN (J. L. Ravanat), ILM (O. Tillement)

This work was supported by the LABEX PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Thanks for listening!

ANNEXE (1)

(6) Y. Takeichi, K. Goto, **True Auger Electron Spectra Measured with a Novel Cylindrical Mirror Analyser (Au, Ag, Cu)**, *Surface and interface analysis*, vol. 25, 17-24, 1997

[17]

Fig. 2. Histogram of local dose calculated for a water sample of $50 \times 50 \times 10 \,\mu\text{m}^3$ irradiated at a dose of 1 Gray with a beam of ⁶⁰Co γ -*rays*, H[10 MeV] and C[10 MeV/ n]. The mesh resolution is 10 nm.

(8) M. Beuve, A. Colliaux, D. Dabli, D. Dauvergne, B. Gervais, G. Montarou, E. Testa, **Statistical effects of dose deposition in trackstructure modelling of radiobiology efficiency**, *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, Volume 267, Issue 6, March 2009, Pages 983-988

(7) C. Wehenkel, **Mise au point d'une nouvelle méthode d'analyse quantitative des spectres de pertes d'énergie [**14] **d'électrons rapides diffuses dans la direction du faisceau incident,** *Journal de physique*, vol. 36(2), 199-213, 1975 **[**14]