

MCMA 2017, NAPLES, ITALY

OpenDNA An OpenCL-based Monte Carlo simulation code

Yunzhi Ma Ph.D^{1,2}, Luc Beaulieu Ph.D^{1,2}

¹ : Department of Radiation Oncology and Oncology Area of the CHU de Québec Research Center, Hôtel-Dieu de Québec, Québec, Canada.

²: Department of Radiology and Laval University Cancer Research Center, Université Laval, Québec, Canada.

Tuesday, October 17th 2017

Outline

- Background & introductory
- Benchmarking
 - Proton simulation
 - Alpha particle simulation
 - Radial energy distribution
- Summary

Introduction: Geant4-DNA

- An Analogue MC Code
 - Microdosimetry simulation
- Physical process
- Chemical species
- Spatial & temporal resolutions

Ref: <u>http://geant4-dna.org</u>

Introduction: OpenDNA

What is OpenDNA

OpenDNA is an OpenCL-based track structure simulation code based on Geant4-DNA's xs data which runs on multiple devices and heterogeneous compute environment.

> And why & how?

To create a fast yet portable track structure simulation code
OpenCL offers both high performance and portability

Introduction: OpenCL

OpenCL - Open Computing Language

Open, royalty-free standard for portable, parallel programming of heterogeneous parallel computing CPUs, GPUs, and other processors

Introduction: OpenCL

Single Source C++ Programming

Core API and Language Specs

Portable Kernel Intermediate Language

Introduction: OpenCL

Models: e- (electron)

Electron process	Model used	Min Energy	Max Energy		
Elastic scattering	Screened Rutherford Model	9 eV	1 MeV		
Excitation	Emfieltzoglou, Born Models	9 eV	1 MeV		
Ionisation	Emfieltzoglou, Born Models	11 eV	1 MeV		
Vibration excitation is not considered.					

Models: P (proton, H+), H (hydrogen)

Common processes	Model used	Min Energy	Max Energy
Nuclear elastic	Screened Rutherford Model	100 eV	1 MeV
Excitation	Miller Green Model	10 eV	100 MeV
Ionisation	Born, Rudd Models	100 eV*	100 MeV
Particle-dependant process	Model used		
Charge increase, H	Dingfelder Model	1 keV	100 MeV
Charge decrease, P	Dingfelder Model	1 keV	100 MeV

M&M - Alpha particle

Models: Alpha particle (He++), He+, He

Common processes	Model used	Min Energy	Max Energy
Nuclear elastic	Screened Rutherford Model	100 eV	1 MeV
Excitation	Miller Green Model	1 keV	400 MeV
Ionisation	Rudd Model	1 keV*	400 MeV
Particle-dependant process	Model used		
Charge increase, He, He+	Dingfelder Model	1 keV	400 MeV
Charge decrease, He+, He++	Dingfelder Model	1 keV	400 MeV

1.Events

2. Step length

E = 1 MeV

E = 10 MeV

3. Edep

E = 1 MeV

4. Range

E = 1 MeV

E = 10 MeV

4. Straggling

E = 1 MeV

E = 10 MeV

1.Events

2. Step length

3. Edep

4. Range & straggling

Results - 100 keV Electron - RED

Results - 10 MeV proton - RED

Results - 20 MeV alpha particle - RED

Summary

- An openCL based track structure code was
 - Created for electron, proton & alpha particle
 - Preliminarily tested
- Perspectives:
 - OpenCL tuning & optimization
 - Comprehensive benchmarking
 - Microdosimetry applications
 - Add chemical processes

Application - ¹⁰³Pd@AuNP dosimetry

MCMA 2017, NAPLES, ITALY

OpenDNA

Thank you for your attention!

Questions? Comments?