

Centre universitaire de santé McGill McGill University Health Centre

Microdosimetry calculations for monoenergetic electrons using Geant4-DNA combined with a weighted track sampling algorithm

> Gabriel Famulari, Piotr Pater, Shirin A. Enger Medical Physics Unit, McGill University

Microdosimetry

- Microdosimetry is the theoretical and experimental investigation of imparted energy probability distributions in a "small" volume of matter that is crossed by a single ionizing particle.
- Analogs to macrodosimetry:
 - D \rightarrow z
 - LET \rightarrow y

- When different quantities are compared under identical conditions, the differences in RBE are thought to be related to differences in track structure of the radiation qualities
- Dose mean lineal energy (y_D) is a recommended quantity for the evaluation of radiation quality.

Microdosimetry

Lineal energy: $y = \frac{\varepsilon}{\overline{l}}$

Mean chord length (μ -randomness):

Convex volumes: $\bar{l} = \frac{4V}{s}$ Sphere: $\bar{l} = \frac{4}{3}r$ Cylinder: $\bar{l} = \frac{2rh}{r+h}$

Single-event frequency and dose mean lineal energy:

$$\bar{y}_F = \int y f(y) dy$$
$$\bar{y}_D = \int y d(y) dy = \frac{\int y^2 f(y) dy}{\int y f(y) dy} = \frac{1}{\bar{y}_F} \int y^2 f(y) dy$$

Microdosimetry

- The quantity *y* varies considerably with the size of the scoring volume
 - Target size is important! (cell nucleus, DNA)
- A SV of 1 μ m has typically been used (ease of measurement):
 - Radiation therapy
 - Radiation protection
- Radiation damage at the level of DNA molecule:
 - DNA segment (~ 2 nm)
 - Nucleosome (~ 10 nm)
 - Chromatin fibre (~ 30 nm)
 - Chromatin fibre loop (~ 300 nm)

Issues?

- Recent studies have combined the primary electron spectrum with lineal energy values calculated for monoenergetic electrons.
- The shape of SV has varied:
 - Type of radiation
 - Size of SV
- Different scoring techniques:
 - Virtual cell geometry (fixed SV, variable tracks)
 - Random sampling (fixed tracks, variable SV)
- There is a lack of data for low energy electrons.
 - Available data for few energies and SV
 - Low energy cross sections and physics models have been updated

Random sampling and scoring

- Generation of electron tracks:
 - Incident particles: 100 eV 1 MeV electrons
 - Physics: Geant4-DNA (ionization, excitation, elastic scattering)
 - Electrons tracked down to 10 eV
 - 10^3 tracks (each track sampled 10^3 times) => 10^6 scoring events
- Microdosimetric distributions were calculated by randomly overlaying scoring volumes within the associated volume of the track.
 - Shapes: Sphere, cylinder
 - Size: 2-100 nm
- Associated volume:
 - Volume around a track with a sampling efficiency equal to one.

Random sampling and scoring

Random sampling algorithm:

 Randomly select a transfer point
Randomly superimpose a sphere of radius r within a distance r from the transfer point

3. Record energy deposited

Scoring:

- Each event is scored with a weight ω_{tp} inversely proportional to the number of transfer points within the scoring volume
- Each track is scored with a weight ω_{av} which is proportional to the associated volume of the track.

Famulari et al., Phys Med Biol, 2017

$$\overline{y}_{D} = \frac{\sum_{j=1}^{N} \left(\frac{\sum_{i=1}^{M} y_{i}^{2} \omega_{tpii}}{\sum_{i=1}^{M} \omega_{tpij}} \right) \frac{\omega_{avi}}{\sum_{j=1}^{N} \omega_{avj}}}{\sum_{j=1}^{N} \left(\frac{\sum_{i=1}^{M} y_{i} \omega_{tpij}}{\sum_{i=1}^{M} \omega_{tpij}} \right) \frac{\omega_{avi}}{\sum_{j=1}^{N} \omega_{avj}}}$$

- ✓ Particle track libraries
- ✓ Fast, accurate
- Simulation geometry does not vary according to SV size and shape

Microdosimetry of electrons

Dose mean lineal energy varies with shape and size of SV.

2017-10-17

Microdosimetry of electrons

Database of microdosimetric quantities can be combined with secondary electron spectrum for photon sources.

$$\overline{y}_D = \frac{\int_0^\infty \phi(E) \left(\frac{S(E)}{\rho}\right) \overline{y}_D(E) dE}{\int_0^\infty \phi(E) \left(\frac{S(E)}{\rho}\right) dE}$$

2017-10-17

Gabriel Famulari Results

Dose mean lineal energy varies with distance from the source.

Famulari et al., Int J Radiat Oncol Biol Phys, 2017 (accepted)

Gabriel Famulari Results

The characteristic diameter is in the range of 25-40 nm.

Famulari et al., Int J Radiat Oncol Biol Phys, 2017 (accepted)

- Prescription doses for HDR brachytherapy can vary based on many factors and is primarily a clinical decision.
- The DVH constraints are established based on an accumulation of treatment outcome studies to avoid radiation-induced toxicity.
- Goal for alternative HDR sources:
 - Ensure the same biologically effective dose is given to target and OARs.
- Two options:
 - Modify dose according to single RBE value (simple)
 - RBE-weighted dose maps (complex)

Conclusions

- Microdosimetry can be used as a tool to evaluate radiation quality.
 - Radiation damage at level of DNA predicts biological effect
- Database of microdosimetric quantities for electrons
 - Variety of scoring volume size and shape
- Application to brachytherapy:
 - Quantify RBE between alternative sources
- Additional data is needed to provide clinically relevant RBE values (radiobiology, DSB yields, microdosimetry, nanodosimetry, LET)

Acknowledgements

- Special thanks:
 - Dr. Shirin Enger
 - Dr. Piotr Pater
 - MPU students and staff

Centre universitaire de santé McGill McGill University Health Centre

SEARCH TRAINING NETWORK

The authors acknowledge partial support by the CREATE Medical Physics Research Training grant of the Natural Sciences and Engineering Research Council (grant number: 432290)