

The promise of the MRI linac: simultaneous 1.5 T MRI and irradiation

(and the role of Monte Carlo)

Bas Raaymakers

Acknowledgements and disclaimer

Physics Team MRI in RT UMCU

- Anna Andreychenko ٠
- Bram van Asselen ٠
- Nico van den Berg ٠
- Hans de Boer ٠
- Alex Bhogal •
- Gijsbert Bol ٠
- Maxence Borot .
- Sjoerd Crijns ٠
- Markus Glitzner .
- Sara Hackett •
- Sophie Heethuis ٠
- Tristan van Heijst ٠
- Stan Hoogcarspel ٠
- Jan Kok .
- Jean-Paul Kleijnen ٠
- Remco Krijthe ٠
- Charis Kontaxis .
- Alexis Kotte ٠
- Astrid de Leeuw ٠
- Astrid van Lier
- Jan Lagendijk ٠
- Hans Ligtenberg ٠
- Mariska Luttje ٠
- Stefano Mandija ٠

Clinical Team MRI in RT UMCU

- Matteo Maspero
- Gert Meijer • •

•

•

•

•

٠

٠

٠

•

٠

٠

•

•

- **Rien Moerland**
- Christel Nomden
- Marielle Philippens
- Mathew Restivo
- Niels Raaijmakers
- **Bas Raaymakers**
- Alessandro Sbrizzi
- Rob Tijssen
- Tim Schakel
 - Yulia
 - Enrica Seravalli
- Frank Simonis
- Kimmy Smit
- **Bjorn Stemkens** ٠
 - Dennis Winkel
 - Jochem Wolthaus
 - Simon Woodings
 - Cornel Zachiu
 - Loes van Zijp

Desiree van den Bongard

•

٠

.

.

.

٠

٠

•

٠

•

٠

٠

٠

٠

٠

٠

- Maarten Burbach
- Ramona Charaghvandi
- Patricia Doornaert
- Sofie Gernaat
- Lucas Goense
- Joris Hartman
- Mariska den Hartogh
- Hanne Heerkens
- Martijn Intven
- Lisanne Jager
- Linda Kerkmeijer
- Juliette van Loon
- Stella Mook
- Max Peters
- ٠ Peter van Rossum
 - Ina Schulz
 - Chris Terhaard
- **Robert Tersteeg**
- Joanne van der Velden
- Joost Verhoeff

Elekta

<u> ပြွ်</u> ScandiDos

The 1.5 T MRI linac: Simultaneous MRI and irradiation

- MRI linac and (Monte Carlo for) clinical introduction
- Monte Carlo for dosimetry in presence B fields
- Monte Carlo to get towards real-time adaptive

1.5 T MRI accelerator: Simultaneous beam on and MRI

Artist impression

1.5 T diagnostic MRI quality

First prototype MRI accelerator

No impact of beam on MRI

1st, 2nd, 3rd and 4th generation MR linac: from proof of concept to clinical system

Proof of concept simultaneous MRI and irradiation

Rotating gantry and MLC

Pre-clinical prototype

Clinical system

First patient on the MRL Bringing push to shove

- Patient population
 - Patients with bone metastases treated wit palliative intention
- Treatment
 - 8 Gy in a single fraction
 - 3 or 5 field IMRT
- Goal:
 - Demonstrate technical accuracy and safety in the clinical setting

3D T2 TSE

Commissioning Monaco for the MR-linac

Percentage local dose difference [%]

Film and point measurement First patient

Geometrical accuracy FIM First patient

- Bone match using EPID and pseudo CT DRR
- Theraview software
- Displacement vector (3D): 0.2 mm

MV and MRI projection for PA beam

MV and MRI projection for oblique beam

Impact of perpendicular B-field on point spread kernels in homogeneous water

From Raaijmakers et al. PMB 2008

Impact depends on field size, B-field strength, orientation, tissue density and geometry

IMRT in presence of 1.5 T magnetic field: e.g. rectal cancer and lung

- For **Rectum**:
- Impact transient air bubbles
- There is impact of B field
- Impact clinically acceptable

Uilkema et al. Med Phys (2015)

- For Lung:
- Impact on lung stereotactie irradiation
- There is impact of B field
- Impace ically acceptable
- MLC t ng not affected by B field

Menten et al. Radiother. Oncol. (2016)

Farmer chamber in magnetic field: Measurements and Monte Carlo simulations

From Meijsing et al 2009

Reference dosimetry in magnetic fields

- Geant 4
- Full head model
- 6 chambers
- 3 configurations
- Correction factors needed
- Uncertainties with B fields similar to conventional formalisms

From o Brien et al. Med Phys (2016)

The chamber response on an MR-linac was 0.6% to 1.3% higher with water rather than air around the chamber

Hackett et al. Med Phys (2016)

The chamber response varied by up to 2% when the distribution of air around the chamber was altered

Hackett et al. Med Phys (2016)

Consequences of air layer around an ionization chamber

Hackett et al. Med. Phys. (2016)

MR-linac: from on-line to real-time adaptive treatment

Kontaxis et al 2015 PMB 60 2493

MRI tracking of 3D anatomy and deformation field at 5Hz e.g. pancreas tracking by combining pre-treat 4D MRI and on-line MRI

Phase 1

Phase 1

Time-resolved (intra-fraction) dose reconstruction by combining time-stamped MRI and linac parameters

1/7 Hz intra-beam 3D MRI during FIM

Courtesy Markus Glitzne

MR-linac Treatment Planning (MRLTP)

- Integration of online modules
 - Supports anatomy changes
 - Guarantees dose convergence
- Adaptive Sequencer (ASEQ)
- Delivers clinical plans
 - prostate in 90 sec, kidney tumour in 20 sec
 - Validated using regular IMRT QA

Planned dose

Inter-beam replanning regime

Inter-beam replanning regime

Inter-beam replanning regime

Inter-beam replanning vs Conventional

Summary

- 1.5 T MRI linac is operational and clinical
- Monte Carlo is required for dose calculations
- Monte Carlo is required for dosimetry calibration
- 1.5 T MRI enables near-real-time 4D anatomical tracking
- This screams for fast Monte Carlo dose engines:
 - Real-time dose accumulation
 - Real-time plan adaptation via re-planning

Real-time plan adaptation while accounting for real-time accumulated dose. (From Kontaxis et al. PMB, 2015 and 2017)

Thumbs up from and to my co-workers at UMC Utrecht!

First volunteer images on Elekta MRI linac in UMC Utrecht