Jets, Kinematics, and Other Variables

A Tutorial for Physics With p-p (LHC/Cern) and p- \bar{p} (Tevatron/FNAL)
Experiments

Drew Baden

University of Maryland
World Scientific Int.J.Mod.Phys.A13:1817-1845, 1998

Nucleon-nucleon Scattering

Elastic scattering

Forward-forward scattering, no disassociation (protons stay protons)

"Single-diffractive" scattering

One of the 2 nucleons disassociates into a spray of particles

- Mostly $\pi^{ \pm}$and π^{0} particles
- Mostly in the forward direction following the parent nucleon's momenum

"Double-diffractive" scattering

Active detector

Active detector

Proton-(anti)Proton Collisions

- At "high" energies we are probing the nucleon structure
- "High" means Compton wavelength $\lambda_{\text {beam }} \equiv \mathrm{hc} / \mathrm{E}_{\text {beam }} \ll \mathrm{r}_{\text {proton }} \sim \mathrm{hc} /$ " 1 GeV " $\sim 1 \mathrm{fm}$
- $\mathrm{E}_{\text {beam }}=1 \mathrm{TeV} @ F N A L$ 5-7 TeV@LHC
- We are really doing parton-parton scattering (parton = quark, gluon)
- Look for scatterings with large momentum transfer, ends up in detector "central region" (large angles wrt beam direction)
- Each parton has a momentum distribution -
- CM of hard scattering is not fixed as in $\mathrm{e}^{+} \mathrm{e}^{-}$will be move along z-axis with a boost
- This motivates studying boosts along z
- What's "left over" from the other partons is called the "underlying event"
- If no hard scattering happens, can still have disassociation
- An "underlying event" with no hard scattering is called "minimum bias"

"Total Cross-section"

- By far most of the processes in nucleon-nucleon scattering are described by:
$-\sigma($ Total $) \sim \sigma($ scattering $)+\sigma($ single diffractive $)+\sigma($ double diffractive $)$

> arXiv.org > hep-ph > arXiv:0709.0395

High Energy Physics - Phenomenology

The total cross section at the LHC

P. V. Landshoff
(Submitted on 4 Sep 2007)
We do not have the ability to perform precise calculations of long-range strong interaction effects, because the effective QCD coupling is not small and so we cannot use perturbation theory. Nevertheless, I show that we know a lot, though not nearly enough. As a measure of our lack of knowledge, the best prediction for the total cross section at LHC energy is $125+/-25 \mathrm{mb}$.

Comments: Lectures at School on QCD, Calabria, July 2007
Subjects: High Energy Physics - Phenomenology (hep-ph); High Energy Physics Experiment (hep-ex)
Report number: DAMTP-2007-82
Cite as:

Needles in Haystacks

- What determines number of detected events $N(X)$ for process " X "?
- Or the rate: $R(X)=N(X) / s e c$?
- $N(X)$ per unit cross-section should be a function $n_{m b}$ of the brightness of the beams
- And should be constant for any process:
$\mathrm{N}(\mathrm{X}) / \sigma(\mathrm{X})=$ constant $==\mathrm{L}$ (luminosity)
$\mathrm{R}(\mathrm{X}) / \sigma(\mathrm{X})=\mathcal{C}$ (instantaneous luminosity)
- Units of luminosity:
- "Number of events per barn"
- Note: $1 \mathrm{nb}=10^{-9}$ barns $=10^{-9} \times 10^{-24} \mathrm{~cm}^{2}=10^{-33} \mathrm{~cm}^{2}$
- LHC instantaneous design luminosity $10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}=10 \mathrm{nb}^{-1} / \mathrm{s}$, or 10 events per nb cross-section per second, or "10 inverse nanobarns per second"
- e.g. 10 t-tbar events per second

Coordinates

Detect the "hard scattering"

Phase Space

- Relativistic invariant phase-space element: $\quad d \tau=\frac{d^{3} p}{E}=\frac{d p_{x} d p_{y} d p_{z}}{E}$
- Define $\mathrm{p} \overline{\mathrm{p}}$ or pp collision axis along z-axis:
- Coordinates $\mathbf{p}^{\mu}=\left(\mathbf{E}, \mathbf{p}_{x}, \mathbf{p}_{\mathbf{y}}, \mathbf{p}_{z}\right)$ - Invariance with respect to boosts along z ?
- 2 longitudinal components: $E \& p_{z}$ (and dpz/E) NOT invariant
- 2 transverse components: $p_{x} p_{y}$, (and $\left.d p_{x}, d p_{y}\right)$ ARE invariant
- Boosts along z-axis
- For convenience: define p^{μ} where only 1 component is not Lorentz invariant
- Choose $\mathbf{p}_{\mathrm{T}}, \mathbf{m}, \phi$ as the "transverse" (invariant) coordinates
- $\mathrm{p}_{\mathrm{T}} \equiv \mathrm{p} \sin (\theta)$ and ϕ is the azimuthal angle
- For $4^{\text {th }}$ coordinate define "rapidity" (y) $y \equiv \frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}$ or $p_{z}=E \tanh y$
- ...How does it transform?

Boosts Along beam-axis

- Form a boost of velocity β along z axis
$-p_{z} \Rightarrow \gamma\left(p_{z}+\beta E\right)$
$-\mathrm{E} \Rightarrow \gamma\left(\mathrm{E}+\beta \mathrm{p}_{\mathrm{z}}\right)$
- Transform rapidity:

$$
\begin{aligned}
y & =\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}} \Rightarrow \frac{1}{2} \ln \frac{\gamma\left(E+\beta p_{z}\right)+\gamma\left(p_{z}+\beta E\right)}{\gamma\left(E+\beta p_{z}\right)-\gamma\left(p_{z}+\beta E\right)} \\
& =\frac{1}{2} \ln \frac{\left(E+p_{z}\right)(1+\beta)}{\left(E-p_{z}\right)(1-\beta)}=y+\ln \gamma(1+\beta) \\
y & \Rightarrow y+y_{b}
\end{aligned}
$$

- Boosts along the beam axis with $v=\beta c$ will change y by a constant y_{b}
$-\left(p_{T}, y, \phi, m\right) \Rightarrow\left(p_{T}, y+y_{b}, \phi, m\right)$ with $\mathrm{y} \Rightarrow \mathrm{y}+\mathrm{y}_{\mathrm{b}}, \mathrm{y}_{\mathrm{b}} \equiv \ln \gamma(1+\beta)$ simple additive to rapidity
- Relationship between y, β, and θ can be seen using $p_{z}=p \cos (\theta)$ and $p=\beta E$

$$
d \tau=\frac{d^{3} p}{E}=\frac{d p_{x} d p_{E} d p_{z}}{E} \quad \text { Phase Space (cont) }
$$

- Transform phase space element d τ from ($\mathbf{E}, \mathbf{p}_{\mathrm{x}}, \mathbf{p}_{\mathrm{y}}, \mathbf{p}_{\mathbf{z}}$) to $\left(\mathbf{p}_{\mathrm{t}}, \mathbf{y}, \phi, \mathbf{m}\right)$

$$
d p_{x} d p_{y}=\frac{1}{2} d p_{T}^{2} d \phi
$$

$$
d \tau=\frac{1}{2} d p_{T}^{2} d \phi d y
$$

$$
\begin{aligned}
d y & =d p_{z}\left(\frac{\partial y}{\partial p_{z}}+\frac{\partial y}{\partial E} \frac{\partial E}{\partial p_{z}}\right) \quad \text { using } \\
& =d p_{z}\left(\frac{E}{E^{2}-p_{z}^{2}}-\frac{p_{z}}{E^{2}-p_{z}^{2}} \frac{p_{z}}{E}\right) \quad y \equiv \frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}} \\
& =\frac{d p_{z}}{E}
\end{aligned}
$$

- Gives: $d \tau=\frac{1}{2} d p_{T}^{2} d \phi d y$
- Basic quantum mechanics: $\mathrm{d} \sigma=\mathrm{IM} \mathrm{I}^{2} \mathrm{~d} \tau$
- If IM I ${ }^{2}$ varies slowly with respect to rapidity, do/dy will be \sim constant in y
- Origin of the "rapidity plateau" for the min bias and underlying event structure
- Apply to jet fragmentation - particles should be uniform in rapidity wrt jet axis:
- We expect jet fragmentation to be function of momentum perpendicular to jet axis
- This is tested in detectors that have a magnetic field used to measure tracks

Transverse Energy and Momentum Definitions

- Transverse Momentum: momentum perpendicular to beam direction:

$$
p_{T}^{2}=p_{x}^{2}+p_{y}^{2} \quad \text { or } \quad p_{T}=p \sin \theta
$$

- Transverse Energy defined as the energy if p_{z} was identically $0: \mathrm{E}_{T}=\mathrm{E}\left(\mathrm{p}_{\mathrm{z}}=0\right)$

$$
E_{T}^{2}=p_{x}^{2}+p_{y}^{2}+m^{2}=p_{T}^{2}+m^{2}=E^{2}-p_{z}^{2}
$$

- How does E and p_{z} change with the boost along beam direction?
- Using $\tanh y=\beta \cos \theta$ and $p_{z}=p \cos \theta$ gives $p_{z}=E \tanh y$

$$
\begin{aligned}
& \text { then } E_{T}^{2}=E^{2}-p_{z}^{2}=E^{2}-E^{2} \tanh ^{2} y=E^{2} \operatorname{sech}^{2} y \\
& \text { or } \quad E=E_{T} \cosh y \text { which also means } p_{z}=E_{T} \sinh y
\end{aligned}
$$

- (remember boosts cause y $\rightarrow \mathrm{y}+\mathrm{y}_{\mathrm{b}}$)
- Note that the sometimes used formula $E_{T}=E \sin \theta$ is not (strictly) correct!
- But it's close - more later....

Invariant Mass $M_{1,2}$ of 2 particles p_{1}, p_{2}

- Well defined: $M_{1,2}^{2}=\left(p_{1}+p_{2}\right)^{2}=m_{1}^{2}+m_{2}^{2}+2\left(E_{1} E_{2}-\overrightarrow{p_{1}} \cdot \overrightarrow{p_{2}}\right)$
- Switch to $\mathrm{p}^{\mu}=\left(\mathrm{p}_{\mathrm{T}}, \mathrm{y}, \phi, \mathrm{m}\right)$ (and do some algebra...)

$$
\begin{array}{r}
\overrightarrow{p_{1}} \cdot \overrightarrow{p_{1}}=p_{x_{1}} p_{x_{2}}+p_{y_{1}} p_{y_{2}}+p_{z_{1}} p_{z_{2}}=E_{T_{1}} E_{T_{2}}\left(\beta_{T_{1}} \beta_{T_{2}} \cos \Delta \phi+\sinh y_{1} \sinh y_{2}\right) \\
\text { with } E=E_{T} \cosh y \text { and } \beta_{T} \equiv p_{T} / E_{T}
\end{array}
$$

- This gives $M_{1,2}^{2}=m_{1}^{2}+m_{2}^{2}+2 E_{T_{1}} E_{T_{2}}\left(\cosh \Delta y-\beta_{T_{1}} \beta_{T_{2}} \cos \Delta \phi\right)$
- With $\beta_{T} \equiv p_{T} / E_{T}$
- Note:
- For $\Delta \mathrm{y} \rightarrow 0$ and $\Delta \phi \rightarrow 0$, high momentum limit: $\mathrm{M} \rightarrow 0$: angles "generate" mass
- For $\beta \rightarrow 1(\mathrm{~m} / \mathrm{p} \rightarrow 0) \quad M_{1,2}^{2}=2 E_{T_{1}} E_{T_{2}}(\cosh \Delta y-\cos \Delta \phi)$

This is a useful formula when analyzing data...

Invariant Mass, multi particles

- Extend to more than 2 particles:

$$
\begin{aligned}
M_{1,2,3}^{2} & =\left(p_{1}+p_{2}+p_{3}\right)^{2}=\left(p_{1}+p_{2}\right)^{2}+2\left(p_{1}+p_{2}\right) p_{3}+m_{3}^{2} \\
& =M_{1,2}^{2}+\left[2 p_{1} p_{3}\right]+\left[2 p_{2} p_{3}\right]+m_{3}^{2} \\
& =M_{1,2}^{2}+\left[p_{1}^{2}+2 p_{1} p_{3}+p_{3}^{2}\right]-m_{1}^{2}-m_{3}^{2}+\left[p_{2}^{2}+2 p_{2} p_{3}+p_{3}^{2}\right]-m_{2}^{2}-m_{3}^{2}+m_{3}^{2} \\
& =M_{1,2}^{2}+M_{1,3}^{2}+M_{2,3}^{2}-m_{1}^{2}-m_{2}^{2}-m_{3}^{2}
\end{aligned}
$$

- In the high energy limit as $m / p \rightarrow 0$ for each particle:

$$
M_{1,2,3}^{2}=M_{1,2}^{2}+M_{2,3}^{2}+M_{1,3}^{2}
$$

\Rightarrow Multi-particle invariant masses where each mass is negligible - no need to id
\Rightarrow Example: $\mathrm{t} \rightarrow \mathrm{Wb}$ and $\mathrm{W} \rightarrow$ jet+jet

- Find M (jet,jet,b) by just adding the 3 2-body invariant masses in quadriture
- Doesn't matter which one you call the b-jet and which the "other" jets as long as you are in the high energy limit

Pseudo-rapidity

"Pseudo" rapidity and "Real" rapidity

- Definition of $\mathrm{y}: \tanh (\mathrm{y})=\beta \cos (\theta)$
- Can almost (but not quite) associate position in the detector (θ) with rapidity (y)
- But...at Tevatron and LHC, most particles in the detector ($>90 \%$) are π 's with $\beta \approx 1$
- Define "pseudo-rapidity" defined as $\eta \equiv y(\theta, \beta=1)$, or $\boldsymbol{\operatorname { t a n h }}(\eta)=\boldsymbol{\operatorname { c o s }}(\theta)$ or

$$
\eta=\frac{1}{2} \ln \frac{1+\cos \theta}{1-\cos \theta}=\ln \frac{\cos \theta / 2}{\sin \theta / 2}=-\ln (\tan \theta / 2)
$$

Rapidity (y) vs "Pseudo-rapidity" (η)

- From $\tanh (\eta)=\cos (\theta)=\tanh (\mathrm{y}) / \beta$
- We see that $|\eta| \geq|y|$
- Processes "flat" in rapidity \mathbf{y} will not be "flat" in pseudo-rapidity η
- (y distributions will be "pushed out" in pseudo-rapidity)

$|\eta|-|y|$ and $p_{T}-$ Calorimeter Cells

- At colliders, Center-of-Mass can be moving with respect to detector frame
- Lots of longitudinal momentum can escape down beam pipe
- But transverse momentum p_{T} is conserved in the detector
- Plot η-y for constant $m_{\pi}, p_{T} \Rightarrow \beta(\theta)$
$\eta-y$ v detector position (η) for π 's

CMS HCAL cell width 0.08
CMS ECAL cell width 0.005

- For all η in DØ/CDF, can use η position to give y :
- Pions: $|\eta|-l y \mid<0.1$ for $p_{T}>0.1 \mathrm{GeV}$
- Protons: $|\eta|-\mathrm{lyl}<0.1$ for $\mathrm{p}_{\mathrm{T}}>2.0 \mathrm{GeV}$
- As $\beta \rightarrow 1, y \rightarrow \eta$ (so much for "pseudo")

Rapidity "plateau"

- Constant p_{t}, rapidity plateau means d $\sigma / \mathrm{dy} \sim \mathrm{k}$
- How does that translate into do/d η ?

$$
\frac{d \sigma}{d \eta}=\frac{d \sigma}{d y} \frac{d y}{d \eta}=k \frac{d y}{d \eta}
$$

...some useful formulae...
$\tanh (y)=\beta(\eta) \tanh (\eta)$

$$
\beta(\eta)=\frac{p}{E}=\sqrt{\frac{p_{T}^{2}+p_{Z}^{2}}{p_{T}^{2}+p_{Z}^{2}+m^{2}}}=\frac{\cosh (\eta)}{\sqrt{m^{2} / p_{T}^{2}+\cosh ^{2} \eta}}
$$

- Calculate $d y / d \eta$ keeping m, and p_{t} constant
- After much algebra... dy/d $\eta=\beta(\eta)$

$$
\frac{d \sigma}{d \eta}=\frac{d \sigma}{d y} \frac{d y}{d \eta}=k \frac{d y}{d \eta}=k \beta(\eta)
$$

Transverse Mass

Measured momentum conservation

- Momentum conservation:

$$
\sum_{\text {particles }} p_{Z}=P_{C M} \quad \text { and } \quad \sum_{\text {particles }} \vec{p}_{T}=0
$$

- What we measure using the calorimeter: $\sum_{\text {cells }} p_{Z}=P_{C M}$ and $\sum_{\text {cells }} \vec{p}_{T}=0$
- For processes with high energy neutrinos in the final state: $\sum_{\text {cells }} \vec{p}_{T}+\vec{p}_{T v}=0$
- We "measure" p_{v} by "missing p_{T} " method: $\quad \vec{p}_{T}=\vec{p}_{v} \equiv-\sum_{\text {cells }} \vec{E}_{T}$
$\quad-$ e.g. $\mathrm{W} \rightarrow$ ev or $\mu \nu$
- Longitudinal momentum of neutrino cannot be reliably estimated
- "Missing" measured longitudinal momentum also due to CM energy going down beam pipe due to the other (underlying) particles in the event
- This gets a lot worse at LHC where there are multiple pp interactions per crossing
- Most of the interactions don't involve hard scattering so it looks like a busier underlying event

Transverse Mass

- Since we don't measure p_{z} of neutrino, cannot construct invariant mass of W
- What measurements/constraints do we have?
- Electron 4-vector
- Neutrino 2-d momentum $\left(p_{T}\right)$ and $m=0$
- So construct "transverse mass" M_{T} by:

1. Form "transverse" 4-momentum by ignoring p_{z} (or set $\left.\mathrm{p}_{z}=0\right) \quad p_{T}^{u} \equiv\left(E_{T}, \overrightarrow{p_{T}}, 0\right)$
2. Form "transverse mass" from these 4-vectors:

$$
M_{T 1,2}^{2} \equiv\left(p_{T_{1}}+p_{T_{2}}\right)^{\mu}\left(p_{T_{1}}+p_{T_{2}}\right)_{\mu}
$$

- This is equivalent to setting $\eta_{1}=\eta_{2}=0$
- For e $/ \mu$ and v, set $m_{e}=m_{\mu}=m_{v}=0$ to get:

$$
M_{T 1,2}^{2}=2 E_{T_{1}} E_{T_{2}}(1-\cos \Delta \phi)=4 E_{T_{1}} E_{T_{2}} \sin ^{2}(\Delta \phi / 2)
$$

- This is another way to see that the opening angle "generates" the mass

Transverse Mass Kinematics for Ws

- Transverse mass distribution?
- Start with $M_{W}^{2}=M_{e, v}^{2}=2 E_{T_{e}} E_{T_{v}}(\cosh \Delta \eta-\cos \Delta \phi)$
- Constrain to $\mathrm{M}_{\mathrm{W}}=80 \mathrm{GeV}$ and $\mathrm{p}_{\mathrm{T}}(\mathrm{W})=0$
$-\cos \Delta \phi=-1$
- $\mathrm{E}_{\mathrm{Te}}=\mathrm{E}_{\mathrm{Tv}}$
- This gives you $\mathrm{E}_{\mathrm{Te}} \mathrm{E}_{\mathrm{Tv}}$ versus $\Delta \eta$

$$
E_{T e} E_{T v}=\frac{80^{2}}{2(\cosh \Delta \eta+1)}
$$

- Now construct transverse mass

$$
\begin{aligned}
M_{T e, v}^{2} & =2 E_{T e} E_{T v}(1-\cos \Delta \phi) \\
& =2 \frac{80^{2}}{\cosh \Delta \eta+1}
\end{aligned}
$$

- Cleary $M_{T}=M_{W}$ when $\eta_{e}=\eta_{v}=0$

Neutrino Rapidity

- Can you constrain $\mathrm{M}(\mathrm{e}, \mathrm{v})$ to determine the pseudo-rapidity of the v ?
- Would be nice, then you could veto on θ_{v} in "crack" regions
- Use $\mathrm{M}(\mathrm{e}, v)=80 \mathrm{GeV}$ and $M_{W}^{2}=80^{2}=2 E_{T e} E_{T v}(\cosh \Delta \eta-\cos \Delta \phi)$

$$
\text { to get } \cosh \Delta \eta=\frac{80^{2}}{2 E_{T e} E_{T v}}+\cos \Delta \phi
$$

and solve for $\Delta \eta: \quad \Delta \eta=\ln \frac{\cosh \Delta \eta+\sqrt{\cosh ^{2} \Delta \eta+1}}{2}$

- Since we know η_{e}, we know that $\eta_{v}=\eta_{e} \pm \Delta \eta$
- Two solutions. Neutrino can be either higher or lower in rapidity than electron
- Why? Because invariant mass involves the opening angle between particles.
- Perhaps this can be used for neutrino's (or other sources of missing energy?)

Jet Definition

- How to define a "jet" using calorimeter towers so that we can use it for invariant mass calculations
- And for inclusive QCD measurements (e.g. do/dE T_{T})
- QCD motivated:
- Leading parton radiates gluons uniformly distributed azimuthally around jet axis
- Assume zero-mass particles using calorimeter towers
- 1 particle per tower
- Each "particle" will have an energy \vec{k}_{T} perpendicular to the jet axis:
- From energy conservation we expect total energy perpendicular to the jet axis to be zero on average: $\quad \sum_{\text {particles }} \overrightarrow{k_{T}}=0$

- Find jet axis that minimizes k_{T} relative to that axis
- Use this to define jet 4-vector from calorimeter towers
- Since calorimeter towers measure total energy, make a basic assumption:
- Energy of tower E_{i} is from a single particle with that energy
- Assume zero mass particle (assume it's a pion and you will be right $>90 \%$!)
- Momentum of the particle is then given by

$$
\vec{p}_{i}=E_{i} \hat{n}_{i} \text { and } \hat{n}_{i} \text { points to tower } i \text { with energy } E_{i}
$$

- Note: $\mathrm{m}_{\mathrm{i}}=0$ does NOT mean $\mathrm{M}_{\mathrm{jet}}=0$
- Mass of jet is determined by opening angle between all contributors
- Can see this in case of 2 "massless" particles, or energy in only 2 towers:
- Mass is "generated" by opening angles.

$$
\begin{aligned}
& \text { less" particles, or energy in only } 2 \text { towers: } \\
& M_{12}^{2}=2 E_{1} E_{2}\left(1-\cos \theta_{12}\right)=4 E_{1} E_{2} \sin ^{2} \frac{\theta_{12}}{2} \\
& \text { angles. }
\end{aligned}
$$

- A rule of thumb: Zero mass parents of decay have $\theta_{12}=0$ always

Quasi-analytical approach

- Transform each calorimeter tower to frame of jet and minimize k_{T}
- 2-d Euler rotation (in picture, $\phi=\phi_{\text {jet }}, \theta=\theta_{\text {jet }}$, set $\chi=0$)

$$
M\left(\phi_{j e t}, \theta_{j e t}\right)=\left(\begin{array}{ccc}
-\sin \phi_{j e t} & \cos \phi_{j e t} & 0 \\
-\cos \theta_{j e t} \cos \phi_{j e t} & -\cos \theta_{j e t} \sin \phi_{j e t} & \sin \theta_{j e t} \\
\sin \theta_{j e t} \cos \phi_{j e t} & \sin \theta_{j e t} \sin \phi_{j e t} & \cos \theta_{j e t}
\end{array}\right)
$$

- Tower in jet momentum frame: $\overrightarrow{E_{i}^{\prime}}=M\left(\theta_{\text {jet }}, \phi_{\text {jet }}\right) \times \overrightarrow{E_{i}} \quad$ and apply $\sum_{\text {particles }} \overrightarrow{k_{T}}=0$

$$
\begin{aligned}
E_{x i}^{\prime} & =-E_{x i} \sin \phi_{j e t}+E_{y i} \cos \phi_{j e t} \\
E_{y i}^{\prime} & =-E_{x i} \cos \theta_{j e t} \cos \phi_{j e t}-E_{y i} \cos \theta_{j e t} \sin \phi_{j e t}+E_{z i} \sin \theta_{j e t} \\
E_{z i}^{\prime} & =E_{x i} \sin \theta_{j e t} \cos \phi_{j e t}+E_{y i} \sin \theta_{j e t} \sin \phi_{j e t}+E_{z i} \cos \theta_{j e t}
\end{aligned}
$$

- Check: for 1 tower, $\phi_{\text {tower }}=\phi_{\text {jet }}$, should get $\mathrm{E}^{\prime}{ }_{\mathrm{xi}}=\mathrm{E}_{\mathrm{yi}}^{\prime}=0$ and $\mathrm{E}^{\prime}{ }_{\mathrm{zi}}=\mathrm{E}_{\mathrm{jet}}$
- It does, after some algebra...

Minimize k_{T} to Find Jet Axis

- The equation $\sum_{\text {particles }} \overrightarrow{k_{T}}=0$ is equivalent to $\sum_{i} E_{x i}^{\prime}=\sum_{i} E_{y i}^{\prime}=0$ so...

$$
\sum E_{x i}^{\prime}=-\sin \phi_{j t} \sum E_{x i}+\cos \phi_{j t} \sum E_{y i}=0 \longmapsto \tan \phi_{j e t}=\frac{\sum E_{y i}}{\sum E_{x i}}
$$

$$
\sum E_{y i}^{\prime}=-\cos \theta_{j e l}\left(\cos \phi_{j e l} \sum E_{x i}-\sin \phi_{j e t} \sum E_{y i}\right)+\sin \theta_{j c t} \sum E_{z i}=0
$$

- Momentum of the jet is such that:

$$
\tan \theta_{j e t}=\frac{\sqrt{\left(\sum E_{x i}\right)^{2}+\left(\sum E_{y i}\right)^{2}}}{\sum E_{z i}}
$$

$$
\begin{aligned}
& \tan \phi_{j e t}=\left.\frac{p_{y, j e t}}{p_{x, j e t}} \bigvee\right\} \\
& p_{x, j e t}=\sum E_{x i} \\
& p_{y, j e t}=\sum E_{y i}
\end{aligned}
$$

$$
\tan \theta_{j e t}=\frac{p_{T, j e t}}{p_{z, j e t}} 乌
$$

$$
\begin{aligned}
& p_{T, j e t}=\sqrt{\left(\sum E_{x i}\right)^{2}+\left(\sum E_{y i}\right)^{2}} \\
& p_{z, j e t}=\sum E_{z i}
\end{aligned}
$$

Jet 4-momentum summary

- Jet Energy: $E_{\text {jet }}=\sum_{\text {towers }} E_{i}$
- Jet Momentum: $\vec{p}_{j e t}=\sum_{\text {towers }} E_{i} \hat{n}_{i}$
- Jet Mass: $M_{\text {jet }}^{2}=E_{j e t}^{2}-p_{j e t}^{2}$
- Jet 4-vector: $p_{\mu}^{j e t}=\left(E_{j e t}, \vec{p}_{\text {jet }}\right)=\left(\sum_{\text {cells }} E_{i}, \sum_{\text {cells }} E_{i} \hat{n}_{i}\right)$

E_{T} of a Jet

- For any object, E_{T} is well defined:

$$
E_{T, j e t} \equiv \sqrt{E_{j e t}^{2}-p_{z, j e t}^{2}}=\sqrt{p_{T, j e t}^{2}+m_{j e t}^{2}} \quad \text { correct }
$$

- There are 2 more ways you could imagine using to define E_{T} of a jet but neither are technically correct:

$$
\begin{array}{ccc}
\text { Alternative 1 } & \text { or } & \text { Alternative 2 } \\
E_{T, \text { jet }}=E_{\text {jet }} \sin \theta_{\text {jet }} & E_{T, \text { jet }}=\sum_{\text {towers }} E_{T, i}
\end{array}
$$

- How do they compare?
- Is there any E_{T} or η dependence?

True E_{T} vs Alternative 1

- True: $E_{T, j e t}=\sqrt{p_{T, j e t}^{2}+m_{j e t}^{2}}$
- Alternative 1: $E_{T, j e t}=E_{j e t} \sin \theta_{j e t}=\sqrt{p_{j e t}^{2}+m_{j e t}^{2}} \sin \theta_{j e t}=\sqrt{p_{T, j e t}^{2}+m_{j e t}^{2} \sin ^{2} \theta_{j e t}}$
- Define $\Delta_{1} \equiv \frac{E_{T, j e t}-E_{j e t} \sin \theta_{j e t}}{E_{T, j e t}}=1-\frac{\sqrt{p_{T, j e t}^{2}+m_{j e t}^{2} \sin ^{2} \theta_{j e t}}}{\sqrt{p_{T, j e t}^{2}+m_{j e t}^{2}}} \quad$ which is always >0
- Expand in powers of $\frac{m_{j e t}^{2}}{p_{T, j e t}^{2}}: \Delta_{1} \rightarrow \frac{m_{j e t}^{2} \tanh ^{2} \eta_{j e t}}{2 p_{T, j e t}^{2}}$
- For small η, tanh $\eta \rightarrow \eta$ so either way is fine
- Alternative 1 is the equivalent to true def central jets
- Agree at few\% level for $|\eta|<0.5$
- For $\eta \sim 0.5$ or greater....cone dependent
- Or "mass" dependent....same thing

True E_{T} vs Alternative 2

$\begin{gathered}\text { Alternative 2: } \\ \text { towers }\end{gathered} E_{T, \text { jet }}=\sum_{\text {towers }} E_{T, i}$

- TRUE:

$$
\begin{aligned}
E_{T, j e t}^{2} & =E_{j e t}^{2}-p_{z, j e t}^{2}=\left(E_{1}+E_{2}\right)^{2}-\left(p_{z 1}+p_{z 2}\right)^{2} \\
& =E_{1}^{2}+2 E_{1} E_{2}+E_{1}^{2}-p_{z 1}^{2}+2 p_{z 1} p_{z 2}+p_{1}^{2} \\
& =E_{T 1}^{2}+E_{T 2}^{2}+2 E_{1} E_{2}\left(1-\cos \theta_{1} \cos \theta_{2}\right)
\end{aligned}
$$

- Alternative 2:

$$
\begin{aligned}
\left(E_{T 1}+E_{T 1}\right)^{2} & =E_{T 1}^{2}+E_{T 2}^{2}+2 E_{T 1} E_{T 2} \\
& =E_{T 1}^{2}+E_{T 2}^{2}+2 E_{1} E_{2} \sin \theta_{1} \sin \theta_{2}
\end{aligned}
$$

- Take difference:

$$
\begin{aligned}
E_{T, j e t}^{2}-\left(E_{T 1}+E_{T 2}\right)^{2} & =2 E_{1} E_{2}\left(1-\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right) \\
& =2 E_{1} E_{2}(1-\cos \delta \theta)=E_{1} E_{2} \sin ^{2} \delta \theta / 2 \\
& \text { Always }>0!
\end{aligned}
$$

- So this method also underestimates "true" E_{T}
- But not as much as Alternative 1

Jet Shape

- Jets are defined by $\sum_{\text {paricicles }} \vec{k}_{T, i}=0$ but the "shape" is determined by

$$
\sum_{\text {particles }} k_{T, i}^{2}=\sum_{\text {particles }} E_{x, i}^{\prime 2}+E_{y, i}^{\prime 2} \geq 0
$$

- From Euler: $E_{x i}^{\prime}=-E_{x i} \sin \phi_{j e t}+E_{y i} \cos \phi_{j e t}=E_{T i} \sin \delta \phi_{i}$

$$
\begin{aligned}
E_{y i}^{\prime} & =-E_{x i} \cos \theta_{j e t} \cos \phi_{j e t}-E_{y i} \cos \theta_{j e t} \sin \phi_{j e t}+E_{z i} \sin \theta_{j e t} & \delta \phi \equiv \phi_{i}-\phi_{j e t} \\
& =-E_{T i} \cos \delta \phi_{i} \cos \theta_{j e t}+E_{z i} \sin \theta_{j e t} & \delta \theta \equiv \theta_{i}-\theta_{j e t}
\end{aligned}
$$

- Now form $\sum_{\text {particles }} k_{T, i}^{2}$ for those towers close to the jet axis: $\delta \theta \rightarrow 0$ and $\delta \phi \rightarrow 0$ $E_{x i}^{\prime} \rightarrow E_{T i} \delta \phi_{i}$
$E_{y i}^{\prime} \rightarrow-E_{T i} \cos \theta_{j e t}+E_{z i} \sin \theta_{j e t}=-E_{i} \sin \theta_{i} \cos \theta_{j e t}+E_{i} \cos \theta_{i} \sin \theta_{j e t}=E_{i} \sin \delta \theta_{i} \sim E_{i} \delta \theta_{i}$
- From $\tanh \eta=\cos \theta$ we get $d \theta=-\sin \theta d \eta$ which means

$$
\begin{aligned}
& E_{x i}^{\prime} \rightarrow E_{T i} \delta \phi_{i} \\
& \text { So... } \quad k_{T, i}^{2}=E_{x i}^{\prime 2}+E_{y i}^{\prime 2}=E_{T, i}^{2}\left(\delta \phi_{i}^{2}+\delta \eta_{i}^{2}\right) \\
& E_{y i}^{\prime} \rightarrow E_{i} \delta \theta_{i}=-E_{i} \sin \theta_{i} \delta \eta_{i} \rightarrow-E_{T i} \delta \eta_{i} \\
& \text { and... } \\
& \sum_{\text {particles }} k_{T, i}^{2}=\sum_{\text {particles }} E_{x, i}^{\prime 2}+E_{y, i}^{\prime 2}=\sum_{\text {particles }} E_{T, i}^{2}\left(\delta \phi_{i}^{2}+\boldsymbol{O}_{i}^{2}\right)
\end{aligned}
$$

Jet Shape - E_{T} Weighted

- Define $\delta R_{i}^{2} \equiv \delta \phi_{i}^{2}+\delta \eta_{i}^{2}$ and $\delta R_{i}=\sqrt{\delta R_{i}^{2}}=\sqrt{\delta \phi_{i}^{2}+\delta \eta_{i}^{2}}$
- This gives: $\sum_{\text {particles }} k_{T, i}^{2}=\sum_{\text {particles }} E_{T, i}^{2} \delta R_{i}^{2}$ and equivalently, $k_{T i}=E_{T i} \delta R_{i}$
- Momentum of each "cell" perpendicular to jet momentum is from
- E_{ti} of particle in the detector, and
- Distance from jet in $\eta \phi$ plane
- This also suggests jet shape should be roughly circular in $\eta \phi$ plane
- Providing above approximations are indicative overall....
- Shape defined:
- Use energy weighting to calculate true $2^{\text {nd }}$ moment in $\eta \phi$ plane
$\sigma_{R}^{2} \equiv \frac{\sum_{\text {particics }} k_{, i}^{2}}{\sum_{\text {paricles }} E_{T, i}^{2}}=\frac{\sum_{\text {partickes }}^{2} E_{T, i}^{2} \delta R_{i}^{2}}{\sum_{\text {paricices }} E_{T, i}^{2}}=\sigma_{\eta \eta}+\sigma_{\phi \emptyset} \quad$ with

$$
\sigma_{\eta \eta} \equiv \frac{\sum_{\text {particles }} E_{T, i}^{2} \delta \eta_{i}^{2}}{\sum_{\text {particles }} E_{T, i}^{2}}
$$

$$
\sigma_{\phi \phi} \equiv \frac{\sum_{\text {particles }} E_{T, i}^{2} \delta \phi_{i}^{2}}{\sum_{\text {particles }} E_{T, i}^{2}}
$$

Jet Shape - E_{T} Weighted (cont)

- Use sample of "unmerged" jets
- Plot $\sigma_{R}=\sqrt{\frac{\sum_{\text {paricices }} E_{i, i}^{\prime 2}+E_{y, i}^{\prime 2}}{\sum_{\text {pariticles }} E_{T, i}^{2}}}$
- Shape depends on cone parameter
- Mean and widths scale linearly with cone parameter

"Small angle" approximation pretty good
- For Cone=0.7, distribution in σ_{R} has:
- Mean \pm Width $=.25 \pm .05$
- 99% of jets have $\sigma_{R}<0.4$

Jet Mass

Jet Samples

- DZero Run 1
- All pathologies eliminated (Main Ring, Hot Cells, etc.)
- $\left|Z_{v t x}\right|<60 c m$
- No τ, e, or γ candidates in event
- Checked $\eta \phi$ coords of $\tau e \gamma$ vs. jet list
- Cut on cone size for jets
- .025, . $040, .060$ for jets from cone cuttoff 0.3, 0.5, 0.7 respectively
- "UNMERGED" Sample:
- RECO events had 2 and only 2 jets for cones .3, .5, and . 7
- Bias against merged jets but they can still be there
- e.g. if merging for all cones
- "MERGED" Sample:
- Jet algorithm reports merging

Jet Mass

- Jet is a physics object, so mass is calculated using:
- Either one... $M_{\text {jett }}^{2}=E_{\text {jet }}^{2}-\boldsymbol{p}_{\text {jeet }}^{2}=E_{T, j j e t}^{2}-\boldsymbol{p}_{\boldsymbol{T}, j \text { jet }}^{2}$
- Note: there is no such thing as "transverse mass" for a jet
- Transverse mass is only defined for pairs (or more) of 4-vectors...
- For large $\mathrm{E}_{\mathrm{T}, \mathrm{jet}}$ we can see what happens by writing

$$
M_{j e t}^{2}=E_{T, j e t}^{2}-p_{T, j e t}^{2}=\left(E_{T, j e t}+p_{T, j e t}\right)\left(E_{T, j e t}-p_{T, j e t}\right)
$$

- And take limit as jet narrows $\delta \eta_{i} \rightarrow 0$ and $\delta \phi_{i} \rightarrow 0$ and expand E_{T} and p_{T}

$$
p_{T, j e t} \rightarrow \sum E_{T, i}\left(1-\frac{\delta \phi_{i}^{2}}{2}\right) \quad E_{T, j e t} \rightarrow \sum E_{T, i}\left(1+\frac{\delta \eta_{i}^{2}}{2}\right)
$$

- This gives $E_{T, \text { jet }}-p_{T, \text { jet }}=\frac{1}{2} \sum E_{T, i}\left(\delta \eta_{i}^{2}+\delta \phi_{i}^{2}\right) E_{T, j e t}+p_{T, j e t}=\frac{1}{2} \sum E_{T, i}\left(4+\delta \eta_{i}^{2}-\delta \phi_{i}^{2}\right) \approx 2 \sum E_{T, i}$

Jet mass is related to jet shape!!! (in the thin jet, high energy limit)

$$
\underset{\text { 10.Dec.2008 }}{\text { so... }} M_{j e t}^{2}=\sum E_{T i} \sum E_{T i}\left(\delta \eta_{i}^{2}+\delta \phi_{i}^{2}\right) \rightarrow \underset{\text { d. Baden, U. Geneve }}{M_{\text {jet }} \cong E_{T, j e t} \sigma_{R}} \text { using } E_{T, j e t} \cong \sum_{\text {particles 39 }} E_{T, i}
$$

Jet Mass (cont)

- Jet Mass for unmerged sample

How good is "thin jet" approximation?

Low-side tail is due to lower E_{T} jets for smaller cones
(this sample has $\mathbf{2}$ and only $\mathbf{2}$ jets for all cones)

Jet Merging

- Does jet merging matter for physics?
- For some inclusive QCD studies, it doesn't matter
- For invariant mass calculations from e.g. top $\rightarrow \mathrm{Wb}$, it will smear out mass distribution if merging two "tree-level" jets that happen to be close
- Study σ_{R}...see clear correlation between σ_{R} and whether jet is merged or not
- Can this be used to construct some kind of likelihood?
"Unmerged", Jet Algorithm reports merging, all cone sizes

10-Dec-2008
"Unmerged" v. "Merged" sample

Merging Likelihood

- Crude attempt at a likelihood
- Can see that for this (biased) sample, can use this to pick out "unmerged" jets based on shape
- Might be useful in Higgs search for $\mathrm{H} \rightarrow$ bb jet invariant mass?

Jet cone parameter	Equal likelihood to be merged and unmerged
0.3	0.155
0.5	0.244
0.7	0.292

Merged Shape

- Width in $\eta \phi \quad \sigma_{R}^{2}=\sigma_{\eta \eta}+\sigma_{\phi \phi}$ "assumes" circular
- Large deviations due to merging?
- Define $\delta_{\eta \phi} \equiv \frac{\sigma_{\eta \eta}-\sigma_{\phi \phi}}{\sigma_{\eta \eta}+\sigma_{\phi \phi}}$ should be independent of cone size

$$
\sum E_{T, i}^{2} \delta \phi_{i} \delta \eta_{i}
$$

- Clear broadening seen - "cigar"-shaped jets, maybe study... $\sigma_{\phi \eta} \equiv \frac{\text { parricles }^{\sum E_{T, i}^{2}}}{\sum E^{2}}$

