

A Tutorial for Physics With p-p (LHC/Cern) and p-p (Tevatron/FNAL) Experiments

Drew Baden

University of Maryland World Scientific Int.J.Mod.Phys.A13:1817-1845,1998

Nucleon-nucleon Scattering

Elastic scattering

Forward-forward scattering, no disassociation (protons stay protons)

"Single-diffractive" scattering

One of the 2 nucleons disassociates into a spray of particles

- Mostly π^{\pm} and π^{0} particles
- Mostly in the forward direction following the parent nucleon's momenum

Active detector

- At "high" energies we are probing the nucleon structure
 - "High" means Compton wavelength $\lambda_{beam} \equiv hc/E_{beam} \sim r_{proton} \sim hc/"1GeV" \sim 1fm$
 - E_{beam}=1TeV@FNAL 5-7 TeV@LHC
 - We are really doing *parton-parton* scattering (*parton* = quark, gluon)
- Look for scatterings with large momentum transfer, ends up in detector "central region" (large angles wrt beam direction)
 - Each parton has a momentum distribution -
 - CM of hard scattering is not fixed as in e⁺e⁻ will be move along z-axis with a boost
 - This motivates studying boosts along z
 - What's "left over" from the other partons is called the "underlying event"
- If no hard scattering happens, can still have disassociation
 - An "underlying event" with no hard scattering is called "minimum bias"

"Total Cross-section"

• By far most of the processes in nucleon-nucleon scattering are described by:

"inelastic"

- σ (Total) ~ σ (scattering) + σ (single diffractive) + σ (double diffractive)
- This can be naively estimated....
 - hard sphere scattering, partial wave analysis:
 - $\sigma \sim 4x \text{Area}_{\text{proton}} = 4\pi r_{p}^{2} = 4\pi \times (1 \text{ fm})^{2} \sim 125 \text{ mb}$
- But! total cross-section stuff is NOT the reason we do these experiments!

"elastic"

- Examples of "interesting" physics @ Tevatron
 - W production and decay via lepton
 - $\sigma \cdot Br(W \rightarrow e_V) \sim 2nb, 1$ in 50x10⁶ collisions
 - Z production and decay to lepton pairs
 - About 1/10 that of W to leptons
 - Top quark production
 - σ (total) ~ 5pb, 1 in 20x10⁹ collisions
- Rates for similar things at LHC will be ~10x higher

arXiv.org > hep-ph > arXiv:0709.0395

High Energy Physics - Phenomenology

The total cross section at the LHC

P. V. Landshoff

(Submitted on 4 Sep 2007)

We do not have the ability to perform precise calculations of long-range strong interaction effects, because the effective QCD coupling is not small and so we cannot use perturbation theory. Nevertheless, I show that we know a lot, though not nearly enough. As a measure of our lack of knowledge, the best prediction for the total cross section at LHC energy is 125 + /- 25 mb.

Comments:	Lectures at School on QCD, Calabria, July 2007
Subjects:	High Energy Physics – Phenomenology (hep-ph); High Energy Physics – Experiment (hep-ex)
Report number:	DAMTP-2007-82
Cite as:	arXiv:0709.0395v1 [hep-ph]

Needles in Haystacks

- $R(X)/\sigma(X) = \mathcal{L}$ (instantaneous luminosity)
- Units of luminosity:
 - "Number of events per barn"
 - Note: $1nb = 10^{-9} barns = 10^{-9} x 10^{-24} cm^2 = 10^{-33} cm^2$
 - LHC instantaneous design luminosity
 10³⁴ cm⁻² s⁻¹ = 10 nb⁻¹/s, or 10 events per nb cross-section per second, or "10 inverse nanobarns per second"
 - e.g. 10 t-tbar events per second

Phase Space

- Relativistic invariant phase-space element:
 - Define $p\overline{p}$ or pp collision axis along *z*-axis:
- $d\tau = \frac{d^3 p}{E} = \frac{dp_x dp_y dp_z}{E}$
- Coordinates $p^{\mu} = (E, p_x, p_y, p_z)$ Invariance with respect to boosts along z?
 - 2 longitudinal components: E & p_z (and dp_z/E) NOT invariant
 - 2 transverse components: $p_x p_y$, (and dp_x , dp_y) ARE invariant
- Boosts along z-axis
 - For convenience: define p^{μ} where only 1 component is not Lorentz invariant
 - Choose \mathbf{p}_{T} , \mathbf{m} , ϕ as the "transverse" (invariant) coordinates
 - $p_T = psin(\theta)$ and ϕ is the azimuthal angle
 - For 4th coordinate define "rapidity" (y)

$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}$$
 or $p_z = E \tanh y$

• ...How does it transform?

- Form a boost of velocity β along z axis
 - $p_z \Rightarrow \gamma(p_z + \beta E)$
 - $\mathsf{E} \Rightarrow \gamma(\mathsf{E} + \beta \mathsf{p}_{\mathsf{z}})$
 - Transform rapidity:

$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z} \Rightarrow \frac{1}{2} \ln \frac{\gamma (E + \beta p_z) + \gamma (p_z + \beta E)}{\gamma (E + \beta p_z) - \gamma (p_z + \beta E)}$$
$$= \frac{1}{2} \ln \frac{(E + p_z)(1 + \beta)}{(E - p_z)(1 - \beta)} = y + \ln \gamma (1 + \beta)$$
$$y \Rightarrow y + y_b$$

- Boosts along the beam axis with $v=\beta c$ will change y by a constant y_b
 - $(p_T, y, \phi, m) \Rightarrow (p_T, y+y_b, \phi, m)$ with $y \Rightarrow y+y_b$, $y_b \equiv \ln \gamma(1+\beta)$ simple additive to rapidity
 - Relationship between y, β , and θ can be seen using $p_z = p$ *cos*(θ) and $p = \beta E$

$$y = \frac{1}{2} \ln \frac{1 + \beta \cos \theta}{1 - \beta \cos \theta} \quad \text{or} \quad \tanh y = \beta \cos \theta \quad \text{where } \beta \text{ is the CM}$$

boost

$$d\tau = \frac{d^3 p}{E} = \frac{dp_x dp_y dp_z}{E}$$
 Phase Space (cont)

• Transform phase space element $d\tau$ from (E,p_x,p_y,p_z) to (p_t, y, ϕ , m)

$$dp_{x}dp_{y} = \frac{1}{2}dp_{T}^{2}d\phi$$

$$dy = dp_{z}\left(\frac{\partial y}{\partial p_{z}} + \frac{\partial y}{\partial E}\frac{\partial E}{\partial p_{z}}\right)$$

$$using$$

$$y = \frac{1}{2}\ln\frac{E + p_{z}}{E - p_{z}}$$

$$= dp_{z}\left(\frac{E}{E^{2} - p_{z}^{2}} - \frac{p_{z}}{E^{2} - p_{z}^{2}}\frac{p_{z}}{E}\right)$$

$$= \frac{dp_{z}}{E}$$

- Basic quantum mechanics: $d\sigma = IM I^2 d\tau$
 - If IM I² varies slowly with respect to rapidity, d σ /dy will be ~constant in y
 - Origin of the "rapidity plateau" for the min bias and underlying event structure
 - Apply to jet fragmentation particles should be uniform in rapidity wrt jet axis:
 - We expect jet fragmentation to be function of momentum perpendicular to jet axis
 - This is tested in detectors that have a magnetic field used to measure tracks

Gives

Transverse Energy and Momentum Definitions

• Transverse Momentum: momentum perpendicular to beam direction:

$$p_T^2 = p_x^2 + p_y^2$$
 or $p_T = p\sin\theta$

• Transverse Energy defined as the energy if p_z was identically 0: $E_T = E(p_z = 0)$

$$E_T^2 = p_x^2 + p_y^2 + m^2 = p_T^2 + m^2 = E^2 - p_z^2$$

- How does E and p_z change with the boost along beam direction?
 - Using $\tanh y = \beta \cos \theta$ and $p_z = p \cos \theta$ gives $p_z = E \tanh y$

then
$$E_T^2 = E^2 - p_z^2 = E^2 - E^2 \tanh^2 y = E^2 \operatorname{sech}^2 y$$

or
$$E = E_T \cosh y$$
 which also means $p_z = E_T \sinh y$

- (remember boosts cause $y \rightarrow y + y_b$)
- Note that the sometimes used formula $E_T = E \sin \theta$ is not (strictly) correct!
- But it's close more later....

- Well defined: $M_{1,2}^2 = (p_1 + p_2)^2 = m_1^2 + m_2^2 + 2(E_1E_2 \overrightarrow{p_1} \cdot \overrightarrow{p_2})$
- Switch to $p^{\mu}=(p_T, y, \phi, m)$ (and do some algebra...) $\overrightarrow{p_1} \cdot \overrightarrow{p_1} = p_{x_1} p_{x_2} + p_{y_1} p_{y_2} + p_{z_1} p_{z_2} = E_{T_1} E_{T_2} (\beta_{T_1} \beta_{T_2} \cos \Delta \phi + \sinh y_1 \sinh y_2)$ with $E = E_T \cosh y$ and $\beta_T = p_T / E_T$
- This gives $M_{1,2}^2 = m_1^2 + m_2^2 + 2E_{T_1}E_{T_2}(\cosh\Delta y \beta_{T_1}\beta_{T_2}\cos\Delta\phi)$
 - With $\beta_T \equiv p_T / E_T$
 - Note:
 - For $\Delta y \rightarrow 0$ and $\Delta \phi \rightarrow 0$, high momentum limit: $M \rightarrow 0$: angles "generate" mass

• For
$$\beta \rightarrow 1 \pmod{p \rightarrow 0}$$
 $M_{1,2}^2 = 2E_{T_1}E_{T_2}\left(\cosh\Delta y - \cos\Delta\phi\right)$

This is a useful formula when analyzing data...

• Extend to more than 2 particles:

$$\begin{split} M_{1,2,3}^2 &= \left(p_1 + p_2 + p_3\right)^2 = \left(p_1 + p_2\right)^2 + 2\left(p_1 + p_2\right)p_3 + m_3^2 \\ &= M_{1,2}^2 + \left[2p_1p_3\right] + \left[2p_2p_3\right] + m_3^2 \\ &= M_{1,2}^2 + \left[p_1^2 + 2p_1p_3 + p_3^2\right] - m_1^2 - m_3^2 + \left[p_2^2 + 2p_2p_3 + p_3^2\right] - m_2^2 - m_3^2 + m_3^2 \\ &= M_{1,2}^2 + M_{1,3}^2 + M_{2,3}^2 - m_1^2 - m_2^2 - m_3^2 \end{split}$$

• In the high energy limit as $m/p \rightarrow 0$ for each particle:

$$M_{1,2,3}^2 = M_{1,2}^2 + M_{2,3}^2 + M_{1,3}^2$$

 \Rightarrow Multi-particle invariant masses where each mass is negligible – no need to id

- \Rightarrow Example: t \rightarrow Wb and W \rightarrow jet+jet
- Find M(jet,jet,b) by just adding the 3 2-body invariant masses in quadriture
- Doesn't matter which one you call the b-jet and which the "other" jets as long as you are in the high energy limit

Pseudo-rapidity

- Definition of y: $tanh(y) = \beta cos(\theta)$
 - Can almost (but not quite) associate position in the detector (θ) with rapidity (y)
- But...at Tevatron and LHC, most particles in the detector (>90%) are π 's with $\beta \approx 1$
- Define "pseudo-rapidity" defined as $\eta \equiv y(\theta, \beta=1)$, or $tanh(\eta) = cos(\theta)$ or

Rapidity (y) vs "Pseudo-rapidity" (η)

- From $tanh(\eta) = cos(\theta) = tanh(y)/\beta$
 - We see that $|\eta| \ge |y|$
 - Processes "flat" in rapidity \mathbf{y} will not be "flat" in pseudo-rapidity η
 - (y distributions will be "pushed out" in pseudo-rapidity)

- At colliders, Center-of-Mass can be moving with respect to detector frame
- Lots of longitudinal momentum can escape down beam pipe
 - But transverse momentum \boldsymbol{p}_{T} is conserved in the detector
- Plot η -y for constant m_{π} , $p_T \Rightarrow \beta(\theta)$

 η –y v detector position (η) for π 's

Rapidity "plateau"

...some useful formulae...

$$\tanh(y) = \beta(\eta) \tanh(\eta)$$
$$\beta(\eta) = \frac{p}{E} = \sqrt{\frac{p_T^2 + p_Z^2}{p_T^2 + p_Z^2 + m^2}} = \frac{\cosh(\eta)}{\sqrt{m^2/p_T^2 + \cosh^2 \eta}}$$

β(η)

$$\frac{d\sigma}{d\eta} = \frac{d\sigma}{dy}\frac{dy}{d\eta} = k\frac{dy}{d\eta}$$

- Calculate dy/d η keeping m, and p_t constant
- After much algebra... $dy/d\eta = \beta(\eta)$

$$\frac{d\sigma}{d\eta} = \frac{d\sigma}{dy}\frac{dy}{d\eta} = k\frac{dy}{d\eta} = k\beta(\eta)$$

- "pseudo-rapidity" plateau...only for $\beta \rightarrow 1$

Transverse Mass

$$\sum_{particles} p_Z = P_{CM} \quad \text{and} \quad$$

$$\sum_{particles} \vec{p}_T = 0$$

$$\sum_{cells} p_Z = P_{CM} \quad \text{and} \quad \sum_{cells} \vec{p}_T = 0$$

- For processes with high energy neutrinos in the final state: $\sum \vec{p}_T + \vec{p}_{T_V} = 0$
- We "measure" p_v by "missing p_T " method: $\vec{p}_T = \vec{p}_v = -\sum_{cells} \vec{E}_T$ – e.g. W \rightarrow ev or μv
- Longitudinal momentum of neutrino cannot be reliably estimated
 - "Missing" measured longitudinal momentum also due to CM energy going down beam pipe due to the other (underlying) particles in the event
 - This gets a lot worse at LHC where there are multiple pp interactions per crossing
 - Most of the interactions don't involve hard scattering so it looks like a busier underlying event

Transverse Mass

- Since we don't measure p_z of neutrino, cannot construct invariant mass of W
- What measurements/constraints do we have?
 - Electron 4-vector
 - Neutrino 2-d momentum (p_T) and m=0
- So construct "transverse mass" M_T by:
 - 1. Form "transverse" 4-momentum by ignoring p_z (or set $p_z=0$) $p_T^{\mu} \equiv \left(E_T, \overrightarrow{p_T}, 0\right)$
 - 2. Form "transverse mass" from these 4-vectors:

$$M_{T1,2}^{2} \equiv \left(p_{T_{1}} + p_{T_{2}}\right)^{\mu} \left(p_{T_{1}} + p_{T_{2}}\right)_{\mu}$$

- This is equivalent to setting $\eta_1 = \eta_2 = 0$
- For e/μ and ν , set $m_e = m_\mu = m_\nu = 0$ to get:

$$M_{T1,2}^{2} = 2E_{T_{1}}E_{T_{2}}(1 - \cos\Delta\phi) = 4E_{T_{1}}E_{T_{2}}\sin^{2}(\Delta\phi/2)$$

- This is another way to see that the opening angle "generates" the mass

- Transverse mass distribution?
- Start with $M_W^2 = M_{e,v}^2 = 2E_{T_e}E_{T_v}(\cosh\Delta\eta \cos\Delta\phi)$

Neutrino Rapidity

- Can you constrain M(e,v) to determine the pseudo-rapidity of the v?
 - Would be nice, then you could veto on θ_{ν} in "crack" regions
- Use M(e,v) = 80GeV and $M_W^2 = 80^2 = 2E_{Te}E_{Tv}(\cosh\Delta\eta \cos\Delta\phi)$

to get
$$\cosh \Delta \eta = \frac{80^2}{2E_{Te}E_{Tv}} + \cos \Delta \phi$$

and solve for
$$\Delta \eta$$
: $\Delta \eta = \ln \frac{\cosh \Delta \eta + \sqrt{\cosh^2 \Delta \eta + 1}}{2}$

- Since we know η_e , we know that $\eta_v = \eta_e \pm \Delta \eta$
 - Two solutions. Neutrino can be either higher or lower in rapidity than electron
 - Why? Because invariant mass involves the opening angle between particles.
 - Perhaps this can be used for neutrino's (or other sources of missing energy?)

- Since calorimeter towers measure total energy, make a basic assumption:

 - Energy of tower E_{i} is from a single particle with that energy Assume zero mass particle (assume it's a pion and you will be right >90%!)
 - Momentum of the particle is then given by

$\vec{p}_i = E_i \hat{n}_i$ and \hat{n}_i points to tower *i* with energy E_i

Λ

- Note: m_i=0 does NOT mean M_{iet}=0
 - Mass of jet is determined by opening angle between all contributors
 - Can see this in case of 2 "massless" particles, or energy in only 2 towers:

$$M_{12}^2 = 2E_1E_2(1 - \cos\theta_{12}) = 4E_1E_2\sin^2\frac{\theta_{12}}{2}$$

- Mass is "generated" by opening angles.
- A rule of thumb: Zero mass parents of decay have $\theta_{12}=0$ always

Ζ

- Transform each calorimeter tower to frame of jet and minimize k_T
 - 2-d Euler rotation (in picture, $\phi = \phi_{jet}$, $\theta = \theta_{jet}$, set $\chi = 0$)

 $M(\phi_{jet},\theta_{jet}) = \begin{pmatrix} -\sin\phi_{jet} & \cos\phi_{jet} & 0\\ -\cos\theta_{jet}\cos\phi_{jet} & -\cos\theta_{jet}\sin\phi_{jet} & \sin\theta_{jet}\\ \sin\theta_{jet}\cos\phi_{jet} & \sin\theta_{jet}\sin\phi_{jet} & \cos\theta_{jet} \end{pmatrix}$

- Tower in jet momentum frame: $\overrightarrow{E}_{i}' = M(\theta_{jet}, \phi_{jet}) \times \overrightarrow{E}_{i}$ and apply $\sum_{particles} \widetilde{k}_{T} = 0$

$$E'_{xi} = -E_{xi}\sin\phi_{jet} + E_{yi}\cos\phi_{jet}$$

$$E'_{yi} = -E_{xi}\cos\theta_{jet}\cos\phi_{jet} - E_{yi}\cos\theta_{jet}\sin\phi_{jet} + E_{zi}\sin\theta_{jet}$$

$$E'_{zi} = E_{xi}\sin\theta_{jet}\cos\phi_{jet} + E_{yi}\sin\theta_{jet}\sin\phi_{jet} + E_{zi}\cos\theta_{jet}$$

- Check: for 1 tower, $\phi_{tower} = \phi_{jet}$, should get $E'_{xi} = E'_{yi} = 0$ and $E'_{zi} = E_{jet}$
 - It does, after some algebra...

• The equation
$$\sum_{particles} \overline{k_T} = 0$$
 is equivalent to $\sum_i E'_{xi} = \sum_i E'_{yi} = 0$ so...
 $\sum E'_{xi} = -\sin\phi_{jet} \sum E_{xi} + \cos\phi_{jet} \sum E_{yi} = 0$ $\tan\phi_{jet} = \frac{\sum E_{yi}}{\sum E_{xi}}$
 $\sum E'_{yi} = -\cos\theta_{jet} (\cos\phi_{jet} \sum E_{xi} - \sin\phi_{jet} \sum E_{yi}) + \sin\theta_{jet} \sum E_{zi} = 0$ \int
 $\tan\theta_{jet} = \frac{\sqrt{(\sum E_{xi})^2 + (\sum E_{yi})^2}}{\sum E_{zi}}$

• Momentum of the jet is such that:

Jet 4-momentum summary

• Jet Energy:

$$E_{jet} = \sum_{towers} E_i$$

• Jet Momentum:

$$\vec{p}_{jet} = \sum_{towers} E_i \hat{n}_i$$

• Jet Mass:
$$M_{jet}^2 = E_{jet}^2 - p_{jet}^2$$

• Jet 4-vector:
$$p_{\mu}^{jet} = (E_{jet}, \vec{p}_{jet}) = \left(\sum_{cells} E_i, \sum_{cells} E_i \hat{n}_i\right)$$

• Jet is an object now! So how do we define E_T?

E_{T} of a Jet

• For any *object*, E_T is well defined:

$$E_{T,jet} \equiv \sqrt{E_{jet}^2 - p_{z,jet}^2} = \sqrt{p_{T,jet}^2 + m_{jet}^2} \quad correct$$

 There are 2 more ways you could imagine using to define E_T of a jet but neither are technically correct:

or

$$E_{T,jet} = E_{jet} \sin \theta_{jet}$$

$$E_{T,jet} = \sum_{towers} E_{T,i}$$

- How do they compare?
- Is there any E_T or η dependence?

True E_T vs Alternative 1

- True: $E_{T,jet} = \sqrt{p_{T,jet}^2 + m_{jet}^2}$
- Alternative 1: $E_{T,jet} = E_{jet} \sin \theta_{jet} = \sqrt{p_{jet}^2 + m_{jet}^2} \sin \theta_{jet} = \sqrt{p_{T,jet}^2 + m_{jet}^2} \sin^2 \theta_{jet}$

Define
$$\Delta_1 = \frac{E_{T,jet} - E_{jet} \sin \theta_{jet}}{E_{T,jet}} = 1 - \frac{\sqrt{p_{T,jet}^2 + m_{jet}^2 \sin^2 \theta_{jet}}}{\sqrt{p_{T,jet}^2 + m_{jet}^2}}$$

- Expand in powers of
$$\frac{m_{jet}^2}{p_{T,jet}^2}$$
: $\Delta_1 \rightarrow \frac{m_{jet}^2 \tanh^2 \eta_{jet}}{2p_{T,jet}^2}$

- For small $\eta,$ tanh $\eta \rightarrow \eta~$ so either way is fine
 - Alternative 1 is the equivalent to true def central jets

Agree at few% level for lηl<0.5

- For η ~ 0.5 or greater....cone dependent
 - Or "mass" dependent....same thing

True E_T vs Alternative 2

Alternative 2: $E_{T,jet} = \sum_{towers} E_{T,i}$ harder to see analytically...imagine a jet w/2 - TRUE: $E_{T,jet}^{2} = E_{jet}^{2} - p_{z,jet}^{2} = (E_{1} + E_{2})^{2} - (p_{z1} + p_{z2})^{2}$ $= E_{1}^{2} + 2E_{1}E_{2} + E_{1}^{2} - p_{z1}^{2} + 2p_{z1}p_{z2} + p_{1}^{2}$ $= E_{T1}^{2} + E_{T2}^{2} + 2E_{1}E_{2}(1 - \cos\theta_{1}\cos\theta_{2})$

- Alternative 2:

$$(E_{T1} + E_{T1})^{2} = E_{T1}^{2} + E_{T2}^{2} + 2E_{T1}E_{T2}$$

$$= E_{T1}^{2} + E_{T2}^{2} + 2E_{1}E_{2}\sin\theta_{1}\sin\theta_{2}$$
- Take difference:

$$E_{T,jet}^{2} - (E_{T1} + E_{T2})^{2} = 2E_{1}E_{2}(1 - \cos\theta_{1}\cos\theta_{2} - \sin\theta_{1}\sin\theta_{2})$$

$$= 2E_{1}E_{2}(1 - \cos\delta\theta) = E_{1}E_{2}\sin^{2}\delta\theta/2$$
Always > 0!

- So this method also underestimates "true" E_T
 - But not as much as Alternative 1

10-Dec-2008

Jet Shape

- Jets are defined by $\sum_{particles} \vec{k}_{T,i} = 0$ but the "shape" is determined by $\sum_{particles} k_{T,i}^2 = \sum_{particles} E_{x,i}'^2 + E_{y,i}'^2 \ge 0$ • From Euler: $E'_{xi} = -E_{xi} \sin \phi_{jet} + E_{yi} \cos \phi_{jet} = E_{Ti} \sin \delta \phi_i$ $E'_{yi} = -E_{xi} \cos \theta_{jet} \cos \phi_{jet} - E_{yi} \cos \theta_{jet} \sin \phi_{jet} + E_{zi} \sin \theta_{jet}$ $= -E_{Ti} \cos \delta \phi_i \cos \theta_{jet} + E_{zi} \sin \theta_{jet}$ • Now form $\sum_{particles} k_{T,i}^2$ for those towers close to the jet axis: $\delta \theta \rightarrow 0$ and $\delta \phi \rightarrow 0$
 - $E'_{xi} \rightarrow E_{Ti} \delta \phi_i$ $E'_{yi} \rightarrow -E_{Ti} \cos \theta_{jet} + E_{zi} \sin \theta_{jet} = -E_i \sin \theta_i \cos \theta_{jet} + E_i \cos \theta_i \sin \theta_{jet} = E_i \sin \delta \theta_i \sim E_i \delta \theta_i$
- From $\tanh \eta = \cos \theta$ we get $d\theta = -\sin \theta d\eta$ which means

Jet Shape – E_T Weighted

- Define $\delta R_i^2 \equiv \delta \phi_i^2 + \delta \eta_i^2$ and $\delta R_i = \sqrt{\delta R_i^2} = \sqrt{\delta \phi_i^2 + \delta \eta_i^2}$
 - This gives: $\sum_{particles} k_{T,i}^2 = \sum_{particles} E_{T,i}^2 \delta R_i^2$ and equivalently, $k_{Ti} = E_{Ti} \delta R_i$
 - Momentum of each "cell" perpendicular to jet momentum is from
 - E_{ti} of particle in the detector, and
 - Distance from jet in $\eta \phi$ plane
 - This also suggests jet shape should be roughly circular in $\eta\phi$ plane
 - Providing above approximations are indicative overall....
- Shape defined:
 - Use energy weighting to calculate true 2nd moment in $\eta\phi$ plane

$$\sigma_{R}^{2} = \frac{\sum_{particles} k_{T,i}^{2}}{\sum_{particles} E_{T,i}^{2}} = \frac{\sum_{particles} E_{T,i}^{2} \delta R_{i}^{2}}{\sum_{particles} E_{T,i}^{2}} = \sigma_{\eta\eta} + \sigma_{\phi\phi} \quad \text{with} \quad \sigma_{\eta\eta} = \frac{\sum_{particles} E_{T,i}^{2} \delta \eta_{i}^{2}}{\sum_{particles} E_{T,i}^{2}} \quad \sigma_{\phi\phi} = \frac{\sum_{particles} E_{T,i}^{2} \delta \phi_{i}^{2}}{\sum_{particles} E_{T,i}^{2}}$$

Jet Shape – E_T Weighted (cont)

- Use sample of "unmerged" jets
- Plot $\sigma_R = \sqrt{\frac{\sum_{particles}}{E_{x,i}^{\prime 2} + E_{y,i}^{\prime 2}}}{\sum_{particles}}$
 - Shape depends on cone parameter
 - Mean and widths scale linearly with cone parameter

- "Small angle" approximation pretty good
 - \blacksquare For Cone=0.7, distribution in σ_{R} has:
 - Mean ± Width =.25 ± .05
 - 99% of jets have $\sigma_{\rm R}$ <0.4

Jet Samples

- DZero Run 1
- All pathologies eliminated (Main Ring, Hot Cells, etc.)
- IZ_{vtx}I<60cm
- No τ , e, or γ candidates in event
 - Checked $\eta\phi$ coords of $\tau e\gamma$ vs. jet list
 - Cut on cone size for jets
 - .025, .040, .060 for jets from cone cuttoff 0.3, 0.5, 0.7 respectively
- "UNMERGED" Sample:
 - RECO events had 2 and only 2 jets for cones .3, .5, and .7
 - Bias against merged jets but they can still be there
 - e.g. if merging for all cones
- "MERGED" Sample:
 - Jet algorithm reports merging

• Jet is a physics object, so mass is calculated using:

- Either one...
$$M_{jett}^2 = E_{jjet}^2 - p_{jet}^2 = E_{T,jjet}^2 - p_{T,jjet}^2$$

- Note: there is no such thing as "transverse mass" for a jet
 - Transverse mass is only defined for pairs (or more) of 4-vectors...
- For large E_{T,jet} we can see what happens by writing

$$M_{jet}^{2} = E_{T,jet}^{2} - p_{T,jet}^{2} = (E_{T,jet} + p_{T,jet})(E_{T,jet} - p_{T,jet})$$

- And take limit as jet narrows $\delta \eta_i \rightarrow 0$ and $\delta \phi_i \rightarrow 0$ and expand E_T and p_T

$$p_{T,jet} \rightarrow \sum E_{T,i} \left(1 - \frac{\delta \phi_i^2}{2} \right) \qquad E_{T,jet} \rightarrow \sum E_{T,i} \left(1 + \frac{\delta \eta_i^2}{2} \right)$$

- This gives
$$E_{T,jet} - p_{T,jet} = \frac{1}{2} \sum E_{T,i} \left(\delta \eta_i^2 + \delta \phi_i^2 \right) \qquad E_{T,jet} + p_{T,jet} = \frac{1}{2} \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) \approx 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2 \sum E_{T,i} \left(4 + \delta \eta_i^2 - \delta \phi_i^2 \right) = 2$$

Jet mass is related to jet shape!!! (in the thin jet, high energy limit)

SO....
$$M_{jet}^2 = \sum E_{Ti} \sum E_{Ti} \left(\delta \eta_i^2 + \delta \phi_i^2 \right) \xrightarrow{\longrightarrow} M_{jet} \cong E_{T, jet} \sigma_R$$
 using $E_{T, jet} \cong \sum_{particles 39} E_{T, i}$

Jet Mass (cont)

• Jet Mass for unmerged sample

How good is "thin jet" approximation?

Low-side tail is due to lower E_T jets for smaller cones (this sample has 2 and only 2 jets for all cones)

Jet Merging

- Does jet merging matter for physics?
 - For some inclusive QCD studies, it doesn't matter
 - For invariant mass calculations from e.g. top \rightarrow Wb, it will smear out mass distribution _ if merging two "tree-level" jets that happen to be close
- Study $\sigma_{\rm B}$...see clear correlation between $\sigma_{\rm B}$ and whether jet is merged or not •
 - Can this be used to construct some kind of likelihood?

Merging Likelihood

- Crude attempt at a likelihood
 - Can see that for this (biased) sample, can use this to pick out "unmerged" jets based on shape
 - Might be useful in Higgs search for $H \rightarrow bb$ jet invariant mass?

Jet cone parameter	Equal likelihood to be merged and unmerged
0.3	0.155
0.5	0.244
0.7	0.292

Merged Shape

- Width in $\eta\phi$ $\sigma_R^2 = \sigma_{\eta\eta} + \sigma_{\phi\phi}$ "assumes" circular
 - Large deviations due to merging?

