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Summary 
 
Quantum gravity was born as that branch of modern theoretical physics that tries to unify its 
guiding principles, i.e., quantum mechanics and general relativity. Nowadays it is providing new 
insight into the unification of all fundamental interactions, while giving rise to new developments in 
mathematics. The various competing theories, e.g. string theory and loop quantum gravity, have still 
to be checked against observations. We review the classical and quantum foundations necessary to 



study field-theory approaches to quantum gravity, the passage from old to new unification in 
quantum field theory, canonical quantum gravity, the use of functional integrals, the properties of 
gravitational instantons, the use of spectral zeta-functions in the quantum theory of the universe, 
Hawking radiation, some theoretical achievements and some key experimental issues. 
 
1. Introduction 
 
The aim of theoretical physics is to provide a clear conceptual framework for the wide variety of 
natural phenomena, so that not only are we able to make accurate predictions to be checked against 
observations, but the underlying mathematical structures of the world we live in can also become 
sufficiently well understood by the scientific community. What are therefore the key elements of a 
mathematical description of the physical world? Can we derive all basic equations of theoretical 
physics from a set of symmetry principles? What do they tell us about the origin and evolution of 
the universe? Why is gravitation so peculiar with respect to all other fundamental interactions?  
 
The above questions have received careful consideration and have led, in particular, to several 
approaches to a theory aimed at achieving a synthesis of quantum physics on the one hand, and 
general relativity on the other. This remains, possibly, the most important task of theoretical 
physics. In the early work of the 1930s, Rosenfeld [131,132] computed the gravitational self-energy 
of a photon in the lowest order of perturbation theory, and obtained a quadratically divergent result. 
With hindsight, one can say that Rosenfeld’s result implies merely a renormalization of charge 
rather than a non-vanishing photon mass [40]. A few years after Rosenfeld’s papers [131,132], 
Bronstein realized that the limitation posed by general relativity on the mass density radically 
distinguishes the theory from quantum electrodynamics and would ultimately lead to the need to 
reject Riemannian geometry and perhaps also to reject our ordinary concepts of space and time 
[20,135].  
 
Indeed, since the merging of quantum theory and special relativity has given rise to quantum field 
theory in Minkowski spacetime, while quantum field theory and classical general relativity, taken 
without modifications, have given rise to an incomplete scheme such as quantum field theory in 
curved spacetime [65], which however predicts substantially novel features like Hawking radiation 
[87,88], here outlined in Section 7, one is led to ask what would result from the “unification” of 
quantum field theory and gravitation, despite the lack of a quantum gravity phenomenology in 
earth-based laboratories. The resulting theory is expected to suffer from ultraviolet divergences 
[157], and the 1-loop [94] and 2-loop [74] calculations for pure gravity which are outstanding 
pieces of work. As is well described in Ref. [157], if the coupling constant of a field theory has 
dimension massd  in 1c= =  units, then the integral for a Feynman diagram of order N  behaves 
at large momenta like A Ndp dp−∫ , where A  depends on the physical process considered but not on 
the order N . Thus, the “harmful” interactions are those having negative values of d , which is 
precisely the case for Newton’s constant G , where 2d = − , since 39 26 67 10 GeVG − −= . ×  in 

1c= =  units. More precisely, since the scalar curvature contains second derivatives of the metric, 
the corresponding momentum-space vertex functions behave like 2p , and the propagator like 2p− . 
In d  dimensions each loop integral contributes dp , so that with L  loops, V  vertices and P  
internal lines, the superficial degree D  of divergence of a Feynman diagram is given by [53]  
 

2 2D dL V P= + − .         (1) 
 
Moreover, a topological relation holds:  
 

1L V P= − + ,          (2) 



 
which leads to [53]  
 

( 2) 2D d L= − + .         (3) 
 
In other words, D  increases with increasing loop order for 2d > , so that it clearly leads to a non-
renormalizable theory.  
 
A quantum theory of gravity is expected, for example, to shed new light on singularities in classical 
cosmology. More precisely, the singularity theorems prove that the Einstein theory of general 
relativity leads to the occurrence of spacetime singularities in a generic way [86]. At first sight one 
might be tempted to conclude that a breakdown of all physical laws occurred in the past, or that 
general relativity is severely incomplete, being unable to predict what came out of a singularity. It 
has been therefore pointed out that all these pathological features result from the attempt of using 
the Einstein theory well beyond its limit of validity, i.e. at energy scales where the fundamental 
theory is definitely more involved. General relativity might be therefore viewed as a low-energy 
limit of a richer theory, which achieves the synthesis of both the basic principles of modern 
physics and the fundamental interactions in the form currently known.  
 
So far, no less than 16 major approaches to quantum gravity have been proposed in the literature. 
Some of them make a direct or indirect use of the action functional to develop a Lagrangian or 
Hamiltonian framework. They are as follows.  
 
1. Canonical quantum gravity [16,17,43,44,32,99,100,6,54,144].  
2. Manifestly covariant quantization [116, 33, 94, 74, 7, 152, 21, 103].  
3. Euclidean quantum gravity [68, 90].  
4. R-squared gravity [142].  
5. Supergravity [64,148].  
6. String and brane theory [162, 98, 10].  
7. Renormalization group and Weinberg’s asymptotic safety [129,106].  
8. Non-commutative geometry [26, 75].  

Among these 8 approaches, string theory is peculiar because it is not field-theoretic, spacetime 
points being replaced by extended structures such as strings.  
A second set of approaches relies instead upon different mathematical structures with a more 
substantial (but not complete) departure from conventional pictures, i.e.  

9. Twistor theory [122,123].  
10. Asymptotic quantization [67, 5].  
11. Lattice formulation [114, 22].  
12. Loop space representation [133,134,136,145,154].  
13. Quantum topology [101], motivated by Wheeler’s quantum geometrodynamics [159].  
14. Simplicial quantum gravity [72, 1, 109, 2] and null-strut calculus [102].  
15. Condensed-matter view: the universe in a helium droplet [155].  
16. Affine quantum gravity [105].  
 
After such a concise list of a broad range of ideas, we hereafter focus on the presentation of some 
very basic properties which underlie whatever treatment of classical and quantum gravity, and are 
therefore of interest for the general reader rather than (just) the specialist. He or she should revert to 
the above list only after having gone through the material in Sections 2–7.  
 
2. Classical and Quantum Foundations 
 
Before any attempt to quantize gravity we should spell out how classical gravity can be described in 



modern language. This is done in the subsection below.  
 
2.1. Lorentzian Spacetime and Gravity 
 
In modern physics, thanks to the work of Einstein [51], space and time are unified into the 
spacetime manifold ( )M g, , where the metric g  is a real-valued symmetric bilinear map  
 

( ) ( )p pg T M T M: × → R  
 
of Lorentzian signature. The latter feature gives rise to the light-cone structure of spacetime, with 
vectors being divided into timelike, null or spacelike depending on whether ( )g X X,  is negative, 
vanishing or positive, respectively. The classical laws of nature are written in tensor language, and 
gravity is the curvature of spacetime. In the theory of general relativity, gravity couples to the 
energy-momentum tensor of matter through the Einstein equations  
 

4

1 8
2

GR g R T
cμν μν μν
π

− = .        (4) 

 
The Einstein–Hilbert action functional for gravity, giving rise to Eq. (4), is diffeomorphism-
invariant, and hence general relativity belongs actually to the general set of theories ruled by an 
infinite-dimensional [31] invariance group (or pseudo-group). With hindsight, following DeWitt 
[39], one can say that general relativity was actually the first example of a non-Abelian gauge 
theory (about 38 years before Yang–Mills theory [164]).  
 
Note that the spacetime manifold is actually an equivalence class of pairs ( )M g, , where two 
metrics are viewed as equivalent if one can be obtained from the other through the action of the 
diffeomorphism group Diff ( )M . The metric is an additional geometric structure that does not 
necessarily solve any field equation.  
 
2.2. From Schrödinger to Feynman 
 
Quantum mechanics deals instead, mainly, with a probabilistic description of the world on atomic 
or sub-atomic scale. It tells us that, on such scales, the world can be described by a Hilbert space 
structure, or suitable generalizations. Even in the relatively simple case of the hydrogen atom, the 
appropriate Hilbert space is infinite-dimensional, but finite-dimensional Hilbert spaces play a role 
as well. For example, the space of spin-states of a spin- s  particle is 2 1s+C  and is therefore finite-
dimensional. Various pictures or formulations of quantum mechanics have been developed over the 
years, and their key elements can be summarized as follows:  
 
(i) In the Schrödinger picture, one deals with wave functions evolving in time according to a first-
order equation. More precisely, in an abstract Hilbert spaceH , one studies the Schrödinger equation  
 

ˆi d H
dt
ψ ψ= ,          (5) 

 
where the state vector ψ  belongs to H , while Ĥ  is the Hamiltonian operator. In wave mechanics, 
the emphasis is more immediately put on partial differential equations, with the wave function 
viewed as a complex-valued map ( )x tψ : , →C  obeying the equation  
 



2
i

2
V

t m
ψ ψ

⎛ ⎞∂
= − Δ + ,⎜ ⎟∂ ⎝ ⎠

       (6) 

 
where −Δ  is the Laplacian in Cartesian coordinates on 3R  (with this sign convention, its symbol is 
positive-definite).  
 
(ii) In the Heisenberg picture, what evolves in time is instead the operators, according to the first-
order equation  
 

ˆ ˆ ˆi [ ]dA A H
dt

= , .         (7) 

 
Heisenberg performed a quantum mechanical re-interpretation of kinematic and mechanical 
relations [93] because he wanted to formulate quantum theory in terms of observables only.  
 
(iii) In the Dirac quantization, from an assessment of the Heisenberg approach and of Poisson 
brackets [41], one discovers that quantum mechanics can be made to rely upon the basic 
commutation relations involving position and momentum operators:  
 

ˆ ˆ ˆ ˆ[ ] [ ] 0j k
j kq q p p, = , = ,         (8) 

 
ˆ ˆ[ ] ij j

kkq p δ, = .         (9) 
 
For generic operators depending on ˆ ˆq p,  variables, their formal Taylor series, jointly with 
application of (8) and (9), should yield their commutator.  
 
(iv) Weyl quantization. The operators satisfying the canonical commutation relations (9) cannot be 
both bounded [57], whereas it would be nice to have quantization rules not involving unbounded 
operators and domain problems. For this purpose, one can consider the strongly continuous 1-
parameter unitary groups having position and momentum as their infinitesimal generators. These 
read as ˆi( ) e tqV t ≡ , ˆi( ) e spU s ≡ , and satisfy the Weyl form of canonical commutation relations, 
which is given by  
 

i( ) ( ) e ( ) ( )stU s V t V t U s= .        (10) 
 
Here the emphasis was, for the first time, on group-theoretical methods, with a substantial departure 
from the historical development, that relied instead heavily on quantum commutators and their 
relation with classical Poisson brackets.  
 
(v) Feynman quantization (i.e., Lagrangian approach). The Weyl approach is very elegant and far-
sighted, with several modern applications [57], but still has to do with a more rigorous way of doing 
canonical quantization, which is not suitable for an inclusion of relativity. A spacetime approach to 
ordinary quantum mechanics was instead devised by Feynman [62] (and partly Dirac himself [42]), 
who proposed to express the Green kernel of the Schrödinger equation in the form  
 

i
all paths

[ ] e S
f f i iG x t x t dμ/, ; , = ,∫       (11) 

 
where dμ  is a suitable (putative) measure on the set of all spacetime paths (including continuous, 



piecewise continuous, or even discontinuous paths) matching the initial and final conditions. This 
point of view has enormous potentialities in the quantization of field theories, since it preserves 
manifest covariance and the full symmetry group, being derived from a Lagrangian.  
 
It should be stressed that quantum mechanics regards wave functions only as a technical tool to 
study bound states (corresponding to the discrete spectrum of the Hamiltonian operator Ĥ ), 
scattering states (corresponding instead to the continuous spectrum of Ĥ ), and to evaluate 
probabilities (of finding the values taken by the observables of the theory). Moreover, it is 
meaningless to talk about an elementary phenomenon on atomic (or sub-atomic) scale unless it is 
registered [160], and quantum mechanics in the laboratory needs also an external observer and 
assumes the so-called reduction of the wave packet (see [57] and references therein). There exist 
indeed different interpretations of quantum mechanics, e.g. Copenhagen [160], hidden variables 
[15], many worlds [60, 35].  
 
2.3. Spacetime Singularities 
 
Now we revert to the geometric side. In Riemannian or pseudo-Riemannian geometry, geodesics 
are curves whose tangent vector X  moves by parallel transport [85], so that eventually  
 

0dX X X
ds

λ
λ μ ν
μν+ Γ = ,        (12) 

 
where s  is the affine parameter and λ

μνΓ  are the connection coefficients. In general relativity, 
timelike geodesics correspond to the trajectories of freely moving observers, while null geodesics 
describe the trajectories of zero-rest-mass particles (Section 8.1 of Ref. [85]). Moreover, a 
spacetime ( )M g,  is said to be singularity-free if all timelike and null geodesics can be extended to 
arbitrary values of their affine parameter. At a spacetime singularity in general relativity, all laws 
of classical physics would break down, because one would witness very pathological events such as 
the sudden disappearance of freely moving observers, and one would be completely unable to 
predict what came out of the singularity. In the 1960s, Penrose [121] proved first an important 
theorem on the occurrence of singularities in gravitational collapse (e.g. formation of black holes). 
Subsequent work by Hawking [79, 80, 81, 82, 83], Geroch [66], Ellis and Hawking [84, 52], 
Hawking and Penrose [86] proved that spacetime singularities are generic properties of general 
relativity, provided that physically realistic energy conditions hold. Very little analytic use of the 
Einstein equations is made, whereas the key role emerges of topological and global methods in 
general relativity.  
 
On the side of singularity theory in classical cosmology, explicit mention should be made of the 
work in Ref. [14], since it has led to significant progress by Damour et al. [27], despite having 
failed to prove singularity avoidance in classical cosmology. As pointed out in Ref. [27], the work 
by Belinsky et al. is remarkable because it gives a description of the generic asymptotic behaviour 
of the gravitational field in 4-dimensional spacetime in the vicinity of a spacelike singularity. 
Interestingly, near the singularity the spatial points essentially decouple, i.e. the evolution of the 
spatial metric at each spatial point is asymptotically governed by a set of second-order, non-linear 
ordinary differential equations in the time variable [14]. Moreover, the use of qualitative 
Hamiltonian methods leads naturally to a billiard description of the asymptotic evolution, where the 
logarithms of spatial scale factors define a geodesic motion in a region of the Lobachevskii plane, 
interrupted by geometric reflections against the walls bounding this region. Chaos follows because 
the Bianchi IX billiard has finite volume [27]. A self-contained derivation of the billiard picture for 
inhomogeneous solutions in D  dimensions, with dilaton and p -form gauge fields, has been 
obtained in Ref. [27].  



 
2.4. Unification of All Fundamental Interactions 
 
The fully established unifications of modern physics are as follows.  
 
(i) Maxwell: electricity and magnetism are unified into electromagnetism. All related phenomena 

can be described by an antisymmetric rank-two tensor field, and derived from a 1-form, called 
the potential.  

 
(ii) Einstein: space and time are unified into the spacetime manifold. Moreover, inertial and 

gravitational mass, conceptually different, are actually unified as well.  
 
(iii) Standard model of particle physics: electromagnetic, weak and strong forces are unified by a 

non-Abelian gauge theory, normally considered in Minkowski spacetime (this being the base 
space in fibre-bundle language).  

 
The physics community is now familiar with a picture relying upon four fundamental interactions: 
electromagnetic, weak, strong and gravitational. The large-scale structure of the universe, however, 
is ruled by gravity only. All unifications beyond Maxwell involve non-Abelian gauge groups (either 
Yang–Mills or Diffeomorphism group). At least three extreme views have been developed along the 
years, i.e.,  
 
(i) Gravity arose first, temporally, in the very early Universe, then all other fundamental 

interactions.  
 
(ii) Gravity might result from Quantum Field Theory (this was the Sakharov idea [139]).  
 
(iii) The vacuum of particle physics is regarded as a cold quantum liquid in equilibrium. Protons, 

gravitons and gluons are viewed as collective excitations of this liquid [155].  
 
3. Canonical Quantum Gravity 
 
Although Hamiltonian methods differ substantially from the Lagrangian approach used in the 
construction of the functional integral (see the following sections), they remain nevertheless of great 
importance both in cosmology and in light of modern developments in canonical quantum gravity 
[6,136,144], which is here presented within the original framework of quantum geometrodynamics. 
For this purpose, it may be useful to describe the main ideas of the Arnowitt-Deser-Misner 
(hereafter referred to as ADM) formalism. This is a canonical formalism for general relativity that 
enables one to re-write Einstein’s field equations in first-order form and explicitly solved with 
respect to a time variable. For this purpose, one assumes that 4-dimensional spacetime ( )M g,  can 
be foliated by a family of constantt =  spacelike surfaces tS , giving rise to a 3 1+  decomposition of 
the original 4-geometry. The basic geometric data of this decomposition are as follows [53].  
 
(1) The induced 3-metric h  of the three-dimensional spacelike surfaces tS . This yields the intrinsic 

geometry of the 3-space. h  is also called the first fundamental form of tS , and is positive-
definite with our conventions.  

(2) The way each tS  is imbedded in ( )M g, . This is known once we are able to compute the spatial 
part of the covariant derivative of the normal n  to tS . On denoting by ∇  the 4-connection of 
( )M g, , one is thus led to define the tensor  

 



ij j iK n≡ −∇ .          (13) 
 

Note that ijK  is symmetric if and only if ∇  is symmetric. In general relativity, an equivalent 
definition of ijK  is 1

2 ( )ij n ijK L h≡ − , where nL  denotes the Lie derivative along the normal to 

tS . The tensor K  is called extrinsic-curvature tensor, or second fundamental form of tS .  
(3) How the coordinates are propagated off the surface tS . For this purpose one defines the vector 

1 2 3( )N N N N dt, , ,  connecting the point ( )it x,  with the point ( )it dt x+ , . Thus, given the 
surface 0x t=  and the surface 0x t dt= + , Ndt dτ≡  specifies a displacement normal to the 
surface 0x t= . Moreover, iN dt  yields the displacement from the point ( )it x,  to the foot of the 
normal to 0x t=  through ( )it dt x+ , . In other words, the iN  arise since the constantix =  lines 
do not coincide in general with the normals to the constantt =  surfaces. According to a well-
established terminology, N  is the lapse function, and the iN  are the shift functions. They are 
the tool needed to achieve the desired space-time foliation.  

 
In the light of points (1)–(3) above, the 4-metric g  can be locally cast in the form  
 

2( ) ( )i i j j
ijg h dx N dt dx N dt N dt dt= + ⊗ + − ⊗ .     (14) 

 
This implies that  
 

2
00 ( )i

ig N N N= − − ,         (15) 
 

0 0i i ig g N= = ,          (16) 
 

ij ijg h= ,          (17) 
 
whereas, using the property g gλν λ

νμ μδ= , one finds  
 

00
2

1g
N

= − ,          (18) 

 
0 0

2

i
i i Ng g

N
= = ,         (19) 

 

2

i j
ij ij N Ng h

N
= − .         (20) 

 
Interestingly, the covariant ijg  and ijh  coincide, whereas the contravariant ijg  and ijh  differ as 

shown in (20). In terms of iN N,  and h , the extrinsic-curvature tensor defined in (13) takes the 
form  
 

1
2

ij
ij i j j i

h
K N N

N t
∂⎛ ⎞

≡ − + + ,⎜ ⎟∂⎝ ⎠
      (21) 

 



where the stroke  denotes covariant differentiation on the spacelike 3-surface tS , and indices of 

ijK  are raised using ilh . Equation (21) can be also written as  
 

2ij
iji j j i

h
N N NK

t
∂

= + − .
∂

       (22) 

 
Equation (22) should be supplemented by another first-order equation expressing the time evolution 
of ijK  (recall that ijπ  is related to ijK ), i.e.  
 

(3) (tr ) 2 [ ]ij m m m m
ij ij im j jm imij ij m i j

K
N N R K K K K N K N K N K

t
∂

⎡ ⎤= − + + − + + + .⎣ ⎦∂
   

          (23) 
 
On using the ADM variables described so far, the form of the action integral I  for pure gravity that 
is stationary under variations of the metric vanishing on the boundary is (in 1c =  units)  
 

2(4) 4 3 (3) 31 1 1 [ ]( )
16 8 16

i ij i
i ij iM M M

I R g d x K h d x R K K N h d x dtK
G G Gπ π π∂

≡ − + = + − .∫ ∫ ∫  

          (24) 
 
The boundary term appearing in (24) is necessary since (4) R  contains second derivatives of the 
metric, and integration by parts in the Einstein–Hilbert part  
 

(4) 41
16H M

I R g d x
Gπ

≡ −∫  

 
of the action also leads to a boundary term equal to 31

8
i
iG M

K h d xπ ∂
− ∫ . On denoting by Gμν  the 

Einstein tensor (4) (4)1
2G R g Rμν μν μν≡ − , and defining  

 
1 ( ) ( ) ( )
2

g g g gρ ρλ
μν μ λν ν λμ λ μνδ δ δ δ⎡ ⎤Γ ≡ ∇ +∇ −∇ ,⎣ ⎦     (25) 

 
one then finds [165]  
 

4 3(16 ) ( ) ( )H M M
G I g G g d x g g g d xμν μν σ μσ ν ρ

μν ρ ρ μν σπ δ δ δ δ δ
∂

= − − + − − Γ ,∫ ∫   

(26) 
 
which clearly shows that HI  is stationary if the Einstein equations hold, and the normal derivatives 
of the variations of the metric vanish on the boundary M∂ . In other words, HI  is not stationary 
under arbitrary variations of the metric, and stationarity is only achieved after adding to HI  the 
boundary term appearing in (24), if gμνδ  is set to zero on M∂ . Other useful forms of the boundary 
term can be found in [68,165]. Note also that, strictly, in writing down (24) one should also take 
into account a term arising from HI  [32]:  
 

( )31
8

l i ij
t i l jM

I dt d x h K N h N
Gπ ∂

⎡ ⎤≡ ∂ − .
⎣ ⎦

∫ ∫     (27) 



 
However, we have not explicitly included tI  since it does not modify the results derived or 
described hereafter.  
 
We are now ready to apply Dirac’s technique to the Hamiltonian quantization of general relativity. 
This requires that all classical constraints which are first-class are turned into operators that 
annihilate the wave functional [53]. Hereafter, we assume that this step has already been performed. 
As we know, consistency of the quantum constraints is proved if one can show that their 
commutators lead to no new constraints [53]. For this purpose, it may be useful to recall the equal-
time commutation relations of the canonical variables, i.e.  
 
[ ]( ) ( ) i ( )N x x x xπ δ′ ′, = , ,        (28) 
 

( ) ( ) ik k
j jN x xπ δ ′′⎡ ⎤, = ,⎣ ⎦        (29) 

 
il m l m

jk jkh π δ′ ′ ′ ′⎡ ⎤, = .⎣ ⎦         (30) 
 
Note that, following [32], primes have been used, either on indices or on the variables themselves, 
to distinguish different points of 3-space. In other words, one defines  
 

( )j j
i i x xδ δ δ′ ′≡ , ,         (31) 

 
( )k l kl

ij ij x xδ δ δ′ ′ ′≡ , ,         (32) 
 

1 ( )
2

kl k l l k
ij i j i jδ δ δ δ δ≡ + .        (33) 

 
The reader can check that, since [32]  
 

2 (3)( )ij
ijh K K K R≡ − − ,H        (34) 

 
2 (2 )i ij il jk

j jl k jk lh h hπ π, , ,≡ − − − ,H       (35) 
 
one has  
 
[ ( ) ( )] [ ( ) ( )] [ ( ) ( )] [ ( ) ( )] [ ( ) ( )] 0i i i j ix x x x x x x x x xπ π π π π π′ ′ ′ ′ ′, = , = , = , = , = .H H H H    

(36) 
 
It now remains to compute the three commutators [ ]i j′,H H , [ ]i ′,H H , [ ]′,H H . The first two 

commutators are obtained by using Eq. (35) and defining j
i ijh≡H H . Interestingly, iH  is 

homogeneous bilinear in the ijh  and ijπ , with the momenta always to the right. As we said before, 
following Dirac, the operator version of constraints should annihilate the wave function since the 
classical constraints are first-class (i.e. their Poisson brackets are linear combinations of the 
constraints themselves). This condition reads as  
 

3 0
tS

d xξ ψ ξ= ∀ ,∫ H        (37) 



 
3 0

t

i i
iS

d xξ ψ ξ= ∀ .∫ H        (38) 

 
In the applications to cosmology, Eq. (37) is known as the Wheeler–DeWitt equation, and the 
functional ψ  is then called the wave function of the universe [78].  
We begin by computing [32]  
 

3i
t

k l l l
jk k jk l lk j jl kS

h d x h h hδξ δξ δξ δξ′
′ , , ,

⎡ ⎤′, = − − − ,⎢ ⎥⎣ ⎦∫ H    (39) 

 
3i ( )

t

jk k jk l lk j jl k
k l l lS

d xπ δξ π δξ π δξ π δξ′
′ , , ,

⎡ ⎤′, = − + + .⎢ ⎥⎣ ⎦∫ H    (40) 

 
This calculation shows that the iH  are generators of 3-dimensional coordinate transformations 

i i ixx δξ= + . Thus, by using the definition of structure constants of the general coordinate-
transformation group [32], i.e.  
 

k k l k l
ij i l j j l ic δ δ δ δ′′ ′′ ′′ ′′ ′′
′ ′′ ′ ′ ′′, ,≡ − ,        (41) 

 
the results (39)–(40) may be used to show that  
 

3[ ( ) ( )] i
t

l
j k l jkS

x x c d x′′
′′ ′′ ′′, = − ,∫H H H      (42) 

 
[ ( ) ( )] i ( )j jx x x xδ,′ ′, = , .H H H       (43) 
 
Note that the only term of H  which might lead to difficulties is the one quadratic in the momenta. 
However, all factors appearing in this term have homogeneous linear transformation laws under the 
3-dimensional coordinate-transformation group. They thus remain undisturbed in position when 
commuted with jH  [32].  
 
Last, we have to study the commutator [ ( ) ( )]x x′,H H . The following remarks are in order:  
(i) Terms quadratic in momenta contain no derivatives of ijh  or ijπ  with respect to 3-space 
coordinates. Hence they commute;  
(ii) The terms (3)( )( ( ))h x R x  and (3)( )( ( ))h x R x′ ′  contain no momenta, so that they also 
commute;  
(iii) The only commutators we are left with are the cross-commutators, and they can be evaluated 
by using the variational formula [32]  
 

( ) ( ) ( )(3) (3) (3)1
2

ij kl ij ij
ik jl ij kl ijh R h h h h h h R h R hδ δ δ δ, ,

⎡ ⎤= − − − ,⎢ ⎥⎣ ⎦
 (44) 

 
which leads to  
 

3 3 3
1 2 1 2 1 2i ( )

t t t

l
l lS S S

d x d x d xξ ξ ξ ξ ξ ξ, ,
⎡ ⎤, = − .⎢ ⎥⎣ ⎦∫ ∫ ∫H H H    (45) 

 
The commutators (42)–(43) and (45) clearly show that the constraint equations of canonical 



quantum gravity are first-class. The Wheeler-DeWitt equation (37) is an equation on the superspace 
(here Σ  is a Riemannian 3-manifold diffeomorphic to tS )  
 

( ) Riem( ) Diff ( )S Σ ≡ Σ Σ .  
 
In this quotient space, two Riemannian metrics on Σ  are identified if they are related through the 
action of the diffeomorphism group Diff ( )Σ .  
 
Two very useful classical formulae frequently used in Lorentzian canonical gravity are  
 

(3)(16 ) ( )
16

ij kl
ijkl

hG G p p R
G

π
π

≡ − ,H      (46) 

 
1 (3)(16 ) [ ( )]ijml

ij mlG G K K h Rπ −≡ − ,H      (47) 
 
where the rank-4 tensor density is the DeWitt supermetric on superspace, with covariant and 
contravariant forms  
 

( )1
2ijkl ik jl il jk ij klG h h h h h h

h
≡ + − ,       (48) 

 

( )2
2

ijkl ik jl il jk ij klhG h h h h h h≡ + − ,       (49) 

 
and ijp  is here defined as 16 ( )ij ijh

G K h Kπ− − . Note that the factor 2−  multiplying ij klh h  in (49) is 
needed so as to obtain the identity  
 

( )1
2

mnkl k l l k
ijmn i j i jG G δ δ δ δ= + .        (50) 

 
Equation (46) clearly shows that H  contains a part quadratic in the momenta and a part 
proportional to (3) R  (cf. (34)). On quantization, it is then hard to give a well-defined meaning to the 
second functional derivative 2

ij klh h
δ

δ δ , whereas the occurrence of (3) R  makes it even more difficult to 

solve exactly the Wheeler-DeWitt equation.  
 
It should be stressed that wave functions built from the functional integral (see the following 
sections) which generalizes the path integral of ordinary quantum mechanics (see (11)) do not solve 
the Wheeler–DeWitt equation (37) unless some suitable assumptions are made [77], and 
counterexamples have been built, i.e. a functional integral for the wave function of the universe 
which does not solve the Wheeler–DeWitt equation [37].  
 
4. From Old to New Unification 
 
Here we outline how the space-of-histories formulation provides a common ground for describing 
the ‘old’ and ‘new’ unifications of fundamental theories.  
 
4.1. Old Unification 
 



Quantum field theory begins once an action functional S  is given, since the first and most 
fundamental assumption of quantum theory is that every isolated dynamical system can be 
described by a characteristic action functional [31]. The Feynman approach makes it necessary to 
consider an infinite-dimensional manifold such as the space Φ  of all field histories iϕ . On this 
space there exist (in the case of gauge theories) vector fields  
 

i
iQ Qα α

δ
δϕ

=          (51) 

 
that leave the action invariant, i.e. [39]  
 

0Q Sα = .          (52) 
 
The Lie brackets of these vector fields lead to a classification of all gauge theories known so far.  
 
4.2. Type-I Gauge Theories 
 
The peculiar property of type-I gauge theories is that these Lie brackets are equal to linear 
combinations of the vector fields themselves, with structure constants, i.e. [38]  
 
[ ]Q Q C Qγ

α β αβ γ, = ,         (53) 
 

where 0i

Cγ
αβδ

δϕ
= . The Maxwell, Yang–Mills, Einstein theories are all example of type-I theories (this 

is the ‘unifying feature’). All of them, being gauge theories, need supplementary conditions, since 
the second functional derivative of S  is not an invertible operator. After imposing such conditions, 
the theories are ruled by an invertible differential operator of D’Alembert type (or Laplace type, if 
one deals instead with Euclidean field theory), or a non-minimal operator at the very worst (for 
arbitrary choices of gauge parameters). For example, when Maxwell theory is quantized via 
functional integrals in the Lorenz [110] gauge, one deals with a gauge-fixing functional  
 

( )A Aμ
μΦ = ∇ ,         (54) 

 
and the second-order differential operator acting on the potential in the gauge-fixed action 
functional reads as  
 

11P Rν ν ν ν
μ μ μ μδ

α
⎛ ⎞= − � + + − ∇ ∇ ,⎜ ⎟
⎝ ⎠

      (55) 

 
where α  is an arbitrary gauge parameter. The Feynman choice 1α =  leads to the minimal operator  
 

RP
ν ν ν

μ μμ δ= − � + ,  
 
which is the standard wave operator on vectors in curved spacetime. Such operators play a leading 
role in the 1-loop expansion of the Euclidean effective action, i.e. the quadratic order in  in the 
asymptotic expansion of the functional ruling the quantum theory with positive-definite metrics.  
 
The closure property expressed by Eq. (53) implies that the gauge group decomposes the space of 
histories Φ  into sub-spaces to which the Qα  are tangent. These sub-spaces are known as orbits, and 



Φ  may be viewed as a principal fibre bundle of which the orbits are the fibres. The space of orbits 
is, strictly, the quotient space Φ / G , where G  is the proper gauge group, i.e. the set of 
transformations of Φ  into itself obtained by exponentiating the infinitesimal gauge transformation  
 

i iQ α
αδϕ δξ= ,          (56) 

 
and taking products of the resulting exponential maps. Suppose one performs the transformation 
[39]  
 

i AI Kαϕ → ,          (57) 
 
from the field variables iϕ  to a set of fibre-adapted coordinates AI  and Kα . With this notation, the 
I ’s label the fibres, i.e. the points in Φ / G , and are gauge invariant because  
 

0AQ Iα = .          (58) 
 
The K ’s label the points within each fibre, and one often makes specific choices for the K ’s, 
corresponding to the choice of supplementary condition [31], more frequently called gauge 
condition. One normally picks out a base point ϕ∗  in Φ  and chooses the K s′  to be local functionals 
of the ϕ ’s in such a way that the formula  
 

i
iQ K K Qα α α

β ββ ,≡ =F        (59) 
 
defines a non-singular differential operator, called the ghost operator, at and in a neighbourhood of 
ϕ∗ . Thus, what is often called choosing a gauge amounts to choosing a hypersurface constantKα =  
in a fibre-adapted coordinate patch. The fields acted upon by the ghost operator are called ghost 
fields, and have opposite statistics with respect to the fields occurring in the gauge-invariant action 
functional (see Refs. [63,61,33] for the first time that ghost fields were considered in quantized 
gauge theories). The gauge-fixed action in the functional integral reads as [39]  
 

g f
1
2

S S K Kα β
αβω ′

′. . = + ,        (60) 

 
where αβω ′  is a non-singular matrix of gauge parameters (strictly, it is written with matrix notation, 
but it contains Dirac’s delta, i.e. ( )x xαβ αβω ω δ′ ′≡ , ).  
 
4.3. Type-II Gauge Theories 
 
For type-II gauge theories, Lie brackets of vector fields Qα  are as in Eq. (53) for type-I theories, but 
the structure constants are promoted to structure functions. An example is given by simple 
supergravity (a supersymmetric [73,158] gauge theory of gravity, with a symmetry relating bosonic 
and fermionic fields) in four spacetime dimensions, with auxiliary fields [148].  
 
4.4. Type-III Gauge Theories 
 
In this case, the Lie bracket (53) is generalized by  
 



[ ] i
iQ Q C Q U Sγ

α β αβ γ αβ ,, = + ,        (61) 
 
and it therefore reduces to (53) only on the mass-shell, i.e. for those field configurations satisfying 
the Euler–Lagrange equations. An example is given by theories with gravitons and gravitinos such 
as Bose–Fermi supermultiplets of both simple and extended supergravity in any number of 
spacetime dimensions, without auxiliary fields [148].  
 
4.5. From General Relativity to Supergravity 
 
It should be stressed that general relativity is naturally related to supersymmetry, since the 
requirement of gauge-invariant Rarita–Schwinger equations [128] in curved spacetime implies 
Ricci-flatness in four dimensions [29], which is then equivalent to vacuum Einstein equations. Of 
course, despite such a relation does exist, general relativity can be (and is) formulated without any 
use of supersymmetry.  
 
The Dirac operator [56] is more fundamental in this framework, since the m -dimensional 
spacetime metric is entirely re-constructed from the γ -matrices, in that  
 

[ 2] 12 tr( )mg μν μ ν ν μγ γ γ γ− / −= + .       (62) 
 
In 4-dimensional spacetime, one can use the tetrad formalism, with Latin indices ( )a b,  
corresponding to tensors in flat space (the tangent frames, the freely falling lifts) while Greek 
indices ( )μ ν,  correspond to coordinates in curved space. The contravariant form of the spacetime 
metric g  is then given by  
 

ab
a bg e eμν μ νη= ,         (63) 

 
where abη  is the Minkowski metric and aeμ  are the tetrad vectors. The curved-space γ -matrices μγ  
are then obtained from the flat-space γ -matrices aγ  and from the tetrad according to  
 

a
aeμ μγ γ= .          (64) 

 
In Ref. [64], the authors assumed that the action functional describing the interaction of tetrad fields 
and Rarita–Schwinger fields in curved spacetime, subject to the Majorana constraint  
 

( ) ( )Tx C xρ ρ
ψ ψ= , reads as  

4 2
5

1 1 ( ) ( )
4 2

I d x gR x D xλρμν
μ ν ρλκ ε γ γ ψψ−⎡ ⎤= − − ,⎢ ⎥⎣ ⎦

∫    (65) 

 
where the covariant derivative of Rarita–Schwinger fields is defined by  
 

1( ) ( )
2

ab
abD x x σ

ν ρ ν ρ νρ σ ν ρψ ψ ψ ω σ ψ≡ ∂ −Γ + .      (66) 

 
With a standard notation, σ

νρΓ  are the Christoffel symbols built from the curved spacetime metric 

g μν , abνω  is the spin-connection (the gauge field associated to the generators of the Lorentz 
algebra)  



 
1 ( ) ( ) ( )
2

c
ab a b b a b ce e e e e e e a bμ ρ σ

ν ν μ μ ν σ ρ νω ⎡ ⎤= ∂ − ∂ + ∂ − ↔ ,⎣ ⎦    (67) 

 
while abσ  is proportional to the commutator of γ -matrices in Minkowski spacetime, i.e.  
 

[ ]1
4ab a bσ γ γ≡ , .         (68) 

 
To investigate the possible supersymmetry possessed by the above action functional, the authors of 
Ref. [64] considered the transformation laws  
 

1( ) ( )x D xμ μδψ κ ε−= ,         (69) 
 

( ) i ( ) ( )a ae x x xμ μδ κε γ ψ= ,        (70) 
 

( ) i ( ) ( ) ( )g x x x xμν μ ν ν μδ κε γ ψ γ ψ⎡ ⎤= + ,⎣ ⎦      (71) 
 
where the supersymmetry parameter is taken to be an arbitrary Majorana spinor field ( )xε  of 
dimension square root of length. The assumption of local supersymmetry was non-trivial, and was 
made necessary by the coordinate-invariant Lagrangian (i.e. at that stage one had to avoid, for 
consistency, the coordinate-dependent notion of constant, space-time-independent spinor). After a 
lengthy calculation the authors of Ref. [64] managed to prove full gauge invariance of the 
supergravity action. With geometrical hindsight, one can prove it in a quicker and more elegant way 
by looking at a formulation of supergravity as a Yang–Mills Theory [149].  
 
4.6. New Unification 
 
In modern high energy physics, the emphasis is no longer on fields (sections of vector bundles in 
classical field theory [156], operator-valued distributions in quantum field theory [161]), but rather 
on extended objects such as strings [28]. In string theory, particles are not described as points, but 
instead as strings, i.e., 1-dimensional extended objects. While a point particle sweeps out a 1-
dimensional worldline, the string sweeps out a worldsheet, i.e., a 2-dimensional real surface. For a 
free string, the topology of the worldsheet is a cylinder in the case of a closed string, or a sheet for 
an open string. It is assumed that different elementary particles correspond to different vibration 
modes of the string, in much the same way as different minimal notes correspond to different 
vibrational modes of musical string instruments [28]. The five different string theories [4] are 
different aspects of a more fundamental unified theory, called M -theory [13].  
 
In the latest developments, one deals with ‘branes’, which are classical solutions of the equations of 
motion of the low-energy string effective action, that correspond to new non-perturbative states of 
string theory, break half of the supersymmetry, and are required by duality arguments in theories 
with open strings. They have the peculiar property that open strings have their end-points attached 
to them [45,46]. Branes have made it possible not only to arrive at the formulation of M  theory, 
but also to study perturbative and non-perturbative properties of the gauge theories living on the 
world-volume [47]. The so-called Dirichlet branes [124], or Dp branes, admit indeed two distinct 
descriptions. On the one hand, they are classical solutions of the low-energy string effective action 
(as we said before) and may be therefore described in terms of closed strings. On the other hand, 
their dynamics is determined by the degrees of freedom of the open strings with endpoints attached 
to their world-volume, satisfying Dirichlet boundary conditions along the directions transverse to 



the branes. They may be thus described in terms of open strings as well. Such a twofold description 
of Dp branes laid the foundations of the Maldacena conjecture [112] providing the equivalence 
between a closed string theory, as the IIB theory on 5-dimensional anti-de Sitter space times the 5-
sphere, and 4N =  super Yang–Mills with degrees of freedom corresponding to the massless 
excitations of the open strings having their endpoints attached to a 3D  brane.  
 
For the impact of braneworld picture on phenomenology and unification, we refer the reader to the 
seminal work in Refs. [126,127], while for the role of extra dimensions in cosmology we should 
mention also the work in Refs. [137,138]. With the language of pseudo-Riemannian geometry, 
branes are timelike surfaces embedded into bulk spacetime [11, 10]. According to this picture, 
gravity lives on the bulk, while standard-model gauge fields are confined on the brane [12]. For 
branes, the normal vector N  is spacelike with respect to the bulk metric ABG , i.e.,  
 

0A B C
AB CG N N N N= > .        (72) 

 
For a wide class of brane models, the action functional S  pertaining to the combined effect of bulk 
and brane geometry can be taken to split into the sum [10] ( ( )g xαβ  being the brane metric)  
 

4 5[ ( )] [ ( )]ABS S g x S G Xαβ= + ,        (73) 
 
while the effective action [38] Γ  is formally given by  
 

i ie ( ) e gauge fixing termS
ABDG XΓ = × − .∫      (74) 

 
In the functional integral, the gauge-fixed action reads as (here there is summation as well as 
integration over repeated indices [31, 38, 10])  
 

g f 4 5
1 1
2 2

A B
ABS S S F F μ ν

μνχ ω χ. . = + + Ω + ,      (75) 

 
where AF  and μχ  are bulk and brane gauge-fixing functionals, respectively, while ABΩ  and μνω  
are non-singular matrices of gauge parameters, similarly to the end of Section 4.2. The gauge-
invariance properties of bulk and brane action functionals can be expressed by saying that there 
exist vector fields on the space of histories such that (cf. Eq. (52))  
 

5 40 0BR S R Sν= , = ,         (76) 
 
whose Lie brackets obey a relation formally analogous to Eq. (53) for ordinary type-I theories, i.e.  
 
[ ] A

B D BD AR R C R, = ,         (77) 
 
[ ]R R C Rλ

μ ν μν λ, = .         (78) 
 
Equations (77) and (78) refer to the sharply different Lie algebras of diffeomorphisms on the bulk 
and the brane, respectively. The bulk and brane ghost operators are therefore  
 

A A A a
B B a BQ R F F R,≡ = ,         (79) 

 



i
iJ R Rμ μ μ

ν ν νχ χ ,≡ = ,         (80) 
 
respectively, where the commas denote functional differentiation with respect to the field variables. 
The full bulk integration means integrating first with respect to all bulk metrics ABG  inducing on the 
boundary M∂  the given brane metric ( )g xαβ , and then integrating with respect to all brane metrics. 
Thus, one first evaluates the cosmological wave function [10] of the bulk spacetime (which 
generalizes the wave function of the universe encountered in canonical quantum gravity), i.e.  
 

( ) i 5
Bulk [ ]

eD S
AB CG M gAB

G S T
αβ

ψ μ
∂ =

= , , ,∫      (81) 

 
where μ  is taken to be a suitable measure, the D

CS T,  are ghost fields, and  
 

5 5
1[ ]
2

A B A B
AB AB A BS S G F F S Q T≡ + Ω + .      (82) 

 
Eventually, the effective action results from  
 

( ) ii 4
Bulke e Sg δ

αβ γμ ρ σ ψΓ = , , ,∫       (83) 

 
where μ  is another putative measure, γρ  and δσ  are brane ghost fields, and  
 

4 4
1
2

S S Jμ ν μ ν
μν μ νχ ω χ ρ σ≡ + + .       (84) 

 
We would like to stress here that infinite-dimensional manifolds are the natural arena for studying 
the quantization of the gravitational field, even prior to considering a space-of-histories formulation. 
There are, indeed, at least three sources of infinite-dimensionality in quantum gravity:  
 
(i) The infinite-dimensional Lie group (or pseudo-group) of spacetime diffeomorphisms, which is 

the invariance group of general relativity in the first place [31], [143].  
(ii) The infinite-dimensional space of histories in a functional-integral quantization [38, 39].  
(iii) The infinite-dimensional Geroch space of asymptotically simple spacetimes [67].  
 
5. Functional Integrals and Background Fields 
 
We now study in greater detail some aspects of the use of functional integrals in quantum gravity, 
after the previous (formal) applications to a space of histories formulation.  
 
5.1. The 1-Loop Approximation 
 
In the 1-loop approximation (also called stationary phase or JWKB method) one first expands both 
the metric g  and the fields φ  coupled to it about a metric 0g  and a field 0φ  which are solutions of 
the classical field equations:  
 

0g g g= + ,          (85) 
 

0φ φ φ= + .          (86) 



 
One then assumes that the fluctuations g  and φ  are so small that the dominant contribution to the 
functional integral for the in-out amplitude comes from the quadratic order in the Taylor-series 
expansion of the action about the background fields 0g  and 0φ  [90]:  
 

0 0 2[ ] [ ] [ ] higher order termsE EI g I g I gφ φ φ, = , + , + − ,    (87) 
 
so that the logarithm of the quantum-gravity amplitude A  can be expressed as  
 

[ ]2
0 0log( ) ~ [ ] log [ ]e I g

EA I g D g φφ φ − ,− , + , .∫      (88) 
 
It should be stressed that background fields need not be a solution of any field equation [36], but 
this possibility will not be exploited in our presentation. For our purposes we are interested in the 
second term appearing on the right-hand side of (88). An useful factorization is obtained if 0φ  can 

be set to zero. One then finds that 2 2 2[ ] [ ] [ ]I g I g Iφ φ, = + , which implies [91]  
 

[ ] [ ]2 2
0log( ) ~ [ ] log [ ]e log [ ]eI I g

EA I g D D gφφ − −− + + .∫    (89) 
 
The 1-loop term for matter fields with various spins (and boundary conditions) is extensively 
studied in the literature. We here recall some basic results, following again Ref. [91].  
 
A familiar form of 2[ ]I φ  is  
 

4
2 0

1[ ]
2

I g d xφ φ φ= ,∫ B        (90) 

 
where the elliptic differential operator B  depends on the background metric 0g . Note that B  is a 
second-order operator for bosonic fields, whereas it is first-order for fermionic fields. In light of 
(90) it is clear that we are interested in the eigenvalues { }nλ  of B , with corresponding 
eigenfunctions { }nφ . If boundaries are absent, it is sometimes possible to know explicitly the 
eigenvalues with their degeneracies. This is what happens for example in de Sitter space. If 
boundaries are present, however, very little is known about the detailed form of the eigenvalues, 
once boundary conditions have been imposed.  
 
We here assume for simplicity to deal with bosonic fields subject to (homogeneous) Dirichlet 
conditions on the boundary surface: 0φ =  on M∂ , and 0nφ =  on M∂ , n∀ . It is in fact well-known 
that the Laplace operator subject to Dirichlet conditions has a positive-definite spectrum [23]. The 
field φ  can then be expanded in terms of the eigenfunctions nφ  of B  as  
 

0

n n
n n

yφ φ
∞

=

= ,∑          (91) 

 
where the eigenfunctions nφ  are normalized so that  
 

4
0 .n m nmg d xφ φ δ=∫         (92) 



 
Another formula we need is the one expressing the measure on the space of all fields φ  as  
 

0

[ ] n
n n

D dyφ μ
∞

=

= ,∏         (93) 

 
where the normalization parameter μ  has dimensions of mass or (length) 1− . Note that, if gauge 
fields appear in the calculation, the choice of gauge-fixing and the form of the measure in the 
functional integral are not a trivial problem.  
 
On using well-known results about Gaussian integrals, the 1-loop amplitudes (1)

Aφ  can be now 
obtained as  
 

2 1(1) [ ] 2 12 2 2
1 21

0 0 2

1[ ]e e (2 )
det( )

n ynI
n n

n n n n
D dyA

λ
φ

φ φ μ πμ λ
π μ

∞ ∞−− −
− −

= =

≡ = = = .∫∏ ∏∫
B

(94) 

 
When fermionic fields appear in the functional integral for the in-out amplitude, one deals with a 
first-order elliptic operator, the Dirac operator, acting on independent spinor fields ψ  and ψ . These 
are anticommuting Grassmann variables obeying the Berezin integration rules  
 

0 1.dw w dw= , =∫ ∫         (95) 
 
The formulae (95) are all what we need, since powers of w  greater than or equal to 2  vanish in 
light of the anticommuting property. The reader can then check that the 1-loop amplitude for 
fermionic fields is  
 

(1) 21det
2Aψ μ−⎛ ⎞= .⎜ ⎟

⎝ ⎠
B         (96) 

 
The main difference with respect to bosonic fields is the direct proportionality to the determinant. 
The following comments can be useful in understanding the meaning of (96).  
 
Let us denote again by μγ  the curved-space γ -matrices, and by iλ  the eigenvalues of the Dirac 
operator Dμ

μγ , and suppose that no zero-modes exist. More precisely, the eigenvalues of Dμ
μγ  

occur in equal and opposite pairs: 1 2λ λ± ,± , ..., whereas the eigenvalues of the Laplace operator on 
spinors occur as 2

1( )λ  twice, 2
2( )λ  twice, and so on. For Dirac fermions (D) one thus finds  

 

( ) 2

1 1 1
det D i i i

i i i
Dμ
μγ λ λ λ

∞ ∞ ∞

= = =

⎛ ⎞⎛ ⎞
= = ,⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∏ ∏ ∏     (97) 

 
whereas in the case of Majorana spinors (M), for which the number of degrees of freedom is halved, 
one finds  
 

1
( ) ( )det detM Di

i
D Dμ μ
μ μγ λ γ

∞

=

= = .∏      (98) 



 
5.2. Zeta-Function Regularization of Functional Integrals 
 
The formal expression (94) for the 1-loop quantum amplitude clearly diverges since the eigenvalues 

nλ  increase without bound, and a regularization is thus necessary. For this purpose, the following 
technique has been described and applied by many authors [48,89,91].  
Bearing in mind that Riemann’s zeta-function ( )R sζ  is defined as  
 

1
( ) s

R
n

s nζ
∞

−

=

≡ ,∑         (99) 

 
one first defines a generalized (also called spectral) zeta-function ( )sζ  obtained from the (positive) 
eigenvalues of the second-order, self-adjoint operator B . Such a ( )sζ  can be defined as (cf. [141])  
 

0 0

( ) ( ) s
m n m

n n m m

s d nζ λ
∞ ∞

−
,

= =

≡ .∑ ∑        (100) 

 
This means that all the eigenvalues are completely characterized by two integer labels n  and m , 
while their degeneracy md  only depends on n . Note that formal differentiation of (100) at the 
origin yields  
 

(0)det( ) e ζ ′−= .B         (101) 
 
This result can be given a sensible meaning since, in four dimensions, ( )sζ  converges for 

( ) 2Re s > , and one can perform its analytic extension to a meromorphic function of s  which only 
has poles at 31

2 21 2s = , , , . Since (0)det( ) det( )ζμ μ=B B , one finds the useful formula  
 

( ) 21 1log (0) log(2 ) (0)
2 2

Aφ ζ πμ ζ′= + .      (102) 

 
As we said following (90), it may happen quite often that the eigenvalues appearing in (100) are 
unknown, since the eigenvalue condition, i.e. the equation leading to the eigenvalues by virtue of 
the boundary conditions, is a complicated equation which cannot be solved exactly for the 
eigenvalues. However, since the scaling properties of the 1-loop amplitude are still given by (0)ζ  
(and (0)ζ ′ ) as shown in (102), efforts have been made to compute (0)ζ  also in this case. The 
various steps of this program are as follows [89].  
 
(1) One first studies the heat equation for the operator B , i.e.  
 

( ) ( ) 0F x y F x yτ τ
τ
∂

, , + , , = ,
∂

B       (103) 

 
where the Green’s function F  satisfies the initial condition ( 0) ( )F x y x yδ, , = , .  
 
(2) Assuming completeness of the set { }nφ  of eigenfunctions of B , the field φ  can be expanded as  
 



i

n n
n n

aφ φ
∞

=

= .∑  

 
(3) The Green’s function ( )F x y τ, ,  is then given by  
 

0 0

( ) e ( ) ( )n m
n m n m

n n m m

F x y x yλ ττ φ φ,
∞ ∞

−
, ,

= =

, , = ⊗ .∑ ∑      (104) 

 
(4) The corresponding integrated heat kernel is then  
 

0 0

4( ) Tr ( ) e n m

M
n n m m

G F x x g d x λ ττ τ ,
∞ ∞

−

= =

= , , = .∑ ∑∫     (105) 

 
(5) In light of (100) and (105), the generalized zeta-function can be also obtained as an integral 

transform (also called inverse Mellin transform) of the integrated heat kernel, i.e. [89,71]  
 

1

0

1( ) ( )
( )

ss G d
s

ζ τ τ τ
∞ −= .

Γ ∫        (106) 

 
(6) The hard part of the analysis is now to prove that ( )G τ  has an asymptotic expansion as 0τ +→  

[76]. This property has been proved for all boundary conditions such that the Laplace operator 
is self-adjoint and the boundary-value problem is strongly elliptic [71,8]. The corresponding 
asymptotic expansion of ( )G τ  can be written as  

 

( )
3 1

2 12 2
0 1 1 3 2

2 2
( ) ~ OG A A A A Aτ τ τ τ τ τ

− −− −+ + + + + ,    (107) 

 
which implies  

 
2(0) Aζ = .          (108) 

 
The result (108) is proved by splitting the integral in (106) into an integral from 0  to 1 and an 

integral from 1 to ∞ . The asymptotic expansion of 
1 1

0
( )s G dτ τ τ−∫  is then obtained by using (107).  

 
In other words, for a given second-order self-adjoint elliptic operator, we study the corresponding 
heat equation, and the integrated heat kernel ( )G τ . The (0)ζ  value is then given by the constant 
term appearing in the asymptotic expansion of ( )G τ  as 0τ +→ . The (0)ζ  value also yields the 1-
loop divergences of the theory for bosonic and fermionic fields [55].  
 
5.3. Gravitational Instantons 
 
This section is devoted to the study of the background gravitational fields. These gravitational 
instantons are complete 4-geometries solving the Einstein equations ( ) ( ) 0R X Y g X Y, − Λ , =  when 
the 4-metric g  has signature 4+  (i.e. it is positive-definite, and thus called Riemannian). They are 
of interest because they occur in the tree-level approximation of the partition function, and in light 
of their role in studying tunnelling phenomena. Moreover, they can be interpreted as the stationary 
phase metrics in the path integrals for the partition functions, Z , of the thermal canonical ensemble 



and the volume canonical ensemble. In these cases the action of the instanton gives the dominant 
contribution to log Z− . Following [125], essentially three cases can be studied.  
 
5.3.1. Asymptotically Locally Euclidean Instantons 
 
Even though it might seem natural to define first the asymptotically Euclidean instantons, it turns 
out that there is not much choice in this case, since the only asymptotically Euclidean instanton is 
flat space. It is in fact well-known that the action of an asymptotically Euclidean metric with 
vanishing scalar curvature is 0≥ , and it vanishes if and only if the metric is flat. Suppose now that 
such a metric is a solution of the Einstein equations ( ) 0R X Y, = . Its action should be thus 
stationary also under constant conformal rescalings 2g k g→  of the metric. However, the whole 
action rescales then as 2

E EI k I→ , so that it can only be stationary and finite if 0EI = . By virtue of 
the theorem previously mentioned, the metric g  must then be flat [70,108].  
 
In the asymptotically locally Euclidean case, however, the boundary at infinity has topology 3S /Γ  
rather than 3S , where Γ  is a discrete subgroup of the group (4)SO . Many examples can then be 
found. The simplest was discovered by Eguchi and Hanson [49,50], and corresponds to 2ZΓ =  and 

3M RP∂ = . This instanton is conveniently described using three left-invariant 1-forms { }iω  on the 
3-sphere, satisfying the (2)SU  algebra 1

2
jk

i i j kdω ε ω ω= − ∧ , and parametrized by Euler angles as 
follows:  
 

1 (cos ) (sin )(sin )d dω ψ θ ψ θ φ= + ,       (109) 
 

2 (sin ) (cos )(sin )d dω ψ θ ψ θ φ= − + ,       (110) 
 

3 (cos )d dω ψ θ φ= + ,         (111) 
 
where [0 ]θ π∈ , , [0 2 ]φ π∈ , . The metric of the Eguchi–Hanson instanton may be thus written in the 
Bianchi-IX form [125]  
 

14 2 4
2 2 2

1 1 2 34 41 ( ) ( ) 1 ( )
4

a r ag dr dr
r r

ω ω ω
− ⎡ ⎤

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎛ ⎞ ⎛ ⎞
= − ⊗ + + + − ,⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

   (112) 

 
where [ [r a∈ ,∞ . The singularity of 1g  at r a=  is only a coordinate singularity. We may get rid of 

it by defining 
2 4

2 44 1 a
a r
ρ ≡ − , so that, as r a→ , the metric 1g  is approximated by the metric  

 

[ ]
2

22 2
2 (cos ) (sin )

4
ag d d d d d d d dρ ρ ρ ψ θ φ θ θ θ φ φ⎡ ⎤= ⊗ + + + ⊗ + ⊗ .⎣ ⎦  (113) 

 
Regularity of 2g  at 0ρ =  is then guaranteed provided that one identifies ψ  with period 2π . This 
implies in turn that the local surfaces constantr =  have topology 3RP  rather than 3S , as we 
claimed. Note that at 0r a ρ= ⇒ =  the metric becomes that of a 2-sphere of radius 2

a . Following 
Ref. [69], we say that r a=  is a bolt, where the action of the Killing vector ψ

∂
∂  has a 2-dimensional 

fixed-point set [125].  
 



A whole family of multi-instanton solutions is obtained by taking the group kZΓ = . They all have a 
self-dual Riemann-curvature tensor, and their metric takes the form  
 

21( )d dxg V V dx dxτ γ− + ⋅= + ⋅ .       (114) 
 
Following [125], ( )V V x=  and ( )xγ γ=  on an auxiliary flat 3-space with metric dx dx⋅ . This 
metric g  solves the Einstein vacuum equations provided that grad curlV γ= , which implies 

0VΔ = . If one takes  
 

1

1n

i i

V
x x=

= ,
−∑         (115) 

 
one obtains the desired asymptotically locally Euclidean multi-instantons. In particular, if 1n =  in 
(115), g  describes flat space, whereas 2n =  leads to the Eguchi–Hanson instanton. If 2n > , there 
are (3 6)n −  arbitrary parameters, related to the freedom to choose the positions ix  of the 
singularities in V . These singularities correspond actually to coordinate singularities in (113), and 
can be removed by using suitable coordinate transformations [125].  
 
5.3.2. Asymptotically Flat Instantons 
 
This name is chosen since the underlying idea is to deal with metrics in the functional integral 
which tend to the flat metric in three directions but are periodic in the Euclidean-time dimension. 
The basic example is provided by the Riemannian version (1)

Rg  (also called Euclidean) of the 
Schwarzschild solution, i.e.  
 

1
(1) 2

21 2 1 2R
M Mg d d dr dr r
r r

τ τ
−

⎛ ⎞ ⎛ ⎞= − ⊗ + − ⊗ + Ω ,⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

   (116) 

 
where 2

2 (sin )d d d dθ θ θ φ φΩ = ⊗ + ⊗  is the metric on a unit 2-sphere. It is indeed well-known 
that, in the Lorentzian case, the metric Lg  is more conveniently written by using Kruskal–Szekeres 
coordinates  
 

23 1 2
232 e ( )

r
M

Lg M r dz dz dy dy r−−= − ⊗ + ⊗ + Ω ,     (117) 
 
where z  and y  obey the relations  
 

22 2 1 e
2

r
M

rz y
M

⎛ ⎞− + = − ,⎜ ⎟
⎝ ⎠

       (118) 

 
2

( ) e
( )

t
M

y z
y z
+

= .
−

         (119) 

 
In the Lorentzian case, the coordinate singularity at 2r M=  can be thus avoided, whereas the 
curvature singularity at 0r =  remains and is described by the surface 2 2 1z y− = . However, if we 
set izζ = , the analytic continuation to the section of the complexified space-time where ζ  is real 
yields the positive-definite (i.e. Riemannian) metric  



 
( )2(2) 3 1 2

232 e
r
M

Rg M r d d dy dy rζ ζ−−= ⊗ + ⊗ + Ω ,     (120) 
 
where  
 

22 2 1 e
2

r
M

ry
M

ζ ⎛ ⎞+ = − .⎜ ⎟
⎝ ⎠

       (121) 

 
It is now clear that also the curvature singularity at 0r =  has disappeared, since the left-hand side 
of (121) is 0≥ , whereas the right-hand side of (121) would be equal to 1−  at 0r = . Note also that, 
by setting iz ζ= −  and it τ= −  in (119), and writing 2 2yζ +  as ( i )( i )y yζ ζ+ −  in (121), one finds  
 

i
4 4i e 1 e

2
r

M M
ry
M

τ

ζ+ = − ,        (122) 

 

4cos 1 e
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r
M

ry
M M
τ⎛ ⎞= − ,⎜ ⎟
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      (123) 

 
which imply that the Euclidean time τ  is periodic with period 8 Mπ . This periodicity on the 
Euclidean section leads to the interpretation of the Riemannian Schwarzschild solution as 
describing a black hole in thermal equilibrium with gravitons at a temperature 1(8 )Mπ −  [125]. 
Moreover, the fact that any matter-field Green’s function on this Schwarzschild background is also 
periodic in imaginary time leads to some of the thermal-emission properties of black holes. This is 
one of the greatest conceptual revolutions in modern gravitational physics.  
 
Interestingly, a new asymptotically flat gravitational instanton has been found by Chen and Teo in 
Ref. [24]. It has an (1) (1)U U×  isometry group and some novel global features with respect to the 
other two asymptotically flat instantons, i.e. Euclidean Schwarzschild and Euclidean Kerr.  
 
There is also a local version of the asymptotically flat boundary condition in which M∂  has the 
topology of a non-trivial 1S -bundle over 2S , i.e. 3S /Γ , where Γ  is a discrete subgroup of (4)SO . 
However, unlike the asymptotically Euclidean boundary condition, the 3S  is distorted and expands 
with increasing radius in only two directions rather than three [125]. The simplest example of an 
asymptotically locally flat instanton is the self-dual (i.e. with self-dual curvature 2-form) Taub-NUT 
solution, which can be regarded as a special case of the 2-parameter Taub-NUT metrics  
 

2 2 2 2 2 2
3 1 2

( ) ( )4 ( ) ( ) ( ) ( )
( ) ( )
r M r Mg dr dr M r M
r M r M

ω ω ω+ − ⎡ ⎤= ⊗ + + − + ,⎣ ⎦− +
 (124) 

 
where the { }iω  have been defined in (109)–(111). The main properties of the metric (124) are  
(I) [ [r M∈ ,∞ , and r M=  is a removable coordinate singularity provided that ψ  is identified 

modulo 4π ;  
(II) the constantr =  surfaces have 3S  topology;  
(III) r M=  is a point at which the isometry generated by the Killing vector ψ

∂
∂  has a zero-

dimensional fixed-point set.  
In other words, r M=  is a nut, using the terminology in Ref. [69].  
 



There is also a family of asymptotically locally flat multi-Taub-NUT instantons. Their metric takes 
the form (114), but one should bear in mind that the formula (115) is replaced by  
 

1

21
n

i i

MV
x x=

= + .
−∑         (125) 

 
Again, the singularities at ix x=  can be removed, and the instantons are all self-dual.  
 
5.3.3. Compact Instantons 
 
Compact gravitational instantons occur in the course of studying the topological structure of the 
gravitational vacuum. This can be done by first of all normalizing all metrics in the functional 
integral to have a given 4-volume V , and then evaluating the instanton contributions to the partition 
function as a function of their topological complexity. One then sends the volume V  to infinity at 
the end of the calculation. If one wants to constrain the metrics in the functional integral to have a 
volume V , this can be obtained by adding a term 8 Vπ

Λ  to the action. The stationary points of the 
modified action are solutions of the Einstein equations with cosmological constant Λ , i.e. 

( ) ( ) 0R X Y g X Y, − Λ , = .  
 
The few compact instantons that are known can be described as follows [125].  
 
(1) The 4-sphere 4S , i.e. the Riemannian version of de Sitter space obtained by analytic 

continuation to positive-definite metrics. Setting to 3  for convenience the cosmological 
constant, the metric on 4S  takes the form [125]  

 
2 2 2 2

1 2 3
1 (sin ) [( ) ( ) ( ) ]
4Ig d dβ β β ω ω ω= ⊗ + + + ,     (126) 

 
where [0 ]β π∈ , . The apparent singularities at 0β π= ,  can be made into regular nuts, 
provided that the Euler angle ψ  is identified modulo 4π . The constantβ =  surfaces are 
topologically 3S , and the isometry group of the metric (126) is (5)SO .  

(2) If in 3C  we identify 1 2 3( )z z z, ,  and 1 2 3( )z z zλ λ λ, , , {0}Cλ∀ ∈ − , we obtain, by definition, the 
complex projective space 2CP . For this 2-dimensional complex space one can find a real 4-
dimensional metric, which solves the Einstein equations with cosmological constant Λ . If we 
set Λ  to 6  for convenience, the metric of 2CP  takes the form [125]  

 
2 2 2 2 2

1 2 3
1 (sin ) [( ) ( ) (cos ) ( ) ]
4IIg d dβ β β ω ω β ω= ⊗ + + + ,    (127) 

 
where 2[0 ]πβ ∈ , . A bolt exists at 2

πβ = , where ψ
∂
∂  has a 2-dimensional fixed-point set. The 

isometry group of IIg  is locally (3)SU , which has a (2)U  subgroup acting on the 3-spheres 
constantβ = .  

(3) The Einstein metric on the product manifold 2 2S S×  is obtained as the direct sum of the metrics 
on two 2-spheres, i.e.  

 
2

2

1

1 ( (sin ) )i i i i i
i

g d d d dθ θ θ φ φ
=

= ⊗ + ⊗ .
Λ∑      (128) 



 
The metric (128) is invariant under the (3) (3)SO SO×  isometry group of 2 2S S× , but is not of 
Bianchi-IX type as (126)-(127). This can be achieved by a coordinate transformation leading to 
[125]  
 

2 2 2 2 2
1 2 3(cos ) ( ) (sin ) ( ) ( )IIIg d dβ β β ω β ω ω= ⊗ + + + ,    (129) 

 
where 2Λ =  and 2[0 ]πβ ∈ , . Regularity at 20 πβ = ,  is obtained provided that ψ  is identified 
modulo 2π  (cf. (126)). Remarkably, this is a regular Bianchi-IX Einstein metric in which the 
coefficients of 1 2ω ω,  and 3ω  are all different.  

(4) The nontrivial 2S -bundle over 2S  has a metric which, by setting 3Λ = , may be cast in the form 
[118,125]  

 
2 2 2 2

1 2 1 2 3 3(1 )[ ( ) ( )(( ) ( ) ) ( )( ) ]IVg f x dx dx f x f xν ω ω ω= + ⊗ + + + ,   (130) 
 
where [0 1]x∈ , , ν  is the positive root of  
 

4 3 24 6 12 3 0w w w w+ − + − = ,        (131) 
 
and the functions 1 2 3f f f, ,  are defined by  
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       (133) 
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3 2 2 2

(3 (1 ) )(1 )( )
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x xf x
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ν ν ν
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≡ .

− −
     (134) 

 
The isometry group corresponding to (130) may be shown to be (2)U .  

(5) Another compact instanton of fundamental importance is the 3K  surface, whose explicit metric 
has not yet been found. 3K  is defined as the compact complex surface whose first Betti 
number and first Chern class are vanishing. A physical picture of the K3 gravitational instanton 
has been obtained by Page [119].  

 
Two topological invariants exist which may be used to characterize the various gravitational 
instantons studied so far. These invariants are the Euler number χ  and the Hirzebruch signature τ . 
The Euler number can be defined as an alternating sum of Betti numbers, i.e.  
 

0 1 2 3 4B B B B Bχ ≡ − + − + .        (135) 
 
The Hirzebruch signature can be defined as  
 

2 2B Bτ + −≡ − ,          (136) 
 
where 2B+  is the number of self-dual harmonic 2-forms, and 2B−  is the number of anti-self-dual 



harmonic 2-forms [in terms of the Hodge-star operator 1
2

cd
ab abcdF Fε∗ ≡ , self-duality of a 2-form F  

is expressed as F F∗ = , and anti-self-duality as F F∗ = − ]. In the case of compact 4-dimensional 
manifolds without boundary, χ  and τ  can be expressed as integrals of the curvature [91]  
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1
128 M

R R g d xλμαβ νργδ
λμνρ αβγδχ ε ε

π
= ,∫     (137) 

 
4

2

1
96 M

R R g d xλμ νραβ
λμνρ αβτ ε

π
= .∫      (138) 

 
For the instantons previously listed one finds [125]  
 
Eguchi–Hanson: 2χ = , 1τ = .  
Asymptotically locally Euclidean multi-instantons: nχ = , 1nτ = − .  
 
Schwarzschild: 2χ = , 0τ = .  
Taub-NUT: 1χ = , 0τ = .  
Asymptotically locally flat multi-Taub-NUT instantons: nχ = , 1nτ = − .  

4S : 2χ = , 0τ = .  
2CP : 3χ = , 1τ = .  

2 2S S× : 4χ = , 0τ = .  
2S -bundle over 2S : 4χ = , 0τ = .  
3K : 24χ = , 16τ = .  

 
6. Spectral Zeta-Functions in 1-loop Quantum Cosmology 
 
In the late nineties a systematic investigation of boundary conditions in quantum field theory and 
quantum gravity has been performed (see Refs. [111, 150, 55, 117, 8] and the many references 
therein). It is now clear that the set of fully gauge-invariant boundary conditions in quantum field 
theory, providing a unified scheme for Maxwell, Yang–Mills and General Relativity is as follows:  
 
[ ] 0Mπ ∂ = ,A          (139) 
 
[ ( )] 0M∂Φ = ,A         (140) 
 
[ ] 0Mϕ ∂ = ,          (141) 
 
where π  is a projection operator, A  is the Maxwell potential, or the Yang–Mills potential, or the 
metric (more precisely, their perturbation about a background value which can be set to zero for 
Maxwell or Yang–Mills), Φ  is the gauge-fixing functional, ϕ  denotes the set of ghost fields for 
these bosonic theories. Equations (139) and (140) are both preserved under infinitesimal gauge 
transformations provided that the ghost obeys homogeneous Dirichlet conditions as in Eq. (141). 
For gravity, it may be convenient to choose Φ  so as to have an operator P  of Laplace type in the 
Euclidean theory.  
 
6.1. Eigenvalue Condition for Scalar Modes 
 
In a quantum theory of the early universe via functional integrals, the semiclassical analysis remains 



a valuable tool, but the tree-level approximation might be an oversimplification. Thus, it seems 
appropriate to consider at least the 1-loop approximation. On the portion of flat Euclidean 4-space 
bounded by a 3-sphere, called Euclidean 4-ball and relevant for 1-loop quantum cosmology [78, 92, 
55] when a portion of 4-sphere bounded by a 3-sphere is studied in the limit of small 3-geometry 
[140], the metric perturbations hμν  can be expanded in terms of scalar, transverse vector, 

transverse-traceless tensor harmonics on the 3-sphere 3S  of radius a . For vector, tensor and ghost 
modes, boundary conditions reduce to Dirichlet or Robin. For scalar modes, one finds eventually 
the eigenvalues 2E X=  from the roots X  of [58, 59]  
 

( ) ( ) 0n n
nJ x J x
x

′ ± = ,         (142) 

 

( ) ( ) 0
2n n
x nJ x J x

x
⎛ ⎞′ + − ± = ,⎜ ⎟
⎝ ⎠

       (143) 

 
where nJ  are the Bessel functions of first kind. Note that both x  and x−  solve the same equation.  
 
6.2. Four Spectral Zeta-Functions for Scalar Modes 
 
By virtue of the Cauchy theorem and of suitable rotations of integration contours in the complex 
plane [19], the eigenvalue conditions (142) and (143) give rise to the following four spectral zeta-
functions [58,59]:  
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F znss n dz
z
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π
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≡ ,∑ ∫     (144) 

 
where, denoting by nI  the modified Bessel functions of first kind (here 2n nβ β+ −≡ , ≡ + ),  
 

( ) ( ( ) ( ))A n nF zn z znI zn nI znβ−± ± ′≡ ± ,       (145) 
 

2 2
( ) ( ) ( )

2B n n
z nF zn z znI zn n I znβ−± ±

⎛ ⎞⎛ ⎞
′≡ + ± .⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

    (146) 

 
Regularity at the origin is easily proved in the elliptic sectors, corresponding to ( )A sζ ±  and ( )B sζ −  
[58,59].  
 
6.3. Regularity at the Origin Of Bζ

+  
 
With the notation in Refs. [58,59], if one defines the variable 

1
22(1 )zτ −≡ + , one can write the 

uniform asymptotic expansion of BF +  in the form [58,59]  
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On splitting the integral 
1 1

0 0
d d d

μ

μ
τ τ τ= +∫ ∫ ∫  with μ  small, one gets an asymptotic expansion of 



the left-hand side of Eq. (144) by writing, in the first interval on the right-hand side,  
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and then computing [58,59]  
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Remarkably, by virtue of the identity obeyed by the spectral coefficients ( )j

aK  on the 4-ball, i.e.  
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( )( 1)( ) 0

( 1)

j
j

a
a j

ag j K
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Γ +
≡ = ,

Γ − +∑       (150) 

 
which holds 1j∀ = ,...,∞ , one finds [58,59]  
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and [58,59]  
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where, on denoting here by ψ  the logarithmic derivative of the Γ -function [58,59],  
 

21 ( 1) (6 9 1) ( 2)( ) log(2) 2 ( 1) ( 2) (4)
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          (153) 
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Equation (150) achieves three goals:  
(i) Vanishing of log(2)  coefficient in (152);  

(ii) Vanishing of 
1

( ) ( )
j

f j g j∞

=∑  in (152);  

(iii) Regularity at the origin of Bζ
+ .  

 
6.4. Interpretation of the Result 
 
Since all other (0)ζ  values for pure gravity obtained in the literature are negative, the analysis here 
briefly outlined shows that only fully diffeomorphism-invariant boundary conditions lead to a 
positive (0)ζ  value for pure gravity on the 4-ball, and hence only fully diffeomorphism-invariant 
boundary conditions lead to a vanishing cosmological wave function for vanishing 3-geometries at 



1-loop level, at least on the Euclidean 4-ball. If the probabilistic interpretation is tenable for the 
whole universe, this means that the universe has vanishing probability of reaching the initial 
singularity at 0a = , which is therefore avoided by virtue of quantum effects [58,59], since the 1-
loop wave function is proportional to (0)aζ  [140].  
 
Interestingly, quantum cosmology can have observational consequences as well. For example, the 
work in Ref. [104] has derived the primordial power spectrum of density fluctuations in the 
framework of quantum cosmology, by performing a Born–Oppenheimer approximation of the 
Wheeler–DeWitt equation for an inflationary universe with a scalar field. In this way one first 
recovers the scale-invariant power spectrum that is found as an approximation in the simplest 
inflationary models. One then obtains quantum gravitational corrections to this spectrum, discussing 
whether they lead to measurable signatures in the Cosmic Microwave Background anisotropy 
spectrum [104].  
 
7. Hawking’s Radiation 
 
Hawking’s theoretical discovery of particle creation by black holes [87,88] has led, along the years, 
to many important developments in quantum field theory in curved spacetime, quantum gravity and 
string theory. Thus, we devote this section to a brief review of such an effect, relying upon the 
DAMTP lecture notes by Townsend [147]. For this purpose, we consider a massless scalar field Φ  
in a Schwarzschild black hole spacetime. The positive-frequency outgoing modes of Φ  are known 
to behave, near future null infinity +F , as  
 

i~e uω
ω

−Φ .          (155) 
 
According to a geometric optics approximation, a particle’s worldline is a null ray γ  of constant 
phase u , and we trace this ray backwards in time from +F . The later it reaches +F , the closer it 
must approach the future event horizon +H  in the exterior spacetime before entering the star. The 
ray γ  belongs to a family of rays whose limit as t →∞  is a null geodesic generator, denoted by 

Hγ , of +H . One can specify γ  by giving its affine distance from Hγ  along an ingoing null 
geodesic passing through +H . The affine parameter on this ingoing null geodesic is U , so U ε= − . 
One can thus write, on γ  near +H  (κ  being the surface gravity),  
 

1 logu ε
κ

= − ,          (156) 

 
so that positive-frequency outgoing modes have, near +H , the approximate form  
 

i log
~e

ω ε
κ

ωΦ .          (157) 
 
This describes increasingly rapid oscillations as 0ε → , and hence the geometric optics 
approximation is indeed justified at late times.  
 
The positive-frequency outgoing modes should be matched onto a solution of the Klein–Gordon 
equation near past null infinity −F . When geometric optics holds, one performs parallel transport 
of the vectors n  parallel to −F  and l  orthogonal to n  back to −F  along the continuation of Hγ . 
Such a continuation can be taken to meet −F  at 0v = . The continuation of the null ray γ  back to 

−F  meets −F  at an affine distance ε  along an outgoing null geodesic on −F . The affine 



parameter on outgoing null geodesics in −F  is v , because the line element takes on −F  the form  
 

2 2 2ds du dv r d= + Ω ,         (158) 
 

2dΩ  being the line element on a unit 2-sphere, so that v ε= −  and  
 

i log( )
~e

vω
κ

ω
−

Φ .          (159) 
 
This holds for negative values of v . When v  is instead positive, an ingoing null ray from −F  
passes through +H  and does not reach +F , hence the positive-frequency outgoing modes depend 
on v  on −F , where  
 

i log( )( ) 0 if 0 e if 0vv v v
ω
κ

ω
−Φ = > , < .       (160) 

 
Consider now the Fourier transform  

i0 i log( )ie ( ) e
v vv v dv dv

ωωω κ
ωω

′∞ + −′

−∞ −∞
≡ Φ = .Φ ∫ ∫      (161) 

 
In this integral, let us choose the branch cut in the complex v -plane to lie along the real axis. For 
positive ω′  let us rotate contour to the positive imaginary axis and then set iv x=  to get  
 

i 2i ilog( e ) log( )2
0 0

( ) i e e e
x x x x

dx dx
πω πω ωω ωκ κ κ

ω ω
− /′ ′∞ ∞− + − +

′ = − = − .Φ ∫ ∫    (162) 

 
Since ω′  is positive the integral converges. When ω′  is negative one can rotate the contour to the 
negative imaginary axis and then set iv x= −  to get  
 

i 2i ilog( e ) log( )2
0 0

( ) i e e e
x x x x

dx dx
πω πω ωω ωκ κ κ

ω ω
− /′ ′∞ ∞− + − +

′ = − = − .Φ ∫ ∫    (163) 

 
From the two previous formulae one gets  
 

( ) e ( ) if 0
πω
κ

ω ωω ω ω
−

′ ′ ′− = − > .Φ Φ       (164) 
 
Thus, a mode of positive frequency ω  on +F  matches, at late times, onto positive and negative 
modes on −F . For positive ω′  one can identify  
 

( )Aωω ω ω′ ′= ,Φ         (165) 
 

( ) e ( )B
πω
κ

ωω ω ωω ω
−

′ ′ ′= − = − ,Φ Φ       (166) 
 
as the Bogoliubov coefficients. These formulae imply that  
 

eij ijB A
πω
κ−= − .          (167) 

 
On the other hand, the matrices A  and B  should satisfy the Bogoliubov relations, from which  



 
( )

† †( ) ( ) [e 1]
i j

ij ij il jl il jl il jl
l l

AA BB A A B B B B
π ω ω

κδ
+

∗ ∗ ∗= − = − = − ,∑ ∑   (168) 

 
where we have inserted the formula relating ijB  to ijA . Now one can take i j=  to get  
 

2
† 1( )

e 1
iiiBB πω

κ

= .
−

        (169) 

 
Eventually, one needs the inverse Bogoliubov coefficients corresponding to a positive-frequency 
mode on −F  matching onto positive- and negative-frequency modes on +F . Since the inverse B  
coefficient is found to be  
 

TB B′ = − ,          (170) 
 
the late-time particle flux through +F , given a vacuum on −F , turns out to be  
 

†(( ) ) ( ) ( )T T
i ii ii iiN B B B B BB∗ ∗

+ ′ ′= = =
F

     (171) 
 
From reality of ( )T

iiBB , the previous formulae lead to  
 

2
1

e 1
i i

N πω
κ

+ =
−

F
        (172) 

 
Remarkably, this is the Planck distribution for black body radiation from a Schwarzschild black 
hole at the Hawking temperature  
 

2HT κ
π

= .          (173) 

 
8. Achievements and Open Problems 
 
At this stage, the general reader might well be wondering what has been gained by working on the 
quantum gravity problem over so many decades. Indeed, at the theoretical level, at least the 
following achievements can be brought to his (or her) attention:  
(i) The ghost fields [63] necessary for the functional-integral quantization of gravity and Yang–

Mills theories [33, 61] have been discovered, jointly with a deep perspective on the space of 
histories formulation.  

 
(ii) The Vilkovisky–DeWitt gauge-invariant effective action [151, 38] has been obtained and 

thoroughly studied.  
 
(iii) We know that black holes emit a thermal spectrum and have temperature and entropy by virtue 

of semiclassical quantum effects [87, 88, 40]. A full theory of quantum gravity should account 
for this and should tell us whether or not the black holes evaporation process comes to an end 
[153].  

 
(iv) The manifestly covariant theory leads to the detailed calculation of physical quantities such as 



cross-sections for gravitational scattering of identical scalar particles, scattering of gravitons by 
scalar particles, scattering of one graviton by another and gravitational bremsstrahlung [34], but 
no laboratory experiment is in sight for these effects.  

 
(v) The ultimate laboratory for modern high energy physics is the whole universe. We have reasons 

to believe that either we need string and brane theory with all their (extra) ingredients, or we 
have to resort to radically different approaches such as, for example, loop space or twistors, the 
latter two living however in isolation with respect to deep ideas such as supersymmetry and 
supergravity (but we acknowledge that twistor string theory [163] is making encouraging 
progress [113,146]).  

 
Although string theory may provide a finite theory of quantum gravity that unifies all fundamental 
interactions at once, its impact on particle physics phenomenology and laboratory experiments 
remains elusive. Some key issues are therefore in sight:  
 
(i) What is the impact (if any) of Planck-scale physics on cosmological observations [166]?  
(ii) Will general relativity retain its role of fundamental theory, or shall we have to accept that it is 

only the low-energy limit of string or M-theory?  
(iii) Are renormalization-group methods a viable way to do non-perturbative quantum gravity 

[129,18], after the recent discovery of a non-Gaussian ultraviolet fixed point [106,130,107] of 
the renormalization-group flow?  

(iv) Is there truly a singularity avoidance in quantum cosmology [58,59] or string theory 
[97,95,96]?  

 
8.1. Experimental Side 
 
As is well stressed, for example, in Ref. [75], gravity is so weak that it can only produce measurable 
effects in the presence of big masses, and this makes it virtually impossible to detect radiative 
corrections to it. Nevertheless, at least four items can be brought to the attention of the reader within 
the experimental framework.  
(i) Colella et al. [25] have used a neutron interferometer to observe the quantum-mechanical phase 

shift of neutrons caused by their interaction with the Earth’s gravitational field.  
 
(ii) Page and Geilker [120] have considered an experiment that gave results inconsistent with the 

simplest alternative to quantum gravity, i.e. the semiclassical Einstein equation. This evidence 
supports, but does not prove, the hypothesis that a consistent theory of gravity coupled to 
quantized matter should also have the gravitational field quantized [30].  

 
(iii) Balbinot et al. have shown [9] that, in a black hole-like configuration realized in a Bose–

Einstein condensate, a particle creation of the Hawking type does indeed take place and can be 
unambiguously identified via a characteristic pattern in the density-density correlations. This has 
opened the concrete possibility of the experimental verification of this effect.  

 
(iv) Mercati et al. [115], for the study of the Planck-scale modifications [3] of the energy-

momentum dispersion relations, have considered the possible role of experiments involving 
nonrelativistic particles and particularly atoms. They have extended a recent result, establishing 
that measurements of atom-recoil frequency can provide insight that is valuable for some 
theoretical models.  

 
We are already facing unprecedented challenges, where the achievements of spacetime physics and 
quantum field theory are called into question. The years to come will hopefully tell us whether the 
many new mathematical concepts considered in theoretical physics lead really to a better 



understanding of the physical universe and its underlying structures.  
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Glossary 
 
ψ : The quantum-mechanical wave function, which obeys the Schrödinger equation written in Eq. (5).  

H : The (abstract) Hilbert space of ordinary quantum mechanics 

Ĥ : The Hamiltonian operator of quantum mechanics 

g : The spacetime metric 

( ),M g : The spacetime manifold, where M  is taken to be connected, Hausdorff, smooth; the metric g  is taken to be 

Lorentzian, and a globally defined timelike vector field on M  is taken to exist. Strictly, one deals with an equivalence 
class of pairs ( ),M g , since the pairs ( )1 1,M g and ( )2 2,M g  are viewed as equivalent if a diffeomorphism α  

exists from 1M to 2M  such that 2g  is obtainable from 1g  through the action of α . 

Dirac operator: the most fundamental operator in the theory of elliptic operators on Riemannian manifolds. The square 
of an operator of Dirac type yields an operator of Laplace type, and this is closely  related to the fact that the spacetime 
metric can be recovered from the Dirac γ -matrices as is shown in equation (62) (see also Eq. (63) for the relation 
between metric and tetrads). 

Wheeler—DeWitt equation: the basic equation of canonical quantum gravity (see Eqs. (37) and (46)). It results from 
Dirac's prescription, according to which the quantum version of first-class constraints should annihilate the wave 
functional. 
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