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After an overview of the physical motivations for studying quantum gravity, we
reprint THE FORMAL STRUCTURE OF QUANTUM GRAVITY, i.e. the
1978 Cargèse Lectures in Levy & Deser (1979): Recent Developments in Gravitation
pp. 275–322 by Professor B. S. DeWitt, with kind permission of Springer Science and
Business Media. The reader is therefore introduced, in a pedagogical way, to the func-
tional integral quantization of gravitation and Yang–Mills theory. It is hoped that such
a paper will remain useful for all lecturers or Ph.D. students who face the task of intro-
ducing (resp. learning) some basic concepts in quantum gravity in a relatively short
time. In the second part, we outline selected topics such as the braneworld picture with
the same covariant formalism of the first part, and spectral asymptotics of Euclidean
quantum gravity with diffeomorphism-invariant boundary conditions. The latter might
have implications for singularity avoidance in quantum cosmology.

Keywords: Quantum gravity; diffeomorphism group; functional integral; zeta-function
regularization.

1. Motivations for and Approaches to Quantum Gravity

The aim of theoretical physics is to provide a clear conceptual framework for the
wide variety of natural phenomena, so that not only are we able to make accurate
predictions to be checked against observations, but the underlying mathematical
structures of the world we live in can also become sufficiently well understood by
the scientific community. What are therefore the key elements of a mathematical
description of the physical world? Can we derive all basic equations of theoretical
physics from a set of symmetry principles? What do they tell us about the origin
and evolution of the universe? Why is gravitation so peculiar with respect to all
other fundamental interactions?
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The above questions have received careful consideration over the last decades,
and have led, in particular, to several approaches to a theory aimed at achieving a
synthesis of quantum physics on the one hand, and general relativity on the other
hand. This remains, possibly, the most important task of theoretical physics. The
need for a quantum theory of gravity is already suggested from singularity theorems
in classical cosmology. Such theorems prove that the Einstein theory of general
relativity leads to the occurrence of spacetime singularities in a generic way [1].

At first sight one might be tempted to conclude that a breakdown of all physical
laws occurred in the past, or that general relativity is severely incomplete, being
unable to predict what came out of a singularity. It has been therefore pointed out
that all these pathological features result from the attempt of using the Einstein
theory well beyond its limit of validity, i.e. at energy scales where the fundamental
theory is definitely more involved. General relativity might be therefore viewed as
a low-energy limit of a richer theory, which achieves the synthesis of both the basic
principles of modern physics and the fundamental interactions in the form
currently known. So far, no less than 16 major approaches to quantum gravity have
been proposed in the literature. In alphabetical order (to avoid being affected by
our own preference) they are as follows.

1. Affine quantum gravity [2]
2. Asymptotic quantization [3, 4]
3. Canonical quantum gravity [5–9]
4. Condensed-matter view: the universe in a helium droplet [10]
5. Manifestly covariant quantization [11–17]
6. Euclidean quantum gravity [18, 19]
7. Lattice formulation [20, 21]
8. Loop space representation [22, 23]
9. Non-commutative geometry [24]

10. Quantumtopology [25],motivatedbyWheeler’s quantumgeometrodynamics [26]
11. Renormalization group and Weinberg’s asymptotic safety [27, 28]
12. R-squared gravity [29]
13. String and brane theory [30–32]
14. Supergravity [33, 34]
15. Triangulations [35–37] and null-strut calculus [38]
16. Twistor theory [39, 40]

After such a broad list of ideas, we hereafter focus on what can be taught in a
Ph.D. course aimed at students with a field-theoretic background. We have therefore
chosen to reprint, from Sec. 2 to Sec. 17, the 1978 DeWitt Lectures at Cargèse,
with kind permission of Springer Science and Business Media and of Professor C.
DeWitt–Morette. In the second part we select two related topics, i.e. the braneworld
picture and the spectral asymptotics of Euclidean quantum gravity, since they have
possibly a deep impact on the current attempts to describe a quantum origin of
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the physical universe. Relevant group-theoretical material is summarized in the
Appendix.

2. Introduction and Notation

In 1956 Utiyama pointed out that the gravitational field can be regarded as a non-
Abelian gauge field. In 1963 Feynman found that in order to construct a quantum
perturbation theory for a non-Abelian gauge field he had to introduce new graphical
rules not previously encountered in quantum field theory. He showed, in one-loop
order, that to preserve unitarity one must add to every standard closed-loop graph
another, involving a closed integral-spin fermion loop. In 1966 an explicitly gauge
invariant functional-integral algorithm was found which extended Feynman’s new
rules to all orders (DeWitt (1967b)). A short time later it was shown that the
algorithm could be obtained by a method of factoring out the gauge group (Fadde’ev
and Popov (1967)).

Formally the gravitational field and the Yang–Mills field can be treated iden-
tically. In the computation of amplitudes for specific physical processes, however,
the two differ by the fact that the Yang–Mills field yields a renormalizable theory
while the gravitational field does not.

Some of the proposals that have been made for dealing with quantum grav-
ity despite its nonrenormalizability will be discussed briefly later. But it must be
admitted at the outset that we are dealing with an incomplete theory. The student
may take comfort in the fact that every formal statement will be true for all field
theories, even those, like supergravity, possessing supergauge groups, provided they
are formulated in such a way that the action of the (super)gauge group on the field
variables is expressible without use of field equations, and the group operations
thus given are closed.

To emphasize the generality of the formalism we shall, most of the time, suppress
field symbols such as gµν for the gravitational field or Aα

µ for the Yang–Mills field.
The index i (or j, k, l, etc.) will be understood to label not only a field component
but also a spacetime point x. Thus, in the gravitational case, i will be understood
to stand for the set {µ, ν, x} and, in the Yang–Mills case, for the set {α, µ, x}. In a
supergauge theory the set i may include spinor indices. When it does, i (or ϕi) is
said to be fermionic; otherwise it is bosonic.

The reason for including the continuous label x in the set i is that much of the
formalism of quantum field theory is purely combinatorial, with summation over
dummy indices being accompanied by integration over spacetime. In order to avoid
having to write a lot of integral signs we lump x and the field indices together
and adopt the convention that the repetition of a lower case Latin index implies
a combined summation-integration. Correspondingly, a comma followed by a lower
case Latin index will denote functional differentiation:

A,i ≡ A

←
δ

δϕi
. (1)
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The change in a functional A (of the fields ϕi) resulting from an infinitesimal
variation δϕi is then

δA = A,iδϕ
i. (2)

If A, or any of the ϕi, is fermionic one must distinguish left from right
differentiation:

i,A ≡
→
δ

δϕi
A,

δA = δϕi
i,A.

Evidently

i,A = (−1)i(A+1)A,i (3)

where we adopt the rule that when an index (such as i) or a dynamical quantity
(such as A) appears as an exponent of −1 it is to be understood as assuming the
value 0 or 1 according as it is bosonic or fermionic. The summation-integration
convention is not to be understood as applying to indices appearing as expo-
nents. Such indices may participate in summation-integrations induced by their
appearance twice elsewhere in an expression, but they themselves may not induce
summation-integrations. Note that we are here treating all quantities (A, ϕi, δϕi,
etc.) as supernumbers, i.e. as even or odd elements of an infinite-dimensional
Grassmann algebra. Bosonic quantities commute with everything; fermionic quan-
tities anticommute among themselves. In the quantum theory this perfect commu-
tativity or anticommutativity is broken. The corresponding quantities will then be
written in boldface.

The following notation will sometimes be convenient for expressing repeated
functional differentiation:

...ij,A,kl... ≡
→
δ

δϕi

→
δ

δϕj
A

←
δ

δϕk

←
δ

δϕl
. . . (4)

Note the particular examples:

ϕi
,j = δi

j , (5)

(ϕiϕj),kl = (−1)ijδi
k δj

l + δi
l δj

k. (6)

If x belongs to the set i and x′ belongs to the set j, the “generalized Kronecker
delta” δi

j includes, as a factor, the spacetime delta function δ(x, x′).
When we are displaying specific details of a given field theory lower case indices

from the middle of the Greek alphabet will be used to label tensor components.
Coordinates in a given local patch, or chart, will be denoted by xµ, with µ running
from 0 to n − 1, n being the dimensionality of spacetime. (With an eye to the
ultimate application of methods such as dimensional regularization and the renor-
malization group, we do not hold n fixed at 4 here.) Commas followed by lower-case
mid-alphabet Greek indices will denote ordinary differentiation with respect to the
coordinates.
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The following abbreviations will be useful:

δgµν

δgσ′τ ′
= δ σ′τ ′

µν ≡ 1
2
(δ σ

µ δ τ
ν + δ τ

µ δ σ
ν )δ(x, x′), (7)

δAα
µ

δAβ′
ν′

= δα ν′
µβ′ ≡ δα

βδ ν
µ δ(x, x′). (8)

It is straightforward to verify that

δ σ′τ ′ ν
µν ; = −δ σ′ τ ′

µ ; − δ τ ′ σ′
µ ; , (9)

δα ν′ µ
µβ′ ; = −δα ν′

β′; , (10)

where

δ σ′
µ ≡ δ σ

µ δ(x, x′), δα
β′ ≡ δα

βδ(x, x′),

the semicolons denote covariant differentiation, and tensor indices may be lowered
and raised by the metric tensor gµν and its inverse gµν respectively. (Note that
we always leave the semicolons in the lower position regardless of what happens to
the indices.) The delta functions appearing above are 2-point tensor densities, or
bitensor densities, of total weight unity. In Eqs. (9) and (10) the apportionment of
the weight between the points x and x′ is arbitrary; in Eqs. (7) and (8) all the weight
is at x′. In Eqs. (9) and (10) the derivatives on the left are at x, on the right at x′.

In Eqs. (8) and (10) lower case Greek indices from the beginning of the alphabet
appear. These are associated with the Yang–Mills group. The laws of covariant
differentiation of tensors bearing various kinds of indices are determined as follows:
let the symbol T represent a tensor field, with indices suppressed, in which we
imagine all the components strung out in a single column. Let T also be coupled
to the Yang–Mills field. Then

T;µ ≡ T,µ + Gν
σΓσ

νµT + GαAα
µT, (11)

where

Γσ
νµ ≡ 1

2
gστ (gτν,µ + gτµ,ν − gνµ,τ ), (12)

and the Gµ
ν and Gα are respectively the matrix generators of the representations of

the linear group and Yang–Mills Lie group to which T corresponds. These generators
satisfy

[Gµ
ν , Gσ

τ ] = δµ
τGσ

ν − δσ
νGµ

τ , (13)

[Gα, Gβ ] = Gγfγ
αβ , (14)

where fγ
αβ are the structure constants of the Yang–Mills Lie group. When the

suppressed indices on T are restored their positions generally determine the partic-
ular representations involved. Thus a Yang–Mills index in the upper position indi-
cates the adjoint representation of the Lie group and one in the lower position the
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contragredient representation, etc. For physical reasons (positive probability) the
Yang–Mills Lie group is required to be compact. Therefore given representations and
their contragredient forms are equivalent, and Yang–Mills indices may be lowered
(and raised) by the matrix γαβ (and its inverse γαβ) that connects the adjoint and
co-adjoint representations. When the Lie group is simple γαβ may be taken to be the
Kronecker delta, and all Yang–Mills indices may be dropped to the lower position.

We make no attempt here to list the rather complicated additional structures
that appear in supergravity theories. (The student should consult the published
literature for those details.) We remark only that when spinors are present the local
frame group and its spin representations must be introduced. The local frame
group is completely analogous to the Yang–Mills group and makes a corresponding
contribution to the covariant derivative on the right side of Eq. (11), with Aα

µ

replaced by the connection components in the local frame and the Gα replaced by
the generators of the relevant spin representation of the Lorentz group. (See De
Witt (1965) for details.)

In the next section we shall show how to place the Yang–Mills group and the
diffeomorphism group (with which tensor indices are associated) on a common foot-
ing. Despite the analogies between the two groups, as displayed for example by the
similarity of the second and third terms on the right of Eq. (11), the diffeomor-
phism group is much more complicated than the Yang–Mills group and much less
is known about its structure. Moreover, there is a lack of symmetry between the
two groups in the fact that when they are combined into a single group (as is nec-
essary when both Yang–Mills and gravitational fields are present) they are united
not in a direct product but in a semi-direct product based on the automorphisms
of the Yang–Mills group under diffeomorphisms. The same is true for the combined
diffeomorphism and local frame groups, when spinor fields are present.

Our list of notational conventions is completed with the following statements
and definitions:

T;µν − T;νµ = −(Gσ
τRτ

σµν + GαFα
µν)T, (15)

Rτ
σµν ≡ Γτ

σν,µ − Γτ
σµ,ν + Γτ

µρΓ
ρ
σν − Γτ

νρΓ
ρ
σµ, (16)

Fα
µν ≡ Aα

ν,µ − Aα
µ,ν + fα

βγAβ
µAγ

ν , (17)

Rµν ≡ Rσ
µσν , R ≡ R µ

µ . (18)

Unless otherwise specified we shall assume that spacetime is globally hyperbolic and
complete.a Without loss of generality x0 may then be assumed to be a global time
coordinate, in the sense that it defines a foliation of spacetime into smooth complete
hypersurfaces x0 = constant, arranged in a temporal order. These hypersurfaces
need not be everywhere spacelike, although if they are noncompact they must be
asymptotically spacelike. The signature of the metric tensor will be −+++ · · · , and
units (when needed) will be chosen to be “absolute”, with � = c = 32πG = 1. The

aThere is some evidence (although hardly overwhelming yet) that quantization suppresses the
singularities in spacetime that often develop automatically in classical general relativity.
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absolute units of length, time and mass respectively are 1.6×10−32 cm, 5×10−43 sec
and 2 × 10−6 g, which gives an idea of the domains in which quantum gravity
becomes relevant.

3. The Gauge Group

The gauge group of quantum gravity is the diffeomorphism group and that of Yang–
Mills theory is the Yang–Mills group. We begin with the latter.

Elements of the Yang–Mills group are locally parametrized by a set of differen-
tiable scalar functions ξα(x), with ξα = 0 denoting the identity element. Elements
infinitesimally close to the identity are parametrized by infinitesimal scalars. The
action of such an element on the Yang–Mills potentials is given by

δAα
µ = −δξα

,µ + fα
γβAβ

µδξγ = −δξα
;µ, (19)

the covariant derivative being determined by noting that δξα transforms (under
inner automorphisms) according to the adjoint representation of the group. It will
be convenient to rewrite Eq. (19) in the form

δAα
µ =

∫
Qα

µβ′δξβ′
dnx′, dnx′ ≡

n−1∏
µ=0

dxµ, (20)

or, in the generic notation,

δϕi = Qi
αδξα, (21)

where

Qα
µβ′ ≡ −δα

β′;µ. (22)

In passing from Eq. (20) to the generic form (21) one replaces the labels α, µ, x by
the index i and the labels β′, x′ by the index α, and one understands that repetition
of the latter index implies a combined summation-integration.

In quantum gravity the action of the diffeomorphism group can be expressed in
identical generic form. The diffeomorphism group is the group of mappings f : M →
M of the spacetime manifold M into itself such that f is one-to-one and both f and
f−1 are differentiable. In practice one may require f and f−1 to be C∞ and, if the
sections x0 = constant are noncompact, to reduce asymptotically (i.e. “at spatial
infinity”) to the local identity mapping. Such mappings define a “dragging” of all
tensor fields defined on M , and if the mapping is infinitesimally close to the identity
the “dragging” may be viewed as a physical displacement of the fields through an
infinitesimal vector δξ. If all fields, including the metric (i.e. gravitational) field, are
displaced by the same amount the physics remains unchanged. It is conventional
in physics, therefore, to adopt an opposite viewpoint and to regard an infinitesimal
diffeomorphism as leaving the “physical” points of the manifold untouched while
dragging all coordinate patches (i.e. the complete atlas) through the negative vector
δξ. Locally this is expressed by the coordinate transformation xµ → ξµ where

ξµ = xµ + δξµ. (23)
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Let T be a tensor field and δT its change under dragging through δξ. The Lie
derivative of T with respect to δξ is defined by

LδξT = −δT. (24)

Let p be a point of M and p′ the point to which it is dragged under δξ. Then
the coordinates of p in the new coordinate system (23) are identical with those of
p′ in the old coordinate system. Moreover, the components of T at p in the new
coordinate system are identical with those of T + δT at p′ in the old coordinate
system. One has only to cast Eq. (24) into component language, therefore, to regard
the Lie derivative as expressing the negative of the change in the functional form
of the components of T , viewed as functions of the local coordinates, under
the diffeomorphism. This enables one to compute

LδξT = T,µδξµ − Gν
µTδξµ

,ν

= T;µδξµ − Gν
µTδξµ

;ν , (25)

which yields, in particular, the gauge transformation law for the metric tensor:

δgµν = −(Lδξg)µν = −δξµ;ν − δξν;µ. (26)

Equation (26) may be rewritten

δgµν =
∫

Qµνσ′δξσ′
dnx′, (27)

Qµνσ′ ≡ −δµσ′;ν − δνσ′;µ, (28)

which, if the labels µ, ν, x are replaced by i and the labels σ′, x′ by α, takes the
generic form (21).

Lower case Greek indices from the first part of the alphabet, as in Eq. (21),
will from now on be called group indices. If the group indices are allowed to label
fermionic as well as bosonic gauge parameters then the generic form (21) holds also
for the supergauge transformations of supergravity theories. Although we shall not
go into the specific details of such theories we shall, in all that follows, allow for
their possible presence.

4. Structure Constants

By invoking the requirement that the commutator of two infinitesimal gauge group
operations be itself a group operation (the closure property) one arrives at the
functional differential identity

Qi
α,jQ

j
β − (−1)αβQi

β,jQ
j
α = Qi

γCγ
αβ , (29)

where the C’s are certain coefficients known as the structure constants of the
gauge group. They possess the symmetry

Cγ
αβ = −(−1)αβCγ

βα. (30)
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The structure constants of the Yang–Mills group may be determined by straight-
forward computation from Eqs. (19), (20) and (22). They are the components of
the following 3-point tensor density:

Cα
β′γ′′ = fα

βγδ(x, x′)δ(x, x′′). (31)

The weights are at x′ and x′′.
The structure constants of the diffeomorphism group may be determined by

recalling the commutation law for the Lie derivative:

[LX ,LY ]T = L[X,Y ]T. (32)

Here [X, Y ] is the Lie bracket of the vectors X and Y :

[X, Y ] = LXY = −LY X. (33)

The structure constants are the components of the 3-point tensor density defined by∫
dnx′

∫
dnx′′Cµ

ν′σ′′X
ν′

Y σ′′

= −[X, Y ]µ = Xµ
,νY ν − Y µ

,νXν = Xµ
;νY ν − Y µ

;νXν . (34)

Evidently

Cµ
ν′σ′′ = δµ

ν′,τδτ
σ′′ − δµ

σ′′,τδτ
ν′ = δµ

ν′;τδτ
σ′′ − δµ

σ′′;τδτ
ν′ . (35)

The weights are at x′ and x′′.
The action of the gauge group on the field variables ϕi, expressed by Eq. (21), is

a realization of the group. This realization is always a faithful one, which implies
that Qi

αXα = 0 for all i if and only if Xα = 0 for all α. By functionally differen-
tiating Eq. (29) with respect to ϕk, multiplying by Qk

γ , judiciously permuting the
indices α, β, γ, adding the results, and invoking the faithfulness of the realization,
one obtains the following cyclic identity satisfied by the structure constants:

Cδ
αεC

ε
βγ + (−1)α(β+γ)Cδ

βεC
ε
γα + (−1)γ(α+β)Cδ

γεC
ε
αβ = 0. (36)

In the case of the Yang–Mills group this identity reduces to the corresponding
identity for the constants fα

βγ . In the case of the diffeomorphism group it is the
Jacobi identity for Lie brackets.

5. Configuration Space. Orbits

For each point x in the spacetime manifold M , the field ϕ (index i suppressed)
takes its “value” in a certain finite-dimensional differentiable manifold Φx, which
may but need not be a vector space or subspace thereof. In pure gravity theory,
for example, Φx is the subspace of Sym(T ∗

x ⊗ T ∗
x ) containing all local symmetric

covariant second rank tensors at x having nonvanishing determinant and signature
− + + + · · · . Here T ∗

x is the dual of the tangent space to M at x, and “Sym”
denotes the symmetric part of the tensor product T ∗

x ⊗ T ∗
x .
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The set of all Φx with x in M , may be regarded as forming a fiber bundle over
M . Each Φx is a fiber, and each field ϕ is a cross section of the bundle.b The bundle
may but need not be a simple product bundle.

The set of all cross sections, i.e. of all field configurations ϕ may be assem-
bled into a space Φ called the configuration space. Because of differentiability
requirements on the field configurations Φ is endowed naturally with a functional
differentiable structure and may be viewed as an infinite dimensional differentiable
manifold, or, if ϕi includes fermion fields, as a differentiable supermanifold (also
known as a Z2-graded manifold. See Kostant (1977)). Since M is never compact (at
least in the time direction) the fields ϕ are usually constrained to obey also special
boundary conditions “at infinity”. In both Yang–Mills and gravity theory these can
be of considerable importance.

Let the gauge group be denoted by G and let ξ be an element of G. Denote by ξϕ

the “point” of Φ to which ϕ is displaced under the action of ξ. The set of points ξϕ

for all ξ in G is known as the orbit of ϕ and denoted by Orb.(ϕ). The set of all orbits
can be assembled into a space called the space of orbits, denoted by the quotient
symbol Φ/G. Since all fields on a given orbit describe the same physics it is the space
of orbits that constitutes the real physical configuration space of the theory.
In pure gravity theory Φ is the space, Lor(M), of Lorentzian (also called pseudo-
Riemannian) metrics on M , G is the group, Diff(M), of diffeomorphisms of M ,
and the physical configuration space, Lor(M)/Diff(M), is the space of Lorentzian
geometries on M.

Because gauge groups can be “coordinatized” by differentiable functions (i.e.
the gauge parameters) G, like Φ, can be regarded as an infinite dimensional dif-
ferentiable manifold (or supermanifold). In Yang–Mills theory G may have a sim-
ple product structure inherited from the associated Lie group of the theory (see
Eq. (31)), or it may itself be a twisted bundle. The diffeomorphism group of gravity
theory, by contrast, cannot be viewed as a bundle but has a structure that is much
less well understood. Some, but only a little, of its complexity will emerge as we go
along.

Since both Φ and G are differentiable (super) manifolds the quotient space
Φ/G too is a differentiable (super) manifold, or rather it is a differentiable (super)
manifold that may have a boundary.

To see how a boundary can arise consider a typical, i.e. generic, orbit. Modulo a
possible discrete center it is a copy of G, because it provides a realization of G and
has the same dimensionality. Not all orbits need to have this dimensionality. There is
often a class of degenerate orbits having fewer dimensions. These are the orbits that
remain invariant under the action of nontrivial continuous subgroups of G. They are
the boundary points of Φ/G. To see this think of Φ as being R3 and G as being the
group of rotations about a fixed axis. The orbits are then circles perpendicular to

bIf the fiber bundle admits no global cross sections the field must be defined by introducing
overlapping patches.
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and centered on the axis, and the orbit space is a half-plane whose boundary points
correspond to the points on the axis, which remain invariant under the group.

The greater the dimensionality of the subgroup that leaves a given orbit invari-
ant, the smaller the dimensionality of the orbit. Fischer (1970) has shown that if
the invariance group has only one dimension then the orbit is an ordinary boundary
point of Φ/G. If the invariance group has two dimensions then the orbit lies on a
boundary of the boundary and so on. The whole orbit manifold, with its boundary,
and its boundaries of boundaries, etc., is known as a stratified manifold.

In gravity theory the boundary orbits are the symmetrical geometries, i.e.
those that possess Killing vectors. The boundary structure of Lor(M)/Diff(M)
in general depends critically on M . Since there exists no complete classification of
n-dimensional manifolds (n > 3) that can possess globally hyperbolic metric ten-
sors, there exists also no complete classification of possible configuration spaces for
the gravitational field. On some spacetimes there may be no Lorentzian geome-
tries possessing Killing vectors. Such spacetimes are called wild. If M is wild
Lor(M)/Diff(M) has no boundary points. For technical reasons it is frequently
necessary to regard certain familiar spacetimes as wild. For example, asymptoti-
cally flat spacetimes diffeomorphic to Rn are usually treated as wild. The reason
for this is to keep Lorentz transformations distinct from gauge transformations, by
requiring the gauge parameters δξµ to vanish at infinity. Flat Minkowski spacetime
is then not a boundary point of Lor(Rn)/Diff(Rn) because the Poincaré isometries
are not regarded as being contained in Diff(Rn).

6. Metrics on Configuration Space

It turns out to be both possible and useful to regard Φ and Φ/G not merely as differ-
entiable (super)manifolds but as pseudo-Riemannian (super)manifolds as well. Let
dϕi be an infinitesimal displacement in Φ. We may associate with this displacement
a (super) arc length ds, given by

ds2 = dϕi
iγj dϕj , (37)

where iγj are the components of a (super) metric tensor on Φ. The iγj are func-
tionals of ϕ having the symmetry

iγj = (−1)i+j+ij
jγi

and forming an invertible continuous matrix. The inverse, denoted by γij , satisfies

iγkγkj = δ j
i , γik

kγj = δi
j , γij = (−1)ijγji. (38)

If the metric iγj is chosen in such a way that the actions of G on Φ are isome-
tries then iγj induces also a metric on the orbit space Φ/G. One simply defines the
distance between neighboring orbits in Φ/G to be the orthogonal distance between
them in Φ. This requires selecting iγj in such a way that the continuous matrix
(−1)α(i+1)Qi

α iγjQ
j
β is nonsingular, on all orbits so that a vector cannot be simul-

taneously tangent to and orthogonal to any of them.
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Every element of G infinitesimally close to the identity generates a vector field
Qi

αδξα on Φ (see Eq. (21)). Each of these fields is a linear combination of the basic
vector fields Qi

α, and the structure of G is determined by the (super) Lie bracket
relations (29) that they satisfy. The condition that G acts isometrically on Φ may
be translated into the statement that the (super) Lie derivatives of the metric iγj

with respect to the Q′s all vanish:

0 = iγj

→
LQα = iγj,k Qk

α + (−1)α(j+k)
i,Q

k
α kγj + (−1)αj

iγk Qk
α,j . (39)

It is not difficult to verify that Eq. (29) is the integrability condition for (39).
Equation (39) generally has an infinity of solutions differing nontrivially from one
another. If it did not, i.e. if the solution were unique up to a constant factor, this
would mean that G acts transitively on Φ and hence that Φ/G is trivial, the theory
having no physical content.

In order to understand what Eq. (39) says in more familiar terms it is helpful to
note that the fields ϕi encountered in practice usually provide linear realizations
of their gauge groups. This is cetainly true for the Yang–Mills and gravitational
fields. What it means is that the functional derivatives Qi

α,j are independent of
the ϕi and, when regarded as continuous matrices (in i and j), yield a matrix
representation of the (graded) Lie algebra associated with the group.

Of course this simplicity is generally lost if the ϕ’s are replaced by nonlinear
functions of themselves. But it is remarkable that there is usually a “natural” set
of field variables of which the Q’s are linear functionals. In gravity theory, in fact,
there is a family of “natural” fields, namely all tensor densities of the form

Gµν ≡ grgµν or Gµν ≡ g−rgµν , r �= 1/n, (40)

where g ≡ −det(gµν).
Consider now the way in which the Q’s themselves change under infinitesimal

gauge transformations. Using Eq. (29) one finds

δQi
α = Qi

α,jδϕ
j = Qi

α,jQ
j
βδξβ

= (−1)αβ(Qi
β,jQ

j
α − Qi

γCγ
βα)δξβ , (41)

which says that Qi
α is a two-point function that transforms at the point associated

with i according to the representation generated by the matrices (Qi
α,j) and at

the point associated with α contragrediently to the representation generated by the
matrices (Cα

γβ). In gravity theory this says that the function Qµνσ′ of Eq. (28)
transforms like a covariant tensor at x and like a covariant vector density of unit
weight at x′,c which indeed it does. Equation (41) yields an analogous statement
about the transformation law of the two-point function Qα

µβ′ of Eq. (22) under the
Yang–Mills group.

cUnder the diffeomorphism group a tensor density of weight w, having p covariant and q contravari-
ant indices, transforms contragrediently to a tensor density of weight 1 − w, having q covariant
and p contravariant indices.
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We are now ready to interpret Eq. (39). Under the gauge group the γ’s change
according to

δ iγj = iγj,k δϕk = iγj,k Qk
αδξα

= −(−1)αj[(−1)αk
i,Q

k
α kγj + iγk Qk

α,j]δξ
α, (42)

which says that the γ’s are two-point functions that transform at each point con-
tragrediently to the representation generated by the matrices (Qi

α,j). In gravity
theory this implies that when the ϕi are chosen to be the components of the covari-
ant metric tensor, iγj must transform at each point like a symmetric contravariant
tensor density of unit weight. Any γ’s that transform in this way, and have an
inverse γij , provide an acceptable metric on Lor(M).

Among all such metrics on Lor(M) there is a unique (up to a constant factor)
1-parameter family of them that may be characterized as local. These are given by

γµνσ′τ ′
= γµνστ δ(x, x′), (43)

γµνστ ≡ 1
2g1/2(gµσgντ + gµτgνσ + λgµνgστ ), λ �= − 2

n
. (44)

For Yang–Mills theory in flat spacetime the corresponding metric is

γ µ ν′
α β′ = γαβηµνδ(x, x′), (45)

where ηµν is the Minkowski metric. The matrices (−1)α(i+1)Qi
αiγjQ

j
β in the two

cases are readily calculated to be respectively

−2g1/2
{
δ σ
µν′;σ + R σ

µ δσν′ − (1 + λ)[δ(x, x′)];µν′
}

(46)

and

−δ µ
αβ′;µ . (47)

The continuous matrix (47) is effectively the negative of the Yang–Mills-invariant
Laplace–Beltrami operator. If the Yang–Mills field is untwisted (see the lectures by
Avis and Isham in this volume) it is a nonsingular operator having a unique Green’s
function for each choice of boundary conditions at infinity. If the Yang–Mills field
is twisted, however it may have zero eigenvalues, which means that the choice (45)
fails to yield a globally valid metric on the orbit manifold. Although this is an
important and interesting situation we shall not attempt to deal with it in these
lectures.

The continuous matrix (46) too may become singular. Its structure is simplest
when λ = −1(n �= 2); it is then effectively a slightly generalized form of the stan-
dard Laplace–Beltrami operator. Considerable evidence exists to indicate that it
is nonsingular when the spacetime manifold is diffeomorphic to Rn. But for other
topologies it may have zero eigenvalues. Again we exclude this situation from con-
sideration.

When the matrices (46) and (47) are nonsingular, expressions (43) and (45) con-
stitute metrics on the space of fields which define, by orthogonal projection, globally
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valid nonsingular metrics on the space of orbits. It is possible to develop a theory
of geodesics on these configuration spaces. The geometry defined by Eq. (45) is flat
and the geodesics in the space of Yang–Mills potentials are trivial. The geometry
defined by (43) and (44), on the other hand, is not flat, and the resulting theory
of geodesics on the space of metric tensors gµν is not trivial. It can nevertheless be
shown that any pair of points in this space can be connected by a unique geodesic. It
can also be shown that if a geodesic intersects one orbit orthogonally then it inter-
sects every orbit in its path orthogonally, and, moreover, traces out a geodesic curve
in the space of orbits. Methods for proving these theorems can be found in DeWitt
(1967a). Using these theorems together with the fact that a vector in the space of
metric tensors cannot be simultaneously parallel and orthogonal to an orbit, one
can then prove that any pair of orbits can be connected by a unique geodesic. It
should be stated that all of these theorems depend upon the maintenance of fixed
boundary conditions (on fields and diffeomorphisms) at infinity.

7. Volume Elements on Configuration Space

With a metric defined on the space of fields it is possible to introduce a formal
volume element µdϕ (dϕ ≡∏i dϕi) by choosing

µ = const. × |det(iγj)|1/2. (48)

This volume element is gauge invariant and can be used to define gauge invariant
functional integrals over configuration space. When fermionic fields are present the
determinant in Eq. (48) is the super determinant (see Nath (1976)), which satisfies
the variational law

δln det(iγj) = (−1)iγijδ jγi. (49)

This law, combined with Eq. (39), yields the following equation of “divergenceless
flow” that could in principle be used to select a gauge invariant volume element
independently of a metric:

(−1)i(α+1)(µQi
α),i = 0. (50)

The delta functions contained in the metrics (43) and (45) give these metrics
a block structure that yields simple formal expressions for their determinants. In
Yang–Mills theory the determinant is a constant; in gravity theory it is given by

det(γµνσ′τ ′
) =

∏
x

γ(x), (51)

where γ(x) is the determinant of the 1
2n(n + 1)× 1

2n(n + 1) matrix γµνστ . It is not
a difficult computation to show that

γ = (−1)n−1

(
1 +

nλ

2

)
g

1
4 (n−4)(n+1). (52)

In a 4-dimensional spacetime γ, and hence det(γµνσ′τ ′
), is seen to be a constant,

independent of the gµν . The functional µ, in the volume element over the configu-
ration space of gravity theory, may therefore be taken to be a constant. Without
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loss of generality it may be chosen equal to 1. This will no longer be true in other
dimensions, or when other fields are present in addition to the gravitational field, if
we stick to the gµν as the basic field variables. However, we can in principle replace
the gµν by one of the family of variables defined in Eq. (40) and choose r so that
µ remains constant. In practice, as we shall see later, this is unnecessary. To set µ

“effectively” equal to unity it turns out to be necessary only to choose basic fields
that transform linearly under the gauge group.

8. Group Coordinates

The scalar functions ξα(x) that parameterize the elements of the Yang–Mills group
may be regarded as “coordinates” in the group manifold. In the case of the dif-
feomorphism group the group coordinates may be taken to be the functions ξµ(x)
that define the coordinate transformation xµ → ξµ associated with each diffeomor-
phism in each coordinate chart or patch. Note that the functions ξµ(x) are neither
scalars nor components of vectors. Note also that in both cases the coordinatization
of the group cannot generally be achieved without bringing in the whole appara-
tus of charts, atlases and consistency conditions in the regions of intersection of
overlapping charts.

Any group may be regarded as acting on itself through multiplication either on
the left or on the right. Every group thus provides a realization of itself, and if it is
a gauge group G, possesses a set of functionals Qα

β [ξ] analogous to the functionals
Qi

α[φ] over the configuration space Φ. The Qα
β are then defined by

[(I + δξ)ξ]α = ξα + Qα
β [ξ]δξβ for all δξα and all ξ in G, (53)

where I denotes the identity element of G and I+δξ denotes an element of G whose
coordinates differ by infinitesimal amounts δξα from those of I. Using the fact that
Iµ(x) = xµ, and that (ξξ′)µ(x) = ξµ(ξ(x)) for all ξ and ξ′ in G, it is not difficult
to verify that the Qα

β for the diffeomorphism group are given explicitly by

Qµ
ν′ [ξ] = δµ

ν δ(ξ(x), x′). (54)

In the case of the Yang–Mills group the Qα
β take the forms

Qα
β′ [ξ] = gα

β(ξ(x))δ(x, x′), (55)

where the gα
β are the corresponding quantities for the associated Lie group.

Now let δξα = ξαδt for some fixed ξα and consider the curve in G defined by

ξ(t) = lim
δt→0

(I + δξ)t/δt. (56)

Evidently

ξ(s)ξ(t) = ξ(t)ξ(s) = ξ(s + t), ξ(0) = I, ξ−1(t) = ξ(−t), (57)

dξα(t)
dt

= Qα
β [ξ(t)]ξβ . (58)

The points on the curve are seen to constitute a one-parameter Abelian subgroup
of G.



February 8, 2008 9:29 WSPC/IJGMMP-J043 00267

116 B. S. DeWitt & G. Esposito

If it could be proved that all the elements of G in a neighborhood N of the
identity can be obtained by a process of exponentiation of the form (56) then it
would follow that the one-parameter Abelian subgroups completely span the neigh-
borhood N . A special set of coordinates ξ α

c , known as canonical coordinates,
could be introduced in N for which the functions ξα(t) above take the simple form

ξ α
c (t) = ξαt. (59)

Let us assume that our coordinates are already canonical, so that we may drop the
subscript c. Then we have

Iα = 0, ξ−1α
= −ξα, (60)

ξα = Qα
β [ξ]ξβ = Q−1 α

β [ξ]ξβ , (61)

where (Q−1α
β ) is the (continuous) matrix inverse to (Qα

β). By taking note of the
fact that the Qα

β must satisfy an identity analogous to (29), namely

Qγ
α,δ Qδ

β − (−1)αβQγ
β,δ Qδ

α = Qγ
δ Cδ

αβ , (62)

we may show that in a canonical coordinate system the Qα
β are completely deter-

mined by the structure constants.
We begin by rewriting Eq. (62) in the equivalent form

Q−1α
β,γ − (−1)βγQ−1α

γ,β + (−1)ε(δ+β)Cα
δεQ

−1δ
β Q−1ε

γ = 0. (63)

Multiplying this equation on the right by ξα and using Eq. (61) we get

Q−1α
β,γξγ − (−1)βγQ−1α

γ,βξγ + Cα
δεξ

εQ−1δ
β = 0. (64)

On the other hand, differentiating Eq. (61) with respect to ξβ we find

(−1)βγQ−1α
γ,βξγ + Q−1α

β = δα
β . (65)

Addition of Eqs. (64) and (65) yields

Q−1
,αξα + Q−1 − C · ξQ−1 = 1, (66)

where “1” denotes the unit matrix (delta function) and

Q−1[ξ] ≡ (Q−1α
β[ξ]), C · ξ ≡ (−1)βγCα

γβξγ = −(Cα
βγξγ). (67)

The solution of Eq. (66) satisfying the necessary boundary condition

Qα
β [I] = δα

β (68)

(see Eq. (53)) is

Q−1[ξ] =
eC·ξ − 1

C · ξ ≡ 1 +
1
2!

C · ξ +
1
3!

(C · ξ)2 + · · · . (69)

The series (69) converges for all values of the ξα. For certain values the (con-
tinuous) matrix Q−1 may have vanishing roots. For these values some of the Qα

β ,
and hence the canonical coordinate system itself, become singular. In the case of
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an untwisted Yang–Mills group it can be shown that the one-parameter Abelian
subgroups do span a neighborhood of the identity. (This is, in fact, a corollary of the
corresponding theorem for the associated Lie group.) Indeed they span the entire
group — or, rather, that part of the group that is connected to the identity, i.e.
the proper group. The whole group can therefore be parameterized by canonical
coordinates (supplemented, perhaps, with some discrete labels).

Canonical coordinates for the Yang–Mills group have a periodic, or angular,
nature. At a given point x of the spacetime manifold let the ξα(x) in Eq. (55)
increase in magnitude but maintain fixed ratios to one another. Eventually all of
the gα

β will become singular at once. One has returned to the identity element of
the associated Lie group. By allowing the canonical coordinates to range from −∞
to ∞ one evidently covers the gauge group an infinity of times. Despite the fact
that the Qα

β become singular for certain values of the ξ′s, the canonical coordinates
are good in that, no matter what their values, they always define a unique element
of the group.

9. No Canonical Coordinates for the Diffeomorphism Group

If canonical coordinates could be introduced into the diffeomorphism group one
could dispense with the apparatus of charts, atlases, etc. in parametrizing the group.
Every diffeomorphism could be characterized by a (finite) vector field just as those
infinitesimally close to the identity can be characterized by an infinitesimal vector
field. And a vector field has a meaning independent of charts and atlases.

Unfortunately the one-parameter Abelian subgroups of the diffeomorphism
group do not span a neighborhood of the identity. If the dimensionality n of the
spacetime manifold M is greater than or equal to 2 there are C∞ diffeomorphisms
arbitrarily close to the identity that cannot be obtained by exponentiation as in
Eq. (56). The proof, which we now outline, was first given by Freifeld (1968).

It suffices to confine attention to R2 or, equivalently, to the complex plane C.
Let x be a point of C. Instead of breaking x into its real and imaginary parts we
may treat x and its complex conjugate x∗ formally as independent variables. A C∞

diffeomorphism ξ : C → C is then a one-to-one complex function ξ(x, x∗), of class
C∞ in both x and x∗, whose inverse, x(ξ, ξ∗) is C∞ in ξ and ξ∗.

Let N be a positive integer and α a positive real number. Suppose ξ has the
analytic form

ξ(x, x∗) = e
2πi
N x + αxN+1 (70)

in a finite neighborhood of the origin (e.g., in a circle of finite radius), and suppose
that outside of this neighborhood ξ changes smoothly (C∞) to the identity function
ξ(x, x∗) = x. If N is chosen large and α is chosen small then ξ and all its derivatives
may be made uniformly close to those of the identity. We shall show that ξ does
not lie on a one-parameter subgroup of C∞ diffeomorphisms ξ(t) : C → C with
ξ(0) = I.
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Suppose we assume that it does lie on such a subgroup. Without loss of generality
we may also assume that ξ(1) = ξ, and then we have

ξ(0, x, x∗) = x, ξ(1, x, x∗) = ξ(x, x∗), (71)

as well as

ξ(s, ξ(t, x, x∗), ξ∗(t, x, x∗)) = ξ(t, ξ(s, x, x∗), ξ∗(s, x, x∗)) = ξ(s + t, x, x∗). (72)

Note that the diffeomorphism (70) leaves the origin fixed. Therefore

ξ(0, 0, 0) = 0, ξ(1, 0, 0) = 0. (73)

Define

z(t) ≡ ξ(t, 0, 0). (74)

The function z(t) describes a closed curve passing through the origin in the complex
plane. Using Eqs. (72) and (73) we find

ξ(z(t), z∗(t)) = ξ(1, z(t), z∗(t)) = ξ(1, ξ(t, 0, 0), ξ∗(t, 0, 0))

= ξ(t, ξ(1, 0, 0), ξ∗(1, 0, 0)) = ξ(t, 0, 0) = z(t), (75)

which implies that the diffeomorphism (70) leaves every point on this closed curve
fixed. But the only curve passing through the origin that (70) leaves fixed is the
degenerate curve consisting of the single point x = 0. Therefore every one of the
diffeomorphisms ξ(t) must leave the origin fixed:

ξ(t, 0, 0) = 0 for all t. (76)

Since ξ and the ξ(t) are C∞ we may consider their formal Taylor series at the
origin. The formal Taylor series for ξ, which is just expression (70), must lie on the
one-parameter group of formal Taylor series for the ξ(t), which may be written in
the form

ξ(t, x, x∗) =
∞∑

m,n=0

am,n(t)xmx∗ n. (77)

Furthermore, these formal Taylor series must satisfy (formally) Eqs. (72).
In view of Eqs. (71) and (76) it is evident that

a0,0(t) = 0 for all t;

a1,0(0) = 1, all other am,n(0)′s vanish; (78)

a1,0(1) = e
2πi
N , aN+1,0(1) = α, all other am,n(1)′s vanish.
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Moreover, inserting (77) into (72) with s = t = 1
2 , one finds

e
2πi
N x + αxN+1 =

∞∑
m,n=0

am,n

(
1
2

)[
ξ

(
1
2
, x, x∗

)]m [
ξ∗
(

1
2
, x, x∗

)]n

= a1,0

(
1
2

)[
a1,0

(
1
2

)
x + a0,1

(
1
2

)
x∗ + · · ·

]

+ a0,1

(
1
2

)[
a∗
1,0

(
1
2

)
x∗ + a∗

0,1

(
1
2

)
x + · · ·

]
+ · · · ,

whence

e
2πi
N =

[
a1,0

(
1
2

)]2
+ |a0,1(1/2)|2, (79)

0 = a0,1

(
1
2

)
Rea1,0

(
1
2

)
. (80)

Suppose a0,1

(
1
2

) �= 0. Then a1,0

(
1
2

)
must be pure imaginary, and the right-hand

side of Eq. (79) must be a real number, which contradicts the left hand side.
Therefore

a0,1

(
1
2

)
= 0, a1,0

(
1
2

)
= e

1
2 ( 2πi

N +2πiK),

for some integer K. Repeating this reasoning for s = t = 1
4 , s = t = 1

8 , etc., one
obtains, by continuity,

a0,1(t) = 0 for all t, a1,0(t) = eβt, β = 2πi

(
1
N

+ K

)
. (81)

We now have

ξ(t, x, x∗) = eβtx +
∑

m+n≥2

am,n(t)xmx∗ n. (82)

Insertion of this formal series into (72) yields

am,n(s + t) = eβsam,n(t) + e(m−n)βtam,n(s), m + n = 2. (83)

This functional equation can be solved by differentiating with respect to s and
setting s = 0:(

d

dt
− β

)
am,n(t) = ȧm,n(0)e(m−n)βt, m + n = 2. (84)

(Here the dot denotes the derivative.) The Green’s function for the operator d
dt −β

appropriate to the boundary conditions (78) is

[θ(t − t′)θ(t′) − θ(t′ − t)θ(−t′)]eβ(t−t′)
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where θ is the step function. Use of this Green’s function yields

am,n(t) =
ȧm,n(0)

(m − n − 1)β
[e(m−n)βt − eβt], m + n = 2, (85)

which is easily verified to satisfy (83). Now if N is large am,n(1) (m + n = 2) must
vanish in virtue of the last of Eqs. (78). But the right-hand side of Eq. (85) does
not vanish at t = 1 unless ȧm,n(0) = 0. Therefore

am,n(t) = 0 for all t when m + n = 2, (86)

and hence

ξ(t, x, x∗) = eβtx +
∑

m+n≥3

am,n(t)xmx∗ n. (87)

Inserting this series into (72) one gets

am,n(s + t) = eβsam,n(t) + e(m−n)βtam,n(s), m + n = 3, (88)

which is identical with Eq. (83) except that now m + n = 3. The solution is the
same as before:

am,n(t) =
ȧm,n(0)

(m − n − 1)β
[e(m−n)βt − eβt], m + n = 3. (89)

It is now possible for the factor m − n − 1 in the denominator to vanish, in which
case this solution is replaced by its limit as m − n → 1:

am,n(t) = ȧm,n(0)teβt, m − n = 1. (90)

Once again, comparing (89) and (90) with the boundary condition am,n(1) = 0
(m + n = 3), one must conclude that

am,n(t) = 0 for all t when m + n = 3. (91)

In fact, continuing in this way one finds

am,n(t) = 0 for all t and all m, n with 2 ≤ m + n ≤ N. (92)

One arrives finally at the case m + n = N + 1, where one obtains

aN+1,0(t) =
1

Nβ
ȧN+1,0(0)eβt(eNβt − 1). (93)

This expression vanishes at t = 1, precisely where we do not want it to! According
to Eq. (78) we must have aN+1,0(1) = α. We have thus arrived at a contradiction.
Q.E.D.

Since only a small (infinitesimal) neighborhood of the origin is really involved
in the above analysis, it follows that the restriction to R2 is not essential. For
any differentiable manifold of dimension greater than or equal to 2 there exist C∞

diffeomorphisms arbitrarily close to the identity that do not lie on one-parameter
subgroups of C∞ diffeomorphisms.
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10. Gauge Conditions

A gauge condition is a set of constraints that picks out a subspace in the con-
figuration space Φ, of codimension equal to the dimension of the gauge group G.
The gauge condition is said to be globally valid if this subspace intersects each
orbit in precisely one point. Such a subspace exists in the Yang–Mills case only if
the gauge group corresponds to an untwisted fiber bundle. For the diffeomorphism
group it probably exists if spacetime is diffeomorphic to Rn. We confine our atten-
tion to these cases. The subspace may then be regarded as representing the orbit
manifold Φ/G. Each orbit is represented by the point at which it intersects the
subspace.

To express this idea in equations one may think of the variables ϕi as being
replaced by other variables IA, Pα, where the IA label individual orbits and are
gauge invariant, and the Pα label corresponding points in each orbit. The point on
each orbit that is selected by the given gauge condition may be chosen as the origin
of the “coordinates” Pα in that orbit. The gauge condition is then simply Pα = 0.

It will actually prove convenient to work with the continuum of gauge conditions

Pα[ϕ] = ζα, (94)

where the ζα are constants (i.e. independent of the ϕi) whose values range over
some preselected domain. Explicit functional forms for the Pα in terms of the ϕi

may be obtained (in principle) as follows. Remembering that each (generic) orbit
is a copy of G, choose the Pα to be a set of group coordinates. Since the action of
the gauge group on each (generic) orbit mimics its action on itself such P ’s must
be solutions of the functional differential equationsd

Pα
,i[ϕ]Qi

β [ϕ] = Qα
β[P [ϕ]]. (95)

The domain over which the ζα in Eq. (94) range may then be taken to be the full
domain of the group coordinates.

Equation (95) does not suffice completely to determine the Pα. Additional con-
ditions are needed to “line up” corresponding points on adjacent orbits. One possible
way to do the lining up is as follows. Introduce into the configuration space Φ one
of the metrics iγj previously discussed. Choose a generic orbit and call it the base
orbit. Call the identity element on that orbit the base point. Let V be the sub-
space of Φ generated by the set of all geodesics emanating from the base point in
directions orthogonal to the base orbit. As previously noted, these geodesics inter-
sect all orbits in their paths orthogonally. Using the fact that every pair of points
in Φ can be connected by a unique geodesic (at least in the Yang–Mills and grav-
itational cases) and the fact that a geodesic cannot be simultaneously orthogonal
to and tangent to an orbit, one can show that V ultimately intersects all orbits. To
keep it from intersecting a given orbit more than once one may terminate each of

dThese equations are readily verified to be integrable by virtue of the identities (29) and (62).
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the generating geodesics as soon as it strikes a boundary point of Φ/G. V is then
topologically (but not necessarily metrically) a copy of Φ/G.

To gain an appreciation of some of the metrical situations that can arise think
of Φ as being R3 and G as being the group of screw motions with fixed nonvanish-
ing pitch about some axis. The orbits are then helices and all, including the axis
itself, are generic. If R3 bears the Cartesian metric then the orbit space Φ/G is
topologically but not metrically a plane. Note that in this example there exist no
surfaces that intersect all orbits orthogonally, although every plane not containing
the axis is perpendicular to some orbit at its intersection point and is a surface like
V , based on that orbit.

Returning now to the general problem, we may place the identity element on
each orbit at the point where the orbit intersects V . If another subspace V ′ is
constructed like V but starting from another point on the base orbit, it too will
intersect all the orbits. Because the group operations are isometries of iγj , the Pα

will be constants over V ′. That is, once the identity points are “lined up” all the
other points are automatically lined up too. The gauge condition (94) is therefore
globally valid for all ζα in the domain G.

Unfortunately in practice it is almost hopelessly difficult to implement construc-
tions like this one, which are guaranteed to yield globally valid gauge conditions.
In the present construction, because V is generally orthogonal to none but the
base orbit, one is faced with the problem of solving global functional constraints
rather than functional differential equations. Even the functional differential equa-
tions that one has, namely Eq. (95), are highly nontrivial. In the Yang–Mills and
gravitational cases they take respectively the forms

[δPα(x)/δAβ
µ(x′)];µ′ = Gα

β(P (x))δ(x, x′), (96)

2[δPµ(x)/δgνσ(x′)];σ′ = δµ
νδ(P (x), x′), (97)

(see Eqs. (22), (28), (54) and (55)).
By far the bulk of all work on Yang–Mills theory and quantum gravity has made

use of linear gauge conditions, i.e. conditions (94) with Pα taken in the form

Pα[ϕ] = Pα
i [ϕB]φi, φi = ϕi − ϕi

B (98)

where ϕi
B is some fiducial field, often called a background field. To ensure that

the subspaces defined by (94) do indeed intersect the orbits uniquely, at least in
the vicinity of the background field and with the ζα close to zero, one often makes
use of the orthogonality idea by choosing

Pα
i [ϕB] = (−1)α(j+1)Qi

α[ϕB] jγi[ϕB ]. (99)

For example, if iγj has the form (43) then, with the choice (99), the condition
Pα = 0 becomes

g
1/2
B (2φ ν

µ + λδ ν
µ φ σ

σ );ν = 0, φµν = gµν − gBµν . (100)
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Here indices are raised and lowered by means of the background metric gBµν and
the covariant derivative is defined in terms of it. With λ set equal to −1 (see the
comments following Eqs. (46) and (47)) this is a very popular gauge condition in
quantum gravity. The corresponding condition in Yang–Mills theory, with iγj given
by Eq. (45), is

φ µ
α ;µ = 0, (101)

φα
µ = Aα

µ − A α
B µ. (102)

Here indices are raised and lowered by means of the metrics γαβ and ηµν and the
covariant derivative is defined in terms of the background field A α

B µ. Condition
(101) is known as the Lorenz condition.

Linear gauge conditions are extremely convenient in perturbation theory, where
the field ϕi is treated as if it never gets very far from the background ϕ i

B . Covariant
(with respect to the background) gauge conditions like (100) and (101) are usually
the best, but for some purposes noncovariant gauges (e.g., the Coulomb gauge in
Yang–Mills theory) are more useful. In non-perturbative studies, however, linear
gauge conditions have to be used with great care (see Gribov (1977)). At least five
things can go wrong with linear gauge conditions when applied globally:

(1) The subspace defined by a linear condition may or may not have a boundary,
and if it does this boundary may not coincide with the boundary (if any) of
Φ/G.

(2) The subspace defined by a linear condition may intersect some orbits more than
once.

(3) There may be some orbits that it does not intersect at all.
(4) Even if it intersects all orbits when the ζα in Eq. (94) have certain values, it

may not intersect all orbits when the ζα have other values. This means that
there is no natural domain for the ζα.

(5) When G is “twisted” there are no globally valid gauge conditions at all, linear
or otherwise.

If any of the above situations hold, the subspace defined by (94) will not rep-
resent Φ/G faithfully. It is possible in some cases to patch things up so that the
advantages of linear gauge conditions can be maintained. This has been done in cer-
tain global studies in Yang–Mills theory. However, the diffeomorphism group, as we
have repeatedly emphasized, is a much more complicated group than the Yang–Mills
group and both the difficulties to which it gives rise globally and the opportuni-
ties that it presents for technical innovation are almost unknown at the present
time. In order to keep all options open we shall first develop the formal theory
using foolproof gauge conditions, such as those based on group coordinates, and
then make some remarks about how things might go when other gauge conditions
are used.
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11. The Action. Vertex Functions. Renormalizability

The dynamical behavior of any field is determined by its action functional S. The
action functionals of (pure) Yang–Mills and gravity theories are respectively

SA = −1
4

∫
FαµνFαµνdnx, (103)

Sg = 2
∫

g1/2Rdnx. (104)

As long as the limits of integration are not specified these integrals must be regarded
as purely formal expressions that serve merely to yield the dynamical equations:

0 = δSA/δAα
µ ≡ −F µν

α ;ν , (105)

0 = δSg/δgµν ≡ −2g1/2

(
Rµν − 1

2
gµνR

)
. (106)

For some purposes, however, values need to be assigned to the actions. Integration
boundaries must then be specified and, in the case of the gravitational field, a
surface integral must be split off from Eq. (104) so that the integrand involves
derivatives of gµν of order no higher than the first.

We refer the student to standard references (e.g., Misner, Thorne and Wheeler
(1973)) for analyses of the initial value problems associated with Eqs. (105) and
(106). From these analyses it is readily deduced that in a spacetime of n dimen-
sions the Yang–Mills field has n − 2 degrees of freedom per spatial point and the
gravitational field has 1

2n(n − 3).
In the generic notation, Eqs. (103) and (104) are written

S,i = 0. (107)

Gauge invariance of the theory is guaranteed by the identity

S,iQ
i
α = 0, (108)

or, more explicitly,

F µν
α ;νµ = 0, 4

[
g1/2

(
Rµν − 1

2
gµνR

)]
;ν

= 0. (109)

The left hand side of Eq. (107) transforms linearly under the gauge group and
hence the gauge group leaves the field equations intact. This is most easily seen by
functionally differentiating Eq. (108), which yields

δS,i = S,ijδϕ
j = S,ijQ

j
αδξα = −(−1)iαS,jQ

j
α,iδξ

α. (110)

The action functionals (103), (104) may be expanded in functional Taylor series
about a background field. In generic notation one writes

S = SB + (S,i)Bφi +
1
2!

(S,ij)Bφjφi +
1
3!

(S,ijk)Bφkφjφi + · · · , (111)

φi = ϕi − ϕ i
B.
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If the background fields satisfy the classical field equations then the second term
on the right may be omitted.

The functional derivatives (S,i1···iN )B with N ≥ 3 are known as (bare) vertex
functions. In the case of the Yang–Mills field the vertex functions with N > 4
vanish and the Taylor series terminates. In the case of the gravitational field the
series may or may not terminate depending on what choice is made for the basic
field variables. By expressing inverse matrices in terms of minors and determinants,
and by examining the number of determinants needed to yield unit total weight for
the integrand of (104), one easily verifies that if the basic field variables are taken
to be Gµν ≡ grgµν and r is chosen to be 5/(4n + 2) then the vertex functions with
N > 2n + 1 vanish. Alternatively, if Gµν = g−rgµν are chosen as the basic field
variables, with r = 5/(6n− 2), then the vertex functions with N > 3n− 1 vanish.e

There are three reasons, however, why neither of these choices is useful. First, the
vertex functions of gravity theory are exceedingly complicated, involving thousands
of terms already for N = 4. Nobody is going to work out the vertex functions
up to maximum order even with the aid of a computer. Second, any imagined
advantage in these choices is lost as soon as one tries to introduce dimensional
regularization into the quantum theory. A specific choice of field variables has then
to be made, and it cannot vary continuously with the dimension. Third, although
a series that terminates has an infinite radius of convergence, the range of the
variables φµν ≡ Gµν − G µν

B or φµν ≡ Gµν −GBµν is in fact limited. These variables
must avoid regions where the signature of the metric tensor changes.

The third reason is the most important, at least in perturbation theory. As is
well known, the Feynman rules are obtained by inserting the expansion (111) into
the Feynman functional integral (see the next section) and evaluating the integral as
a sum (asymptotic series) of Gaussian integrals, with the φi ranging from −∞ to ∞.
Any constraint on the φi would make these integrals almost impossible to evaluate,
and although one may for some purpose wish to extend the Feynman integrand
into nonphysical regions, one never does this by naively removing constraints.

These remarks suggest, in fact, that none of the variables (40) is good to use in
perturbation theory. A better choice would be something like

φ ≡ [ln(gη−1)]η, g = eφη−1
η, φ ≡ (φµν), g ≡ (gµν),

η ≡ (ηµν), η−1 ≡ (ηµν),
(112)

which maintains the signature of the spacetime metric. With these variables the
series (111), of course, does not terminate, and one speaks of gravity theory as being
a non-polynomial Lagrangian theory (Isham, Strathdee and Salam (1971),
(1972)). It will be noted that all such “safe” variables inevitably transform non-
linearly under the diffeomorphism group.

Regardless of the choice of variables it is not difficult to draw preliminary conclu-
sions about the renormalizability or nonrenormalizability (in perturbation theory)

eBoth of these choices require n �= 2. (See Eqs. (40).)
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of a given quantum field theory. Although momentum space is not, in an absolute
sense, appropriate for use in quantum gravity, conclusions about the high energy
behaviour of amplitudes in perturbation theory may be safely drawn with its aid.
Consider a Feynman graph with Le external lines, Li internal lines, and VN Nth-
order vertices (N ≥ 3). Le, Li and VN are related by the topological condition

Le + 2Li =
∑
N

NVN . (113)

The number of independent closed loops, or momentum integrations, in the graph
is given by

I = Li −
∑
N

VN + 1. (114)

In quantum gravity 2 powers of momentum are associated with each vertex, −2
powers with each internal line, and n powers with each momentum integration.
The superficial degree of divergence of the graph is therefore

D = −2Li + 2
∑
N

VN + nI = (n − 2)I + 2, (115)

which, for n > 2, increases without limit as the number of independent closed
loops increases. This means that for n > 2, there is an infinite number of primitive
divergences, and, if one attempts to compute order by order, an infinite number of
experimentally determined coupling constants is needed to determine the theory.
These conclusions are not altered if account is taken of the “ghost” contributions
which, as we shall see in the following sections, must be included. The theory is
said to be nonrenormalizable.

In Yang–Mills theory, in contrast, only one power of momentum is associated
with each 3rd-order vertex, and the 4th-order vertices have no momentum depen-
dence at all. This leads to

D = −2Li +
∑
N

(4 − N)VN + nI = 4 + (n − 4)I − Le. (116)

For n > 4 this theory too is nonrenormalizable, but for n = 4 and an arbitrary
background field there are only four primitive divergences (corresponding to L =
1, 2, 3, 4), and the theory is renormalizable. The proof of renormalizability is not
trivial and depends crucially on gauge invariance as well as some of the formal
developments to be discussed in the following sections. The primitive divergences
turn out to be related in virtue of gauge invariance.

The nonrenormalizability of standard quantum gravity has stimulated investi-
gations of alternative theories in which terms of the form g1/2(αR2 + βRµνRµν)
are added to the integrand of expression (104). Such theories generally suffer from
“physical ghosts” with negative probabilities, but they do improve the convergence
situation. Each vertex now carries 4 powers of momentum and each internal line
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carries −4 powers. This leads to

D = −4Li + 4
∑
N

VN + nI = (n − 4)I + 4. (117)

When n = 4 all diagrams have the same superficial degree of divergence, namely
4. There is an infinity of primitive divergences, but they are all related by gauge
invariance, and only three experimental coupling constants are required. The proof
of renormalizability has been carried out by Stelle (1977) using methods similar to
those applied to Yang–Mills theory.

It will be observed, by virtue of Eq. (115), that the same methods should work
in the case of standard quantum gravity when n = 2, although since the number of
degrees of freedom in the field is then negative it is not clear what such a theory
means. Weinberg (1979) has studied the asymptotic stability of quantum gravity
when n = 2+ε, ε 	 1, and has given plausibility arguments concerning its relevance
for trying to make sense out of the theory when n = 4.

In addition to its ultraviolet divergences quantum gravity also possesses infrared
divergences. Gravitational field quanta -gravitons- are massless. In fact this itself
need not lead to difficulties worse than those encountered in quantum electrodynam-
ics where the divergences are completely understood and are removable by standard
methods. Gravitons, however, are coupled to other massless quanta (photons, neu-
trinos, etc.) as well as to themselves. In Yang–Mills theory as well as in massless
electrodynamics such a situation gives rise to infrared divergences of a new type that
cannot be removed by standard techniques or argued away on physical grounds. In
quantum gravity these new divergences are miraculously absent (Weinberg (1965)
and DeWitt (1967c)). It appears therefore that the mysteries of Yang–Mills theory
and gravity theory lie at opposite ends of the momentum spectrum. There is an
increasing body of evidence that the Yang–Mills field solves its infrared dilemma by
adopting a nonstandard behaviour at long wavelengths, which is intimately related
to the phenomena of quark confinement and dynamical symmetry breaking. These
phenomena may also bear a technical relation to the failure of gauge conditions to
be globally valid in Yang–Mills theory (Gtibov (1977)). No analogous phenomena
are known to exist for gravity, at least when spacetime is diffeomorphic to Rn.
The mysteries of gravitation theory thus appear to lie solely at the high end of the
momentum spectrum.

12. The Feynman Functional Integral. Factoring Out the
Gauge Group

Consider a transition amplitude of the form 〈out|in〉 where the vectors |in〉 and |out〉
refer to states in which the field is maximally specified (in the quantum mechanical
sense, e.g., in terms of complete sets of commuting observables) in regions “in”
and “out” respectively. These states need not be “vacuum” states and the regions
“in” and “out” need not refer to the infinite past and future respectively. If the
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background field (which enters naturally in most calculations) has singularities in
the past and/or future, |in〉 and |out〉 may be defined not in terms of observables
at all but by some analytic continuation procedure (e.g., to the “Euclidean sector”)
that removes the singularities. It will be assumed only that the “in” and “out”
regions lie respectively to the past and future of the region of dynamical interest.

There are many ways of showing that the amplitude 〈out|in〉 can be expressed
as a formal functional integral:

〈out|in〉 = N

∫
eiS[ϕ]µ[ϕ]dϕ, dϕ ≡

∏
i

dϕi. (118)

Here N is a normalization constant, S[ϕ] is the classical action functional, µ[ϕ] is
chosen to make the “volume element” µdϕ gauge invariant (see Eq. (50)), and the
integration is to be extended over all fields ϕ that satisfy the boundary conditions
appropriate to the given “in” and “out” states. We have remarked earlier (and will
show later) that µ may be set “effectively” equal to unity if the ϕi are chosen to
transform linearly under the gauge group. We shall assume that such a choice has
been made and henceforth drop µ from the theory. (It can always be restored if
desired.)

Expression (118) was first derived by Feynman (1948) in ordinary quantum
mechanics, without gauge groups, and later (1950) applied by him to field theory.
The full extension to field theories with gauge groups is the work of many people,
and the student is referred to the literature for details.f When the Feynman integral
is applied to the gravitational field the only additional comment that needs to be
made is that the integration may have to embrace as many topologies as can be
reached by analytic continuation from the given background topology.

If any of the fields ϕi in (118) are fermionic the integration with respect to
them is to be carried out according to the formal rules for integrating with respect
to anticommuting variables that were first introduced by Berezin (1966). These
rules are analogous in many ways to the well known rules for ordinary definite
integrals from −∞ to ∞ with integrands that vanish asymptotically. For example,
integrals of total derivatives vanish, and the position of the zero point may be
shifted. On the other hand, with Berezin rules, transformations of variables and
evaluation of Gaussian integrals lead to determinants precisely inverse to those
of standard theory. When both bosonic and fermionic fields are involved it is the
super determinant that appears.

All physical amplitudes can be deduced from expression (118) by examining
how 〈out|in〉 changes under variations in the action. Physical amplitudes can alter-
natively be obtained by judicious use of

〈out|T (A[ϕ])|in〉 = N

∫
A[ϕ]eiS[ϕ]dϕ, (119)

fUseful modern references are Fadde’ev (1969), (1976) and Abers and Lee (1973).
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where A[φ] is any functional of the field operators ϕi, and the T symbol removes
ambiguities about ordering the ϕi by arranging them chronologically (with appro-
priate ± signs thrown in if any of the ϕi are fermionic).

When a gauge group is present the integration in Eq. (118) is redundant. Fur-
thermore Eq. (119) is generally ambiguous, unless A is gauge invariant, in which
case the integration in Eq. (119) too is redundant. This is because, owing to the
gauge invariance of the classical action, the exponent in the integrands of Eqs. (118)
and (119) remains constant as ϕ ranges over a group orbit in the configuration space
Φ. One can remove this redundancy and/or ambiguity by adopting a gauge condi-
tion like Eq. (94). The details of the procedure were first given by Fadde’ev and
Popov (1967).

Let ξ be an element of the gauge group G, with coordinates ξα, and let ξϕ be
the field to which ϕ is displaced under the action of ξ. Define

�[ζ, ϕ] ≡
∫

G

δ[P [ξφ] − ζ]detQ−1[ξ]dξ, dξ ≡
∏
α

dξα, (120)

where δ[ ] is the delta functional, Pα are the functionals appearing in Eq. (94), Q−1

is the inverse of the matrix formed out of the Qα
β of Eq. (53), and the integration

extends over the entire gauge group! We shall assume that the gauge condition (94)
is globally valid. The integrand in Eq. (120) then “switches on” at only one point
in G, namely that point for which ξϕ is equal to the unique field ϕζ lying on the
orbit containing ϕ and picked out by the gauge condition:

Pα[ϕζ ] = ζα. (121)

By building infinitesimal parallelepipeds in the group manifold G and mak-
ing use of Eq. (53) one can verify that the combination detQ−1[ξ]dξ appearing in
Eq. (120) is a right-invariant volume element, satisfying

detQ−1[ξξ′]d(ξξ′) = detQ−1[ξ]dξ for all ξ′ in G. (122)

The presence of this volume element renders the functional gauge invariant:

�[ζ, ξ′
ϕ] = �[ζ, ϕ] for all ξ′ in G. (123)

Several comments must be made about its use, however. In the case of the diffeo-
morphism group, with the Q’s given by Eq. (54), it is easily checked that

Q−1µ
ν′ [ξ] = δµ

νδ(x, ξ(x′))
∂(ξ(x′))
∂(x′)

. (124)

No one has ever discovered how to evaluate or give a meaning to the determinant of
this continuous matrix. The right-invariant volume element of the diffeomorphism
group, therefore, can only be defined (and used) purely formally. The same is true for
the invariance group of supergravity theory. It should be noted that when the group
is a supergauge group, possessing anticommuting as well as commuting coordinates,
det Q−1 is a superdeterminant, and the integral (120) involves the Berezin rules.
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(Remark: the delta functional in Eq. (120) presents no difficulty. Delta functions
of anticommuting variables turn out to be easy to define. They can even be given
Fourier representations.)

The gauge invariance of � makes it an easy functional to evaluate. One has
only to shift ϕ to ϕζ so that the integrand in Eq. (120) switches on at the identity
element I. All quantities can then be expanded in power series in ξα − Iα. For
example, the argument of the delta functional becomes

Pα[ξϕζ ] − ζα = Pα[ϕζ ] − ζα + Pα
,i[ϕζ ]Qi

β [ϕζ ](ξβ − Iβ) + · · ·
= Fα

β [ϕζ ](ξβ + Iβ) + · · · (125)

where

Fα
β [ϕ] ≡ Pα

,i[ϕ]Qi
β [ϕ]. (126)

Similarly, making use of Eq. (68), we find

Q−1α
β [ξ] = δα

β − Qα
β,γ [I](ξγ − Iγ) + · · · (127)

and hence

�[ζ, ϕ] =
∫

G

δ[F [ϕζ ](ξ − I) + · · · ][1 − (−1)αQα
α,β [I](ξβ − Iβ) + · · · ]dξ

= (detF [ϕζ ])−1, (128)

F being the matrix with elements Fα
β. If any of the group indices is fermionic

the determinant is again a superdeterminant. Note that if the P ’s are constructed
according to Eq. (95), F [ϕ] is identical to the matrix Q[P [ϕ]]. Although this con-
struction will not be assumed in what follows, we shall, for simplicity and conve-
nience, assume that the gauge condition (94) is globally valid for all ζα lying in the
ranges of the functionals Pα[ϕ].

The next step is to insert unity into the integrand of Eq. (118), in the guise of

(�[ζ, ϕ])−1

∫
G

δ[P [ξϕ] − ζ]detQ−1[ξ]dξ,

and interchange the order of integrations, obtaining

〈out|in〉 = N

∫
G

detQ−1[ξ]dξ

∫
dϕeiS[ϕ](�[ζ, ϕ])−1δ[P [ξϕ] − ζ]. (129)

We have assumed a choice of variables for which the volume element dϕ is gauge
invariant (µ = 1). S[ϕ] and �[ζ, ϕ] are also gauge invariant. Therefore a superscript
ξ may be affixed to every ϕ in the integrand of (129) that does not already bear
one. But every ξϕ is then a dummy, and hence all the ξ’s may be removed. Making
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use of Eq. (128) one immediately obtains

〈out|in〉 = N ′
∫

eiS[ϕ]detF [ϕ]δ[P [ϕ] − ζ], (130)

where F [ϕζ ] has been replaced by F [ϕ] in the integrand because of the presence of
the delta functional, and where

N ′ ≡ N

∫
G

detQ−1[ξ]dξ. (131)

The gauge group has now been factored out, and its “volume” has been absorbed
into the new normalization constant N ′. The integration in Eq. (130) is restricted
to the subspace Pα[ϕ] = ζα.

The technique of confining the fields ϕi to a particular subspace can also be used
to remove the ambiguity from the integral (119) when A[ϕ] is not gauge invariant.
Strictly speaking, matrix elements are definable only for gauge invariant operators.
However, given a non-gauge-invariant operator A[ϕ], one can construct a gauge
invariant operator out of it by the following definition:

T (A[ϕ
ζ
]) ≡ T

(
(�[ζ, ϕ])−1

∫
G

A[ξϕ]δ[P [ξϕ] − ζ]detQ−1[ξ]dξ

)
. (132)

The chronological ordering symbol is used here so that the non-commutativity (or
anti-commutativity) of A[ξϕ] with both (�[ζ, ϕ])−1 and the delta functional can
be effectively ignored. Note that because the gauge group acts linearly on the ϕ’s
there is no ambiguity about the symbol ξϕ. Note, however, that diffeomorphisms
in gravity theory can drag the field in very complicated ways. The chronological
operation, which orders field operators solely by the value of the coordinate x0,
rearranges the “physical” fields in correspondingly complicated ways as the variable
ξ in the integral (132) ranges over the group.

Applying Eq. (119) to the operator T (A[ϕ
ζ
]) and following the same reasoning

as was used in passing from Eq. (129) to Eq. (130), one finds

〈out|T (A[ϕ
ζ
])|in〉 = N ′

∫
A[ϕ]eiS[ϕ]detF [ϕ]δ[P [ϕ] − ζ]dϕ, (133)

valid for any functional A[ϕ].

13. Averaging Over Gauges

It is possible to develop a perturbation theory based on Eqs. (130) and (133),
but it is usually more convenient to work with a formalism from which the delta
functionals have been eliminated. Note that although the parameters ζα appear on
the right side of Eq. (130), the amplitude 〈out|in〉 is actually independent of them.
Therefore nothing changes if we integrate over these parameters, with a weight
factor.
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In practically all studies of non-Abelian gauge theories to date, Gaussian weight
factors of the form

exp
(

1
2
iζα

αMβ ζβ

)
,

where M is a nonsingular constant matrix having the symmetry

αMβ = (−1)α+β+αβ
βMα,

have been used. From a fundamental standpoint a Gaussian weight factor can be
used only if the bosonic ζ’s can range from −∞ to ∞ without the gauge condition
(94) becoming globally invalid — for example, if the P ’s satisfy Eq. (95), with
Qα

β’s based on canonical group coordinates (Eq. (69)). This condition, however, is
almost universally violated. Indeed, the Gaussian weight function is most frequently
employed in combination with linear gauge conditions like Eq. (98), where it almost
certainly introduces errors globally (i.e. in non-perturbative analyses).

In the case of quantum gravity, where the gauge group has no canonical coor-
dinates, it seems particularly inappropriate to confine our attention to Gaussian
weight factors. We shall therefore introduce a more general weight factor, of the
form exp(iU [ζ]), where we specify nothing about the functional U [ζ] except the
following three conditions:

(1) U becomes infinite on the boundary of the allowable domain of the ζ’s (which
domain we are assuming coincides with the range of the P [ϕ]’s).

(2) U and all its first functional derivatives U,α vanish at some chosen point (e.g., at
ζα = Iα when the P ’s are group coordinates); its second functional derivatives
U,αβ, however, form a nonsingular continuous matrix at that point.

(3) U vanishes nowhere else, and its first derivatives all vanish simultaneously
nowhere else.

The third condition is imposed mainly for convenience. Note that all three are
satisfied by the Gaussian exponent 1

2ζα
αMβ ζβ whenever it can be legitimately

used.
Inserting exp(iU [ϕ]) into the integrand of Eq. (130) and integrating over the

ζ’s, one obtains

〈out|in〉 = N ′′[U ]
∫

ei(S[ϕ]+U [P [ϕ]])detF [ϕ]dϕ, (134)

N ′′[U ] ≡ N ′∫
eiU [ζ]dζ

, (135)

the integration domain in Eq. (135) being understood to be the allowable domain
of the ζ’s. Equation (133) too may be replaced by a weighted average. Defining

T (A[ϕ]) ≡
(∫

eiU [ζ]dζ

)−1 ∫
T (A[ϕζ ])eiU [ζ]dζ, (136)



February 8, 2008 9:29 WSPC/IJGMMP-J043 00267

An Introduction to Quantum Gravity 133

one may write

〈out|T (A[ϕ])|in〉 = N ′′[U ]
∫

A[ϕ]ei(S[ϕ]+U [P [ϕ]])detF [ϕ]dϕ. (137)

Equation (137), and generalizations of it, will be used frequently in the following
sections. Definitions (132) and (136) reveal precisely what kind of averaged quantum
operator is associated with each classical functional A[ϕ] in this formalism. Note
that if f [ζ] is any functional of the ζ’s we have

T (f [P [ϕζ]]) = f [ζ] (138)

and

〈out|T (f [P [ϕ]])|in〉 = 〈f〉〈out|in〉 (139)

where

〈f〉 ≡
∫

f [ζ]eiU [ζ]dζ∫
eiU [ζ]dζ

. (140)

Having so freely manipulated formal expressions we should now check that no
inconsistencies have crept into our results, by verifying directly that the right side
of Eq. (134), for example, is truly independent of the choices we have made for the
functionals Pα[ϕ] and U [ζ]. Obviously the right side will be affected if we naively
switch to P ’s for which the gauge condition (94) is no longer globally valid for all
ζ’s in the range of the P ’s. Therefore we must assume that the changes δPα (which,
without loss of generality, may be taken infinitesimal) maintain global validity.

We also confine our attention to changes δU that leave the location of the zero
of U , as well as the three conditions that we imposed upon U , intact. It is not
difficult to see that δU may then always be expressed in the form

δU [ζ] = U,α[ζ]δV α[ζ], (141)

where the δV α vanish at the zero of U . Note that under this change we have

δN ′′[U ] = −iN ′′[U ]
∫

eiU [ζ]U,α[ζ]δV α[ζ]dζ∫
eiU [ζ]dζ

= N ′′[U ]〈(−1)αδV α
,α〉, (142)

the final form being obtained by an integration by parts in which the boundary of
the integration domain contributes nothing because exp(iU [ζ]) oscillates infinitely
rapidly there.

Making use of Eqs. (126), (139), (141) and (142) we now have

δ〈out|in〉 = N ′′[U ]
∫

ei(S[ϕ]+U [P [ϕ]]){(−1)αδV α
,α[P [ϕ]]

+ iU,α[P [ϕ]](δV α[P [ϕ]] + δPα[ϕ])

+ (−1)αF−1α
β [ϕ]δP β

,i[ϕ]Qi
α[ϕ]}detF [ϕ]dϕ, (143)

where the inverse F−1, if it is a Green’s function (as it often will be), must satisfy
the boundary conditions appropriate to the “in” and “out” states. The integral
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(143) does not obviously vanish. The way to show that it is nevertheless zero is as
follows. Replace each ϕi in the integral (134) by ϕi, where

ϕi = ϕi + Qi
α[ϕ]δξα[ϕ], (144)

δξα[ϕ] = F−1α
β [ϕ](δV β [P [ϕ]] + δP β [ϕ]). (145)

Since the ϕ’s are just dummies this replacement has no effect. However, it is not
difficult to show that the net apparent change in the integral is given precisely by
Eq. (143) provided one is entitled to make the identifications

(−1)i(α+1)Qi
α,i = 0, (−1)β(α+1)Cβ

αβ = 0. (146)

We shall comment on these equations presently.
It is easy to see that the second term inside the curly brackets in Eq. (143)

comes from the change that the replacement ϕ → ϕ induces in the exponent of
Eq. (134). That the first and third terms come from the change in the product
detF [ϕ]dϕ may be shown as follows. First compute

φ
i

,j = δi
j + (−1)jαQi

α,j [ϕ]δξα[ϕ]

−Qi
α[ϕ]F−1α

β [ϕ]((−1)jkP β
,kj [ϕ]Qk

γ [ϕ] + (−1)jγP β
,k[ϕ]Qk

γ,j[ϕ])δξγ [ϕ]

+ Qi
α[ϕ]F−1α

β [ϕ](δV β
,γ [P [ϕ]]P γ

,j [ϕ] + δP β
,j[ϕ]),

which, after rearrangement of some factors and use of Eq. (126), yields the (super)
Jacobian

det(φ
i

,j) = 1 + (−1)i(α+1)Qi
α,i[ϕ]δξα[ϕ]

−F−1α
β [ϕ]((−1)α(j+1)P β

,ji[ϕ]Qi
α[ϕ]Qj

γ [ϕ]

+ (−1)α(γ+1)P β
,j[ϕ]Qj

γ,i[ϕ]Qi
α[ϕ])δξγ(ϕ)

+ (−1)αδV α
,α[P [ϕ]] + (−1)αF−1α

β [ϕ]δP β
,i[ϕ]Qi

α[ϕ]. (147)

Combining δdϕ ≡ dϕ − dϕ = [det(ϕi
,j) − 1] with

δdetF [ϕ ≡ detF [ϕ] − detF [ϕ] = (−1)αdetF [ϕ]F−1α
β [ϕ]F β

α,i[ϕ]Qi
γ [ϕ]δξγ [ϕ]

= (−1)αdetF [ϕ]F−1α
β [ϕ]((−1)αiP β

,ij [ϕ]Qj
α[ϕ]Qi

γ [ϕ]

+ P β
,j [ϕ]Qj

α,i[ϕ]Qi
γ [ϕ])δξγ [ϕ],

and making use of Eq. (29), one finds for the change in detF [ϕ]dϕ under the replace-
ment ϕ → ϕ,

δ(detF [ϕ]dϕ) = {[(−1)i(α+1)Qi
α,i − (−1)β(α+1)Cβ

αβ ]δξα[ϕ] + (−1)αδV α
,α[P [ϕ]]

+ (−1)αF−1α
β[ϕ]δP β

,i[ϕ]Qi
α[ϕ]}detF [ϕ]dϕ. (148)

If Eqs. (146) are assumed to hold one is left with precisely the first and third terms
inside the curly brackets in Eq. (143).
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Equations (146) were not needed in the derivation of Eq. (134). Why are
they needed now? When the gauge group has no anticommuting coordinates the
answer is that Eqs. (146) are forced on us by the procedure of factoring out the
gauge group. Our interchanging the orders of integration in arriving at Eq. (129),
and our use of Eq. (131), amount to adopting the rule that the gauge group
is to be treated formally as if it were compact. For consistency the associated
Lie algebra must likewise be treated as compact. The generators of real repre-
sentations of compact Lie algebras all have vanishing trace. Hence Eqs. (146).
(Remember, we are assuming that the ϕ’s transform linearly under the gauge
group.)

In Yang–Mills theories Eqs. (146) hold automatically because the generating
group is always compact. In gravity theory the situation is more subtle. Both Qi

α,i

and Cβ
αβ , if one tries to compute them from Eqs. (28) and (35), are meaning-

less expressions involving derivatives of delta functions with coincident arguments.
However, both are metric-independent covariant vector densities of unit weight.
Any sensible regularization scheme must assign them the value zero, for otherwise
spacetime would be endowed with a preferred direction even before a metric is
imposed on it.

If G is a supergauge group, with anticommuting coordinates, the formal com-
pactness argument fails. But the notion of simplicity, or semisimplicity, survives.
The invariance groups of all known supergauge theories are semisimple, and the
generators of real representations of such groups satisfy the supertrace laws (146).
The semisimplicity argument can also be invoked in the case of the local frame
group, which enters when the gravitational field is expressed in terms of local frame
components rather than directly in terms of the metric tensor (e.g., when spinor
fields are present).

If we choose ϕ’s that do not transform linearly under the group then the func-
tional µ[ϕ] of Eq. (118) has to be reintroduced into the theory. It is easy to verify
that consistency of the above formalism is maintained under these circumstances
provided the first of Eqs. (146) is replaced by Eq. (50), which is just the condition
that the product µ[ϕ]dϕ be gauge invariant. Equation (50) is, of course, consistent
with the first of Eqs. (146) when µ = 1.

At this point the student may object that, in the case of quantum gravity at
least, there appears to be an inconsistency in what we have done. Consider the
sets of variables defined by Eqs. (40). All of these sets transform linearly under
the diffeomorphism group. However, the Jacobian that arises in transforming from
one set to another is not generally constant. How can one maintain µ = con-
stant for all sets? The answer is that one must. If the Jacobian is replaced by
the exponential of its logarithm, it contributes a formally divergent term of the
form const. × δ(0)

∫
lngdnx to the exponents in the Feynman functional integrals.

All terms of this kind must be suppressed by any viable regularization scheme.
By this criterion the dimensional regularization method, for example, is a viable
scheme.
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14. Ghosts. The BRS Transformation. The Generating Functional

The perturbation rules to which Eqs. (134) and (137) lead may be summarized as
follows. The exponent in the integrands is, as usual, expanded about a stationary
background ϕB, and the integrals are evaluated as series of Gaussian integrals.
If exp(iU) is a Gaussian weight factor and the Pα are chosen (unwisely) to have
the linear form (98), then the vertex functions are just the functional derivatives
S,i1...iN , N ≥ 3. Otherwise the vertex functions include contributions from U [P [ϕ]].
In addition to the usual graphs that one can draw there is an infinite set of new
graphs arising from the factor detF [ϕ], involving a new set of “formal particles”
called ghosts. The inverse matrix F−1α

β [ϕ] is the bare ghost propagator in an
arbitrary field ϕ, i.e. with an arbitrary number of ϕ-lines attached. The ghost
propagators always enter in closed loops, never as external lines.

The conditions previously imposed on the functional U ensure that the ϕ-
propagator exists. The presence of U [P [ϕ]] in the exponents of expressions (134)
and (137) breaks the gauge symmetry and eliminates the redundancy that exists
in the integration (118). An important symmetry nevertheless survives. It is most
easily revealed by introducing two new fields, χα and ψα, that have the unusual
property of being fermionic when the index α is bosonic and vice versa. Use of these
fields together with the Berezin integration rules allows one to express detF [ϕ] in
the form ∫

eiχαF α
β [ϕ]ψβ

dχ dψ = C detF [ϕ], (149)

where C is a (divergent) constant, and hence

〈out|in〉 = N [U ]
∫

ei(S[ϕ]+U [P [ϕ]]+χF [ϕ]ψ)dϕ dχ dψ (150)

N [U ] ≡ N ′′[U ]/C. (151)

Equation (150) shows that the fields χα, ψα are associated with the ghost particles,
which are now placed on a common footing with the ϕ-particles.

It was discovered by Becchi, Rouet and Stora (BRS) (1975) that both the expo-
nent and the volume element dϕ dχ dψ in Eq. (150) are invariant under a set of
transformations whose infinitesimal forms are given by

dϕi = Qi
α[ϕ]ψα δλ, δχα = δλ U,α[P [ϕ]], δψα = −1

2
Cα

βγψγ δλ ψβ , (152)

where δλ is an arbitrary infinitesimal anticommuting constant. Using the special
(anti)commutativity properties of the χ’s and ψ’s, together with the identity (29)
and the definition (31), one readily verifies the invariance of the exponent. By
computing the super-Jacobian of the BRS transformation one finds that the volume
element dϕ dχ dψ is likewise invariant, provided Eqs. (146) are assumed to hold.
It is also straightforward to verify that, if confined to the ϕ’s and ψ’s, the BRS
transformations constitute an Abelian group. Inclusion of the χ’s destroys the group
property unless Fα

β [ϕ]ψβ = 0. Note that the BRS transformations do not constitute
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a local gauge group. The δλ’s are constants; they are not functions over spacetime.
Thus the integral (150) contains no redundancy.

The BRS transformations play an important role in simplifying the derivation
of the “Ward–Takahashi identity” satisfied by the so-called generating functional.
What follows is a partial account, adapted to the case in which the P ’s are nonlinear
and exp(iU) is non-Gaussian, of the theory of the generating functional given by
B. W. Lee (1976) and originally due to Zinn–Justin.

One begins by replacing the exponent in Eq. (150) by

S̃[ϕ, χ, ψ, K, L, M ] + Jiϕ
i + J

α
χα + Ĵαψα,

where

S̃[ϕ, χ, ψ, K, L, M ] ≡ S[ϕ] + U [P [ϕ]] + χαFα
β [ϕ]ψβ

+ {Ki + M(U [P [ϕ]]),i}Qi
α[ϕ]ψα

− 1
2
(−1)βLαCα

βγψγψβ (153)

and by generalizing Eq. (137) to

〈out|T (A[ϕ, χ, ψ])|in〉 ≡ N [U ]
∫

A[ϕ, χ, ψ]ei(eS+Jϕ+Jχ+ bJψ)dϕ dχ dψ. (154)

Ji, J
α
, Ĵα, Ki, Lα and M are external sources,g and the “matrix element” (154)

is a functional of them. Ji and Lα are bosonic when their indices are bosonic and
fermionic when their indices are fermionic. With J

α
, Ĵα and Ki the association is

just the opposite. M is fermionic.
If the functional A in (154) is replaced by unity one gets a generalization of the

“in-out” amplitude:

eiW [J,J, bJ,K,L,M ] ≡ 〈out|in〉
≡ N [U ]

∫
ei(eS+Jϕ+Jχ+ bJψ)dϕ dχ dψ. (155)

This generalized amplitude is called the generating functional, because if it is
expanded in a power series in the sources Ji, J

α
and Ĵα the coefficients are the

matrix elements of chronological products of field operators. The coefficient of zero
order reduces to the original amplitude (150) when Ki, Lα and M vanish.

The functional S̃ may be viewed as a generalized action functional. With the aid
of Eqs. (29) and (36) one may readily show that it is BRS invariant. Suppose the
variables ϕ, χ, ψ in the integrand of Eq. (155), as well as in the volume element, are
subjected to a BRS transformation. Since these variables are dummies the integral
remains unaffected. Explicitly, however, the terms in J, J, Ĵ change. Therefore

0 = iN [U ]
∫ {

JiQ
i
α[ϕ]ψα + (−1)αJ

α
U,α[P [ϕ]] +

1
2
(−1)βĴαCα

βγψγψβ

}
× ei(eS+Jϕ+Jχ+ bJψ)dϕ dχ dψ. (156)

gM is a constant. The others depend, through their indices, on position in spacetime.
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This result can be expressed in an alternative form through use of

0 =
∫

δ

δχα

{
f [ϕ]ei(eS+Jϕ+Jχ+ bJψ)

}
dϕ dχ dψ

= i

∫ {
Fα

β [ϕ]ψβ − (−1)αJ
α
}

f [ϕ]ei(eS+Jϕ+Jχ+ bJψ)dϕ dχ dψ, (157)

where f is any functional of the ϕ’s. One obtains

0 = iN [U ]
∫ {

JiQ
i
α[ϕ]ψα + U,α[P [ϕ]]Fα

β [ϕ]ψβ +
1
2
(−1)βĴαCα

βγψγψβ

}
× ei(eS+Jϕ+Jχ+ bJψ)dϕ dχ dψ

= N [U ]
∫ (

Ji
δ

δKi
+

∂

∂M
− Ĵα

δ

δLα

)
ei(eS+Jϕ+Jχ+ bJψ)dϕ dχ dψ, (158)

in which use is made of the fact that the term containing M in S̃ may be written
in the form

MU,α[P [ϕ]]Fα
β [ϕ]ψβ .

Multiplying Eq. (158) by −ie−iW , we finally get

0 = −ie−iW

(
Ji

δ

δKi
+

∂

∂M
− Ĵα

δ

δLα

)
eiW

= Ji
δW

δKi
+

∂W

∂M
− Ĵα

δW

δLα
. (159)

This relation expresses an important symmetry property of the generating func-
tional, which leads directly to the Ward–Takahashi identities to be discussed
presently. First we must review some standard material on the so-called effective
action.

15. Many-Particle Green’s Functions. The Effective Action

In this section important use will be made of the Schwinger average:

〈A〉 ≡ 〈out|T (A)|in〉
〈out|in〉 . (160)

Here A is an arbitrary functional of the operators ϕi, χ
α
, ψα, and the numerator

and denominator on the right are defined by Eqs. (154) and (155) respectively. It
will be convenient to define

ϕi ≡ 〈ϕi〉, χα ≡ 〈χ
α
〉, ψα ≡ 〈ψα〉. (161)

When the sources J
α
, Ĵα, Ki, Lα, M vanish, the averages χα and ψα vanish. Note

that although the symbols ϕi, χα, ψα have previously been used for integration
variables, no confusion about their meaning will arise in practice.
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It will also be convenient to denote the operators ϕi, χ
α
, and ψα collectively by

ϕA, their averages by ϕA, and the sources Ji, J
α

and Ĵα collectively by JA. Let
�JA be arbitrary finite increments in the sources. Then we may write

∞∑
n=0

in

n!
� JAn · · · � JA1〈out|T (φA1 · · ·φAn)|in〉

= exp
(
�JA

δ

δJA

)
〈out|in〉 = (eiW )J→J+�J

= exp

(
iW + i � JAϕA + i

∞∑
n=2

1
n!

� JAn · · · � JA1G
A1···An

)
, (162)

where

ϕA = 〈ϕA〉 = e−iW δ

iδJA
eiW =

δW

δJA
, (163)

GA1···An ≡ δ

δJA1

· · · δ

δJAn

W. (164)

Dividing both sides of Eq. (162) by eiW and comparing like powers of �JA, one
obtains an infinite sequence of relations:

〈ϕAϕB〉 = ϕAϕB − iGAB,

〈ϕAϕBϕC〉 = ϕAϕBϕC − iP3ϕ
AGBC + (−i)2GABC , etc. (165)

where P means “sum over the N distinct permutations of indices, with a plus sign
or a minus sign according to whether the permutation of the indices associated with
fermionic fields is even or odd”. GAB is known as the one-particle propagator,
and the GA1···An , n ≥ 3 are known as many-particle Green’s functions. They
satisfy the boundary conditions specified by the “in” and “out” states.

Any functional of the sources JA may be alternatively regarded as a functional
of the averages ϕA. From Eqs. (163) and (164) one sees that the one-particle prop-
agator is the transformation matrix from one set of variables to the other:

GAB =
δϕB

δJA
. (166)

This fact may be used to establish an important relation between the functional W

and the Schwinger average of the operator field equations. The latter is obtained
from the formal functional identity

0 = −ie−iWN [U ]
∫

ei(eS+Jϕ+Jχ+ bJψ)
←
δ

δϕA
dϕ dχ dψ

= 〈S̃,A〉 + JA, (167)

where S̃,A is the operator corresponding to the functional S̃,A.
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If we differentiate Eq. (167) on the left with respect to JB and make use of
Eq. (166) we obtain

GBC
C,〈S̃,A〉 = −δB

A. (168)

Here the functional derivative inside the brackets 〈 〉 is with respect to the field
operator ϕA, and the functional derivative outside the brackets is with respect to
the field average ϕC . C,〈S̃,A〉 is seen to be the operator of which the one-particle
propagator GBC is the Green’s function. Because of its boundary conditions GBC

may be shown to be both a left Green’s function, as in Eq. (168), and a right Green’s
function of A,〈S̃,B〉 as well. It has the symmetry

GAB = (−1)ABGBA (169)

which implies

A,〈S̃,B〉 = (−1)A+B+AB
B,〈S̃,A〉. (170)

But this is just the condition that there exists a functional Γ̃[ϕ, χ, ψ, K, L, M ] such
that

Γ̃,A = 〈S̃,A〉. (171)

Γ̃ is known as the effective action. It satisfies the equations

Γ̃,A = −JA, (172)

A,Γ̃,CGCB = −δ B
A , (173)

and is related to the functional W by a Legendre transformation:

W = Γ̃ + JAϕA. (174)

This relation may be verified through differentiation with respect to JB and use of
Eq. (172) in the form

A,Γ̃ = −(−1)AJA.

Thus

δW

δJB
=

δϕA

δJB
[A,Γ̃ + (−1)AJA] + ϕB = ϕB ,

which is just Eq. (163). Since Γ̃ is determined only up to an arbitrary constant of
integration, Eq. (174) may be regarded as fixing it.

Γ̃ is also known as the generating functional for proper vertices. This
stems from its relation to the many-particle Green’s functions. By differentiating
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Eq. (173) one can relate functional derivatives of the one-particle propagator to
derivatives of Γ̃. These relations yield, for example,

GABC =
δ

δJA
GBC = GAD

D,G
BC

= (−1)(B+C)D+(C+D)E+(D+E)F GADGBEGCF
DEF,Γ̃. (175)

If the propagators are represented by lines and the third and higher derivatives of Γ̃
are represented by vertices, one easily sees that each new differentiation with respect
to a source inserts a new line in all possible ways into the previous diagram. Each
Green’s function of given order is thus representable as a sum of all the possible
tree diagrams of that order.

Suppose the spatial sections of spacetime are noncompact. Then an S-matrix can
be introduced, connecting states defined “at infinity”. The S-matrix is expressible in
terms of the chronological products appearing in Eq. (162). Because these products
are expressible in terms of the Green’s functions (Eqs. (165)), it follows that when
Γ̃ is used, only tree diagrams are needed in the construction of the S-matrix. No
closed loops appear. The vertices generated by Γ̃ are the proper vertices, already
containing all quantum corrections. By noting that identical tree diagrams occur
in classical perturbation theory, but with Γ̃ replaced by S̃, one can show that Γ̃
describes the quantum-corrected dynamics of coherent large-amplitude fields. One
must expect the same to be true also when the spatial sections are compact and
there is no S-matrix.

16. The Ward–Takahashi Identity

We now resume use of the symbols ϕi, χα, ψα, Ji, J
α
, Ĵα and rewrite Eq. (174) in

the more explicit form

W [J, J, Ĵ , K, L, M ] = Γ̃[ϕ, χ, ψ, K, L, M ] + Jiϕ
i + J

α
χα + Ĵαψα. (176)

The averages ϕi, χα, ψα depend on all six sources, but because Ki, Lα and M do
not participate in the Legendre transformation one may show that

δW

δKi
=

δΓ̃
δKi

,
δW

δLα
=

δΓ̃
δLα

,
∂W

∂M
=

∂Γ̃
∂M

, (177)

where the derivatives on the right refer only to the explicit dependence of Γ̃ on
Ki, Lα and M . This result, combined with Eq. (172) in the form

A,Γ̃ = −(−1)AJA,

allows Eq. (159) to be rewritten as

−(−1)i δΓ̃
δϕi

δΓ̃
δKi

+
∂Γ̃
∂M

− (−1)α δΓ̃
δψα

δΓ̃
δLα

= 0, (178)

all derivatives being left derivatives. This is the Ward–Takahashi identity.
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The Ward–Takahashi identity has important implications for the structure of
Γ̃. That it implies the existence of some sort of symmetry possessed by Γ̃ becomes
obvious when one notes that, because of its BRS invariance, S̃ too satisfies the
Ward–Takahashi identity. Unfortunately, to work from Eq. (178) to the symme-
try possessed by Γ̃ is a much harder task. In principle one might do the following.
Assume that Γ̃ can be expanded as a power series in χα, ψα, Ki, Lα and M . Such an
assumption has nothing a priori to do with perturbation theory since the expan-
sion is to be carried out after the functional integration (155) has been performed.
It is based on the reasonable belief that Eq. (155) varies smoothly (at least after
appropriate renormalizations) as Ki, Lα, M, J

α
and Ĵα (and hence χα and ψα) go

to zero.
In determining the kinds of terms that can appear in the expansion it is useful

to introduce the notion of “ghost number.” If one assigns the ghost numbers 1 to
ψα and J

α
; 0 to ϕi and Ji; −1 to χα, Ĵα, Ki and M ; and −2 to Lα; one easily sees

that the integrand in Eq. (155) and the integral itself have total ghost number zero.
Hence W and Γ̃ have total ghost number zero, and all the terms in the expansion
of Γ̃ must have this property as well. Also the expansion can contain no terms in
M of higher order than the first since M is an anticommuting constant.

If one inserts the expansion into (178) and groups together terms of like pow-
ers, one obtains an infinite sequence of subsidiary Ward–Takahashi identities relat-
ing the ϕ-dependent coefficients. Unfortunately there seems to be no easy way
of drawing simple inferences from these identities en gros. So far Eq. (178) has
been applied only to renormalizable models in perturbation theory. There it has
proved to be of great service in the practical details of the renormalization pro-
gram, as well as in the demonstration that the theory is indeed renormalizable to
all orders and that unitarity is maintained. (The student is referred to the litera-
ture for details.) What role it is destined to play in quantum gravity remains to
be seen.
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18. Old Unification

We can now outline how the space-of-histories formulation of Secs. 2–16 provides
a common ground for describing the “old” and “new” unifications of fundamental
theories. Quantum field theory begins once an action functional S is given, since
the first and most fundamental assumption of quantum theory is that every isolated
dynamical system can be described by a characteristic action functional [41]. The
Feynman approach makes it necessary to consider an infinite-dimensional manifold
such as the space Φ of all field histories ϕi. On this space there exist (in the case
of gauge theories) vector fields

Qα = Qi
α

δ

δϕi
(179)

that leave the action invariant, i.e. (see Eq. (108)),

QαS = 0. (180)

The Lie brackets of these vector fields lead to a classification of all gauge theories
known so far.
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18.1. Type-I gauge theories

The peculiar property of type-I gauge theories is that the Lie brackets [Qα, Qβ]
are equal to linear combinations of the vector fields themselves, with structure
constants, i.e.

[Qα, Qβ ] = Cγ
αβ Qγ , (181)

where Cγ
αβ,i = 0. The Maxwell, Yang–Mills, Einstein theories are all examples of

type-I theories (this is the “unifying feature”). All of them, being gauge theories,
need supplementary conditions, since the second functional derivative of S is not
an invertible operator. After imposing such conditions, the theories are ruled by a
differential operator of D’Alembert type (or Laplace type, if one deals instead with
Euclidean field theory), or a non-minimal operator at the very worst (for arbitrary
choices of gauge parameters). For example, when Maxwell theory is quantized via
functional integrals in the Lorenz [42] gauge,h one deals with a gauge-fixing func-
tional

Φ(A) = ∇bAb, (182)

and the second-order differential operator acting on the potential reads as

P b
a = −δ b

a + R b
a +

(
1 − 1

α

)
∇a∇b, (183)

where α is an arbitrary gauge parameter. The Feynman choice α = 1 leads to the
minimal operator

P̃ b
a = −δ b

a + R b
a ,

which is the standard wave operator on vectors in curved spacetime. Such operators
play a leading role in the one-loop expansion of the Euclidean effective action.

18.2. Type-II gauge theories

For type-II gauge theories, Lie brackets of vector fields Qα are as in Eq. (181) for
type-I theories, but the structure constants are promoted to structure functions.
An example is given by simple supergravity (a supersymmetric gauge theory of
gravity, with a symmetry relating bosonic and fermionic fields) in four spacetime
dimensions, with auxiliary fields [34].

hIn [42] the author, L. Lorenz, built a set of retarded potentials which can be shown to satisfy
the Lorenz gauge, although in 1867 no-one had thought of electrodynamics as a gauge theory.
This author is not H. Lorentz, whose name is incorrectly associated to such a gauge in previous
literature.
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18.3. Type-III gauge theories

In this case, the Lie bracket (181) is generalized by

[Qα, Qβ] = Cγ
αβ Qγ + U i

αβ S,i, (184)

and it therefore reduces to Eq. (181) only on the mass-shell, i.e. for those field
configurations satisfying the Euler–Lagrange equations. An example is given by
theories with gravitons and gravitinos such as Bose–Fermi supermultiplets of both
simple and extended supergravity in any number of spacetime dimensions, without
auxiliary fields [34].

18.4. From supergravity to general relativity

It should be stressed that general relativity is naturally related to supersymmetry,
since the requirement of gauge-invariant Rarita–Schwinger equations [43] implies
Ricci-flatness in four dimensions [44], which is then equivalent to vacuum Einstein
equations. The Dirac operator is more fundamental in this framework, since the
m-dimensional spacetime metric is entirely re-constructed from the γ-matrices, in
that

gab =
1

2m
tr(γaγb + γbγa). (185)

19. New Unification

In modern high energy physics, the emphasis is no longer on fields (sections of vec-
tor bundles in classical field theory, operator-valued distributions in quantum field
theory), but rather on extended objects such as strings. In string theory, particles
are not described as points, but instead as strings, i.e. one-dimensional extended
objects. While a point particle sweeps out a one-dimensional worldline, the string
sweeps out a worldsheet, i.e. a two-dimensional real surface. For a free string, the
topology of the worldsheet is a cylinder in the case of a closed string, or a sheet
for an open string. It is assumed that different elementary particles correspond to
different vibration modes of the string, in much the same way as different minimal
notes correspond to different vibrational modes of musical string instruments. The
five different string theories are different aspects of a more fundamental theory,
called M -theory [45]. In the latest developments, one deals with “branes”, which
are classical solutions of the equations of motion of the low-energy string effective
action, that correspond to new non-perturbative states of string theory, break half
of the supersymmetry, and are required by T-duality in theories with open strings.
They have the peculiar property that open strings have their end-points attached to
them. With the language of pseudo-Riemannian geometry, branes are timelike sur-
faces embedded into bulk spacetime [32]. According to this picture, gravity lives on
the bulk, while standard-model gauge fields are confined on the brane. For branes,
the normal vector N is spacelike with respect to the bulk metric GAB , i.e.

GABNANB = NCNC > 0. (186)
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The action functional S splits into the sum [32] (gαβ(x) being the brane metric)

S = S4[gαβ(x)] + S5[GAB(X)], (187)

while the effective action [55] Γ is formally given by

eiΓ =
∫

DGAB(X) eiS × g.f. term. (188)

In the functional integral, the gauge-fixed action reads as (here there is summation
as well as integration over repeated indices)

Sg.f. = S4 + S5 +
1
2
FAΩABFB +

1
2
χµωµνχν , (189)

where FA and χµ are bulk and brane gauge-fixing functionals, respectively,
while ΩAB and ωµν are non-singular “matrices” of gauge parameters. The gauge-
invariance properties of bulk and brane action functionals can be expressed by say-
ing that there exist vector fields on the space of histories such that (cf. Eq. (180))

RBS5 = 0, RνS4 = 0, (190)

whose Lie brackets obey a relation formally analogous to Eq. (181) for ordinary
type-I theories, i.e.,

[RB, RD] = CA
BD RA, [Rµ, Rν ] = Cλ

µν Rλ. (191)

The bulk and brane ghost operators are therefore

QA
B = RBFA = FA

,a Ra
B, (192)

Jµ
ν = Rνχµ = χµ

,i Ri
ν , (193)

respectively. The full bulk integration means integrating first with respect to all
bulk metrics GAB inducing on the boundary ∂M the given brane metric gαβ(x),
and then integrating with respect to all brane metrics. Thus, one first evaluates the
cosmological wave function of the bulk spacetime [32], i.e.

ψBulk =
∫

GAB[∂M ]=gαβ

µ(GAB , SC , T D)ei eS5 , (194)

where µ is taken to be a suitable measure, the SC , T D are ghost fields, and (of
course, SA here differs from the symbol for the action in Eq. (103))

S̃5 ≡ S5[GAB] +
1
2
FAΩABFB + SAQA

BT B. (195)

Eventually, the effective action results from

eiΓ =
∫

µ̃(gαβ, ργ , σδ)ei eS4ψBulk, (196)

where µ̃ is another putative measure, ργ and σδ are brane ghost fields, and

S̃4 ≡ S4 +
1
2
χµωµνχν + ρµJµ

νσν . (197)
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20. Bulk and Brane BRST Transformations

This scheme is invariant under infinitesimal BRST transformations on the bulk,
given by

δGa = Ra
A T A δΛ, (198)

δSA = ΩABFB δΛ, (199)

δT A = −1
2
CA

BDT BT D δΛ, (200)

where T A δΛ = −δΛ T A, T AT B = −T BT A, as well as under formally analogous
BRST transformations on the brane, i.e.

δgi = Ri
µ σµ δλ, (201)

δρµ = ωµνχν δλ, (202)

δσµ = −1
2
Cµ

νζσ
νσζ δλ, (203)

where σµδλ = −δλ σµ, σνσζ = −σζσν .

21. New Perspectives in the Spectral Asymptotics of Euclidean
Quantum Gravity

Since the early eighties there has been a substantial revival of interest in quan-
tum cosmology, motivated by the hope of obtaining a complete picture of how the
universe could arise and evolve [46–49]. By complete we here mean a theoretical
description where, by virtue of the guiding principles of physics and mathemat-
ics, both the differential equations of the theory and the associated boundary (and
initial) conditions are fully specified. Even though modern theoretical cosmology
deals with yet other deep issues such as dark matter, dark energy [50, 51] and cos-
mic strings [52], the effort of formulating the appropriate boundary conditions for
the quantum state of the universe [53], or at least for its (one-loop) semiclassical
approximation, plays again a key role, since the universe might have had a semi-
classical origin [54], and the various orders in � in the loop expansion describe the
departure from the underlying classical dynamics.

The physical motivations of our work result therefore from the following active
areas of research:

(i) Functional integrals and space-time approach to quantum field theory [55].
(ii) Attempt to derive the whole set of physical laws from invariance principles [56].
(iii) How to derive the early universe evolution from quantum physics; how to

make sense of a wave function of the universe and of Hartle–Hawking quantum
cosmology [53, 57].

(iv) Spectral theory and its physical applications, including functional determi-
nants in one-loop quantum theory and hence the first corrections to classical
dynamics [58].
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The boundary conditions that we study are part of a unified scheme for Maxwell,
Yang–Mills and Quantized General Relativity at one loop, i.e. [59]

[πA]B = 0, (204)

[Φ(A)]B = 0, (205)

[ϕ]B = 0. (206)

With our notation, π is a projector acting on the gauge field A, Φ is the gauge-
fixing functional, ϕ is the full set of ghost fields [60]. Both Eqs. (204) and (205) are
preserved under infinitesimal gauge transformations provided that the ghost obeys
homogeneous Dirichlet conditions as in Eq. (206). For gravity, we choose Φ so as
to have an operator P of Laplace type on metric perturbations in the one-loop
Euclidean theory.

22. Eigenvalue Conditions for Scalar Modes

On the Euclidean 4-ball, we expand metric perturbations hµν in terms of scalar,
transverse vector, transverse-traceless tensor harmonics on S3. For vector, tensor
and ghost modes, boundary conditions reduce to Dirichlet or Robin [61]. For scalar
modes, one finds eventually the eigenvalues E = x2 from the roots x of [61]

J ′
n(x) ± n

x
Jn(x) = 0, (207)

J ′
n(x) +

(
−x

2
± n

x

)
Jn(x) = 0. (208)

Note that both x and −x solve the same equation. For example, at small n and large
x, the roots of Eq. (208) with + sign in front of n

x read as (here s = 0, 1, . . . ,∞)

x(s, n) ∼ β(s, n)
[
1 +

γ1

β2(s, n)
+

γ2

β4(s, n)
+

γ3

β6(s, n)
+ O(β−8)

]
, (209)

where

β(s, n) ≡ π

(
s +

n

2
+

3
4

)
, (210)

and (having defined m ≡ 4n2)

γ1(m) ≡ − (m − 17)
8

, (211)

γ2(m) ≡ −3455
384

+ 2m1/2 +
67
192

m − 7
384

m2, (212)

γ3(m) =
1117523
15360

− 115
4

m1/2 − 5907
5120

m +
3
4
m3/2 +

421
3072

m2 − 83
15360

m3, (213)

as has been found in [62].
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23. Four Generalized ζ-Functions for Scalar Modes

From Eqs. (207) and (208) we obtain the following integral representations of the
resulting ζ-functions upon exploiting the Cauchy theorem and rotation of contour
[61, 62]:

ζ±A,B(s) ≡ (sin πs)
π

∞∑
n=3

n−(2s−2)

∫ ∞

0

dz z−2s ∂

∂z
log F±

A,B(zn), (214)

where (here β+ ≡ n, β− ≡ n + 2)

F±
A (zn) ≡ z−β±(znI ′n(zn) ± nIn(zn)), (215)

F±
B (zn) ≡ z−β±

(
znI ′n(zn) +

(
(zn)2

2
± n

)
In(zn)

)
, (216)

In being the modified Bessel functions of first kind. Regularity at the origin is easily
proved in the elliptic sectors, corresponding to ζ±A (s) and ζ−B (s).

24. Regularity of ζ+
B at s = 0

We now define τ ≡ (1 + z2)−1/2 and consider the uniform asymptotic expansion
(away from τ = 1, with notation as in [61, 62])

zβ+F+
B (zn) ∼ enη(τ)

h(n)
√

τ

(1 − τ2)
τ

1 +
∞∑

j=1

rj,+(τ)
nj

 , (217)

the functions rj,+ being obtained from the Olver polynomials for the uniform
asymptotic expansion of In and I ′n [63]. On splitting

∫ 1

0
dτ =

∫ µ

0
dτ +

∫ 1

µ
dτ with µ

small, we get an asymptotic expansion of the left-hand side by writing, in the first
interval on the right-hand side,

log

1 +
∞∑

j=1

rj,+(τ)
nj

 ∼
∞∑

j=1

Rj,+(τ)
nj

, (218)

and then computing

Cj(τ) ≡ ∂Rj,+

∂τ
= (1 − τ)−j−1

4j∑
a=j−1

K(j)
a τa. (219)

The integral
∫ 1

µ
dτ is instead found to yield a vanishing contribution in the µ → 1

limit [62]. Remarkably, by virtue of the spectral identity

g(j) ≡
4j∑

a=j

Γ(a + 1)
Γ(a − j + 1)

K(j)
a = 0, (220)

which holds ∀j = 1, . . . ,∞, we find

lim
s→0

sζ+
B (s) =

1
6

12∑
a=3

a(a − 1)(a − 2)K(3)
a = 0, (221)
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and

ζ+
B (0) =

5
4

+
1079
240

− 1
2

12∑
a=2

ω(a)K(3)
a +

∞∑
j=1

f(j)g(j) =
296
45

, (222)

where

ω(a) ≡ 1
6

Γ(a + 1)
Γ(a − 2)

[− log(2) − (6a2 − 9a + 1)
4

Γ(a − 2)
Γ(a + 1)

+ 2ψ(a + 1) − ψ(a − 2) − ψ(4)], (223)

f(j) ≡ (−1)j

j!
[−1 − 22−j + ζR(j − 2)(1 − δj,3) + γδj,3]. (224)

The spectral cancellation (220) achieves three goals: (i) Vanishing of log 2 coefficient
in Eq. (222); (ii) Vanishing of

∑∞
j=1 f(j)g(j) in Eq. (222); (iii) Regularity at the

origin of ζ+
B .

To cross-check our analysis, we evaluate rj,+(τ) − rj,−(τ) and hence obtain
Rj,+(τ) − Rj,−(τ) for all j. Only j = 3 contributes to ζ±B (0), and we find

ζ+
B (0) = ζ−B (0) − 1

24

4∑
l=1

Γ(l + 1)
Γ(l − 2)

[
ψ(l + 2) − 1

(l + 1)

]
κ

(3)
2l+1

=
206
45

+ 2 =
296
45

, (225)

in agreement with Eq. (222), where κ
(3)
2l+1 are the four coefficients on the right-hand

side of

∂

∂τ
(R3,+ − R3,−) = (1 − τ2)−4(80τ3 − 24τ5 + 32τ7 − 8τ9). (226)

Within this framework, the spectral cancellation reads as

4∑
l=1

Γ(l + 1)
Γ(l − 2)

κ
(3)
2l+1 = 0, (227)

which is a particular case of

a=amax(j)∑
a=amin(j)

Γ((a + 1)/2)
Γ((a + 1)/2 − j)

κ(j)
a = 0. (228)

Interestingly, the full ζ(0) value for pure gravity (i.e. including the contribution of
tensor, vector, scalar and ghost modes) is then found to be positive: ζ(0) = 142

45 [62],
which suggests a quantum avoidance of the cosmological singularity driven by full
diffeomorphism invariance of the boundary-value problem for one-loop quantum
theory [62].
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25. Selected Open Problems

Several open problems should be brought to the attention of the reader, and are as
follows.

(i) We have encountered in Secs. 21–24 a boundary-value problem where the gen-
eralized ζ-function remains well defined, even though the Mellin transform
relating ζ-function to heat kernel does not exist (see further comments below),
since strong ellipticity is violated [59] (see also [64]). Are the spectral cancella-
tions (220) and (228) a peculiar property of the Euclidean 4-ball, or can they be
extended to more general Riemannian manifolds with non-empty boundary?

(ii) What is the deeper underlying reason for finding ζ+
B (0) − ζ−B (0) = 2? Is it

possible to foresee a geometrical or topological or group-theoretical origin of
this result?

(iii) Is it correct to say that our positive ζ(0) value for pure gravity engenders
a quantum avoidance of the cosmological singularity at one-loop level? [54,
62] Does the result remain true in higher-loop calculations or on using other
regularization techniques for the one-loop correction?

(iv) The whole scheme might be relevant for AdS/CFT in light of a profound link
between AdS/CFT and the Hartle–Hawking wave function of the universe [65].

(v) What happens if one considers instead non-local boundary data, e.g., those
giving rise to surface states for the Laplacian? [56, 66, 67]

As far as item (i) is concerned, we should add what follows. The integral repre-
sentation (214) of the generalized ζ-function is legitimate because, for any fixed n,
there is a countable infinity of roots xj and −xj of Eqs. (207) and (208), and they
grow approximately linearly with the integer j counting such roots. The functions
F±

A and F±
B admit therefore a canonical-product representation [68] which ensures

that the integral representation (214) reproduces the standard definition of gen-
eralized ζ-function [61]. Furthermore, even though the Mellin transform relating
ζ-function to integrated heat kernel cannot be exploited when strong ellipticity is
not fulfilled, it remains possible to define a generalized ζ-function. For this pur-
pose, a weaker assumption provides a sufficient condition, i.e. the existence of a
sector in the complex plane free of eigenvalues of the leading symbol of the differ-
ential operator under consideration [61, 62]. To make sure we have not overlooked
some properties of the spectrum, we have been looking for negative eigenvalues or
zero-modes, but finding none. Indeed, negative eigenvalues E would imply purely
imaginary roots x = iy of Eq. (208), but such roots do not exist, as one can check
both numerically and analytically; zero-modes would be non-trivial eigenfunctions
belonging to zero-eigenvalues, but all modes (tensor, vector, scalar and ghost modes)
are combinations of regular Bessel functions [61] (since we require regularity at the
origin of the left-hand side of Eqs. (204)–(206)) for which this is impossible. As far
as we can see, we still find sources of singularities at the origin in the generalized
ζ-function resulting from lack of strong ellipticity, but the particular symmetries of
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the Euclidean 4-ball background reduce them to the four terms in Eq. (227), which
add up to zero despite two of them being non-vanishing.

In [62] we have proposed to interpret the result ζ(0) = 142
45 for pure gravity

as an indication that full diffeomorphism invariance of the boundary-value
problem engenders a quantum avoidance of the cosmological singularity.
Indeed, on one hand, the work by Schleich [69] had found that, on restricting the
functional integral to transverse-traceless perturbations, the one-loop semiclassi-
cal approximation to the wave function of the universe diverges at small volumes,
at least for the boundary geometry of a three-sphere. The divergence of the wave
functional does not imply, by itself, that the probability density of the wave func-
tional diverges at small volumes, since the probability density p[h] on the space of
wave functionals ψ[h] is given by p[h] = m[h]|ψ|2[h], where m[h] is the measure
on this space, the scaling of which is not known in general. On the other hand, in
our manifestly covariant evaluation of the one-loop functional integral for the wave
function of the universe, it seems incorrect to assume that the measure m[h] scales
in such a way as to cancel exactly the contribution of the squared modulus of ψ,
which is proportional to the three-sphere radius raised to the power 2ζ(0). Thus, we
find that our one-loop wave function of the universe vanishes at small volume. The
normalizability condition of the wave function in the limit of small three-geometry,
which is weaker than requiring it should vanish in this limit, was instead formulated
and studied in Ref. 70.

The years to come will hopefully tell us whether our calculations may be viewed
as a first step towards finding under which conditions a quantum theory of gravity
is singularity free in cosmology [71]. For this purpose, it might also be interesting to
study diffeomorphism-invariant boundary conditions for f(R) theories of gravity,
recently studied at one-loop level on manifolds without boundary [72].

On the non-perturbative side, encouraging progress has been made towards
finding cosmological applications of non-perturbative quantum gravity via
renormalization-group methods [27], including, in particular, theoretical models
that might account for the accelerated expansion of the universe [73] and for flat
rotation curves of galaxies [74].

Appendix A. Lie Groups

A Lie group is a group G which is also a manifold with a C∞ structure such that
the maps

(x, y) → xy

x → x−1

are C∞ functions. It is indeed enough to assume that (x, y) → xy−1, or (x, y) → xy,
are C∞. Relevant examples of Lie groups are as follows [75].

(1) The space Rn endowed with the addition +.
(2) The circle S1 defined as the quotient space R/Z.
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(3) If G and H are Lie groups, their product G × H is also a Lie group.
(4) The torus S1 × S1.
(5) The general linear group GL(n,R), i.e. the group of all n×n nonsingular real

matrices. This is a subset of Rn2
.

(6) The orthogonal group

O(n) ≡ {A ∈ GL(n,R) : AAt = I
}

. (A.1)

Here, with respect to the usual base of Rn, the matrix A represents a linear
map which is an isometry, i.e. it preserves the norm and the inner product.

(7) If H ⊂ G is a subgroup of G and also a submanifold of G, then H is a Lie
group. Thus, for example, S1 ⊂ R2 is a Lie group because

S1 =
{
z ∈ C : zz = x2 + y2 = 1

}
. (A.2)

(8) The three-sphere S3 is the Lie group of unit norm quaternions (among all the
Sn, only S1 and S3 admit a Lie-group structure). On introducing the three
symbols i, j, k such that

i2 = j2 = k2 = −1, (A.3)

ij = −ji = k, jk = −kj = i, ki = −ik = j, (A.4)

a quaternion can be expressed in the form

x = x1 + x2i + x3j + x4k, (A.5)

with (x1, x2, x3, x4) ∈ R4, so that the complex conjugate quaternion reads as

x = x1 − x2i − x3j − x4k, (A.6)

and the equation defining S3 can be indeed satisfied, i.e.

xx =
4∑

i=1

x2
i = 1. (A.7)

(9) The group SO(n) of all orthogonal matrices with unit determinant, i.e.

SO(n) ≡ {A ∈ O(n) : detA = 1} , (A.8)

is a Lie group.
(10) The group E(n) of all isometries of Rn is a Lie group. Every element of E(n)

can be written uniquely as A · τ where A ⊂ O(n), and τ is a translation

τ(x) = τa(x) = x + a. (A.9)

Note that E(n) �= O(n)×Rn because translations and orthogonal transformations
do not commute. It is however true that O(n) is diffeomorphic to O(n) × Rn.
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Given a Lie group G, its Lie algebra g is the tangent space to G at its identity
element: g = TeG. In general, a Lie algebra is a finite-dimensional vector space V ,
endowed with an antisymmetric bilinear map [ , ]

[X, Y ] = −[Y, X ] ∀X, Y ∈ V (A.10)

which satisfies the Jacobi identity

[[X, Y ], Z] + [[Y, Z], X ] + [[Z, X ], Y ] = 0 ∀X, Y, Z ∈ V. (A.11)

An important theorem asserts that, in the finite-dimensional case, a Lie algebra is
always isomorphic to the Lie algebra g of a finite-dimensional Lie group G. With
a standard notation, one writes gl(n,R) for the Lie algebra of GL(n,R) and o(n)
for the Lie algebra of O(n). Every A ∈ g is defined by its value at the unit element
of G. Given a basis {ei} in g, one has the Lie-bracket relations (see Eq. (14))

[ei, ej] = fk
ij ek, (A.12)

where fk
ij are the structure constants of G.

In quantum gravity and quantum Yang–Mills theories one deals however with
infinite-dimensional Lie groups (also called pseudo-groups in the literature). The
adjoint representation of the diffeomorphism group is provided by a contravariant
vector field Xµ, as can be seen from the transformation law [76]

δXµ =
∫

dnx′
∫

dnx′′ Cµ
ν′σ′′X

σ′′
δξν′

= −Xµ
,τδξτ + Xτδξµ

,τ . (A.13)

The coadjoint representation is instead provided by a covariant vector density of
unit weight according to [76]

δYµ = −
∫

dnx′
∫

dnx′′ Yσ′′Cσ′′
ν′µδξν′

= −(Yµδξτ ),τ − Yσδξσ
,µ. (A.14)

We refer the reader to the work in [77] for recent results on gravitation as gauge
theory of the diffeomorphism group, while deformations of diffeomorphisms are
studied in detail in Refs. 78, 79.
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