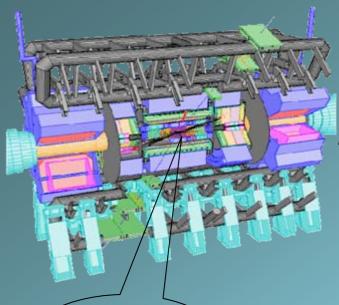
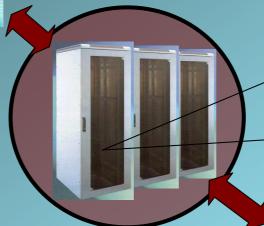
Tecniche Automatiche di Acquisizione Dati

Introduzione all'elettronica modulare

Definizioni (Dall'Oxford Dictionary)


Modular:

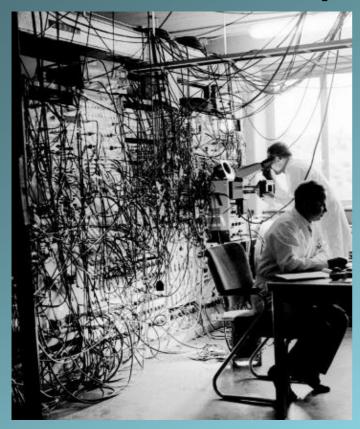
- Originally: designating or conforming to a system of building design or construction based on a standard module (see MODULE).
- Hence more generally: involving or consisting of modules or discrete units as the basis of design, construction, or operation;
- (also) intended to form part of such a system.


Module:

 A component of a larger or more complex system. Any of a series of independent units or parts of a more complex structure, produced to a standard design in order to facilitate assembly and allow mass production.

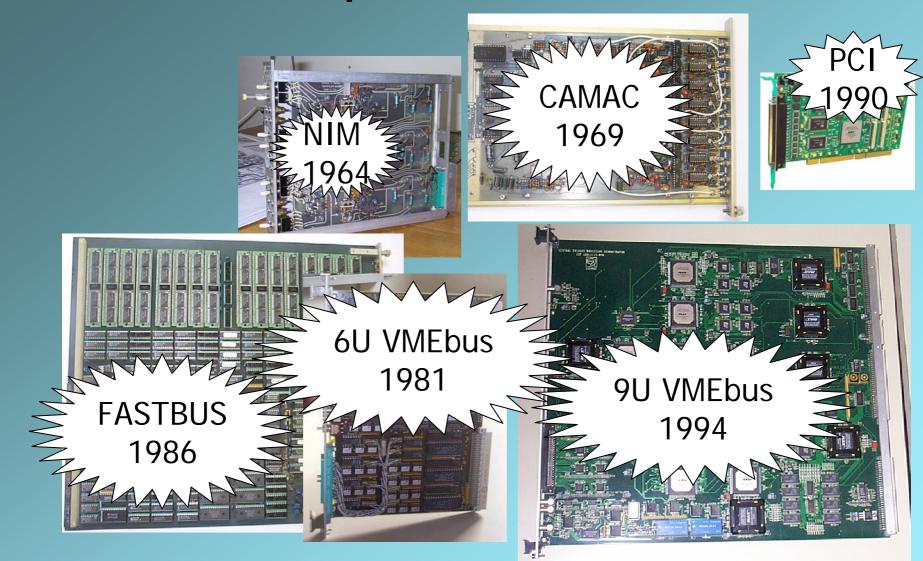
Definizioni

Detector & elettronica di front-end



Elettronica
modulare –
trattamento del
segnale,
trigger,
riduzione dati
di primo livello

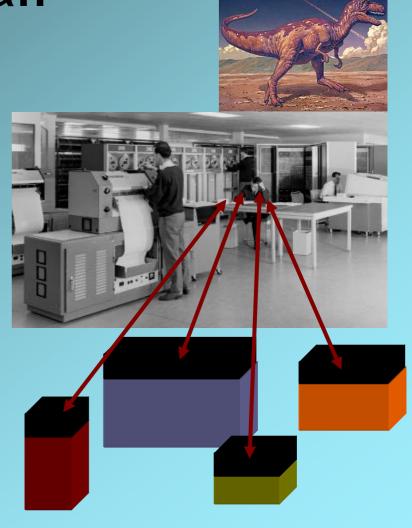
Computing farms, etc.


La preistoria...

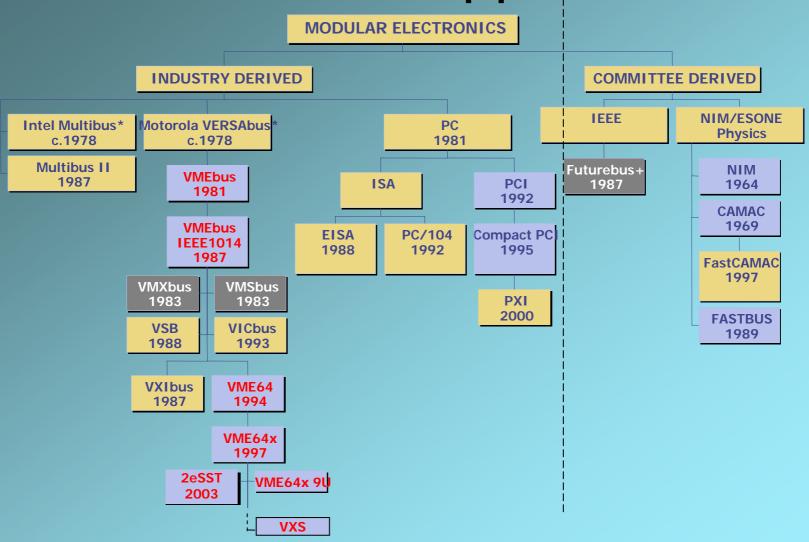
Fabio Garufi - TAADF 2005-2006

...e poi arrivarono

Storia...

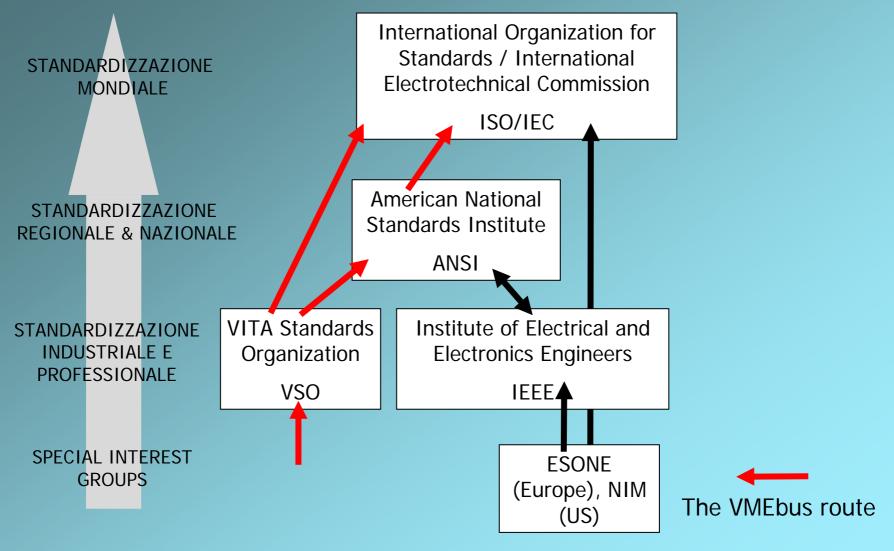

Portarono:

- Flessibilità, intercambiabilità
- Facilità di ristrutturazione
- Interfacciamento semplificato
- Riduzione dell'impegno di progettazione
- Riutilizzabilità degli elementi.



VS

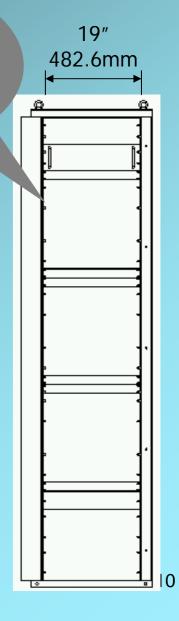
Backplane bus


Lo sviluppo

Gli standard

- Open standard: sono definiti da qualche ente di standardizzazione nazionale o internazionale (o consorzi industriali)
 - Non ci sono brevetti
 - Niente diritti di proprietà
 - Assicura l'intercambiabilità e l'interoperabilità.
- In contrasto con gli standard proprietari.

Le origini: esempio NIM/VME



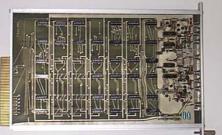
Un po'di terminologia

Rack

 Una struttura dove sono montati gli elementi. Vertical increment U = 1.75" (44.45mm)

Un po'di terminologia

- Crate (cestello): la struttura che alloggia I moduli da installare nel rack.
- Backplane: il pannllo posteriore del crate dove sono alloggiati I contatti elettrici e di comunicazione.

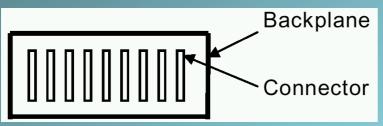

Un po'di terminologia

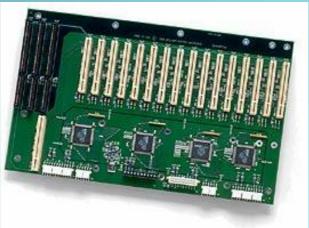
Moduli

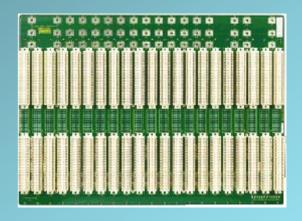
- Schede (boards)
- Plug-in units

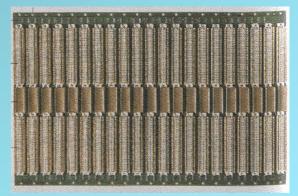
- Transition modules o

piggy-back

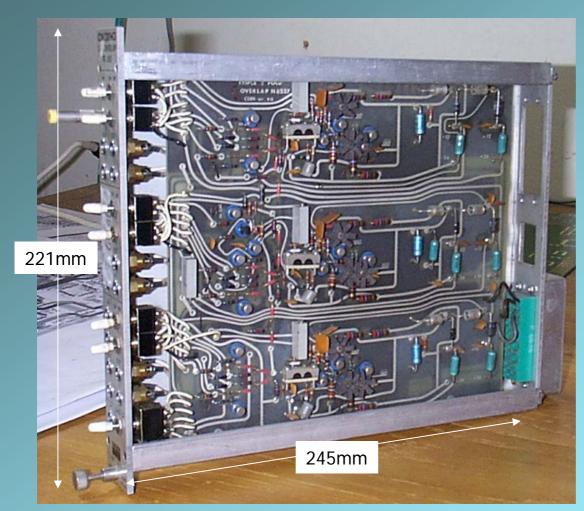






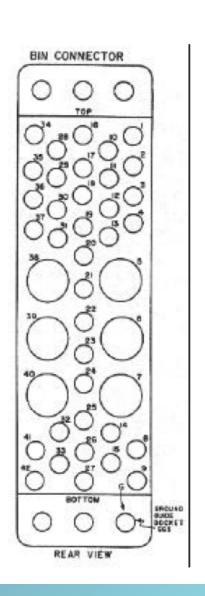

Backplane

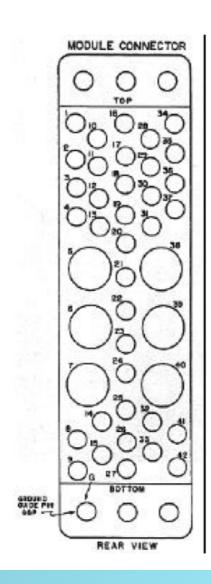
- Interconnette i moduli
 - Trasmette segnali
 - Da priorità ad azioni
- Distribuisce alimentazione e massa
- Può essere attivo o passivo



Standard NIM (1964)

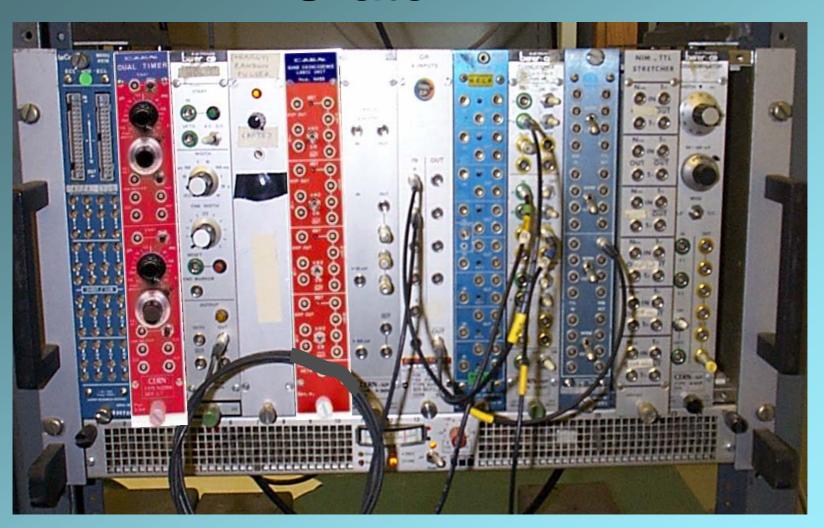
- Nuclear Instrument Module/Nuclear Instrumentation Methods
- Origine: US Dept. of Energy
- Strumentazione modulare, high-speed logic
 - No control backplane Solo per distribuzione alimentazioni
 - 12 moduli per crate (box schermate)
 - Alimentazioni ±6V, ±12V, ±24V
 - GPIB (IEEE488) come interfaccia comune (1983)
- Funzioni tipiche
 - Software-less "plug and play"
 - Logica, amplificatori, shapers, porte, discriminatori,...
- Molto vecchio ma ancora utile e molto usato in laboratorio


Modulo NIM



34.3mm

NIM - schema del connettore

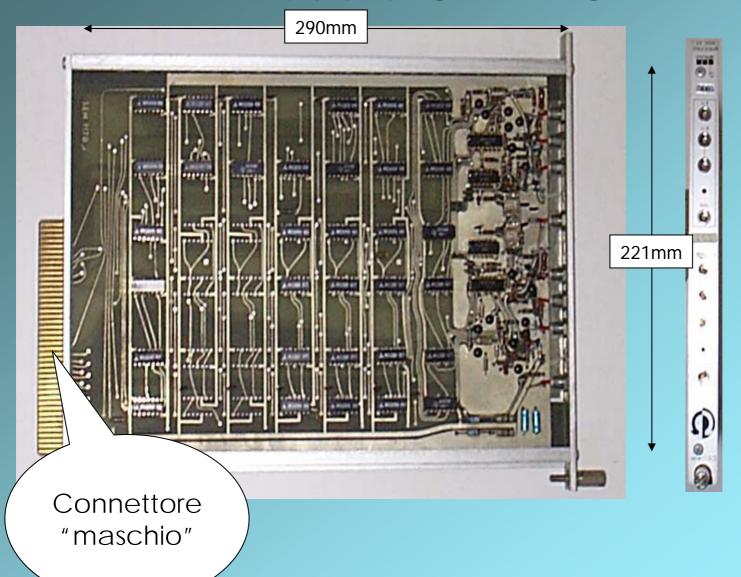


PIN	FUNCTION		
1	RESERVED		
2	RESERVED		
3	SPARE		
4	RESERVED		
5			
6			
7			
8	+200 V D.C.		
9	SPARE		
10	+6 V		
* 11	-6 V		
12	RESERVED		
13	SPARE		
14	SPARE		
15	RESERVED		
* 16	+12 V		
• 17	-12 V		
15	SPARE		
19	RESERVED		
20	SPARE		
21	SPARE		
22	RESERVED		
23	RESERVED		
24	RESERVED		
25	RESERVED		
28	SPARE		
27	SPARE		
* 28	+24 V		
* 29	-24 V		
30	SPARE		
31	SPARE		
32	SPARE		
33	117 V A.G. (HOT)		
* 34	POWER RETURN GND		
* 35	RESET		
36	GATE		
37	SPARE		
38			
39			
40	5 (15 P) L		
* 41	117 V A.C. (NEUTRAL)		
* 42	HIGH QUALITY GND		
G	GROUND GUIDE PIN		

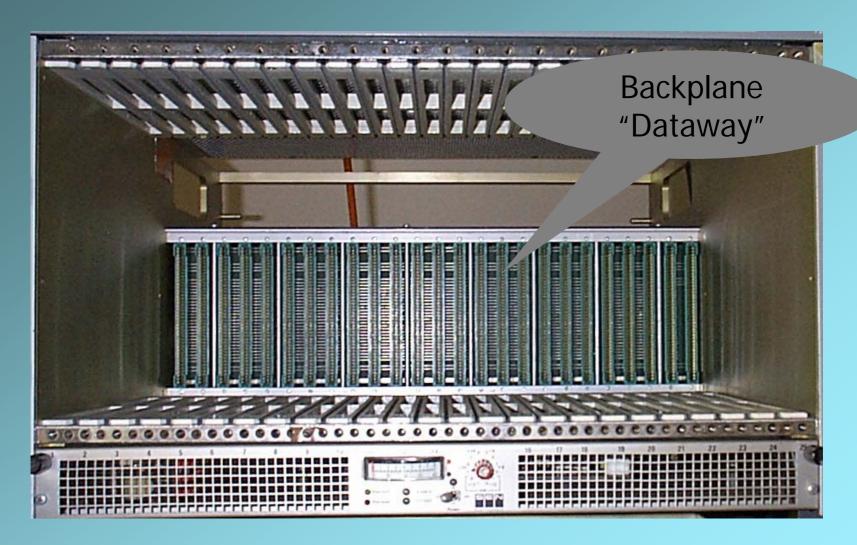
PIN FUNCTION

^{*} Must be bussed to all bin connectors GPIB through PG12B.

Crate NIM

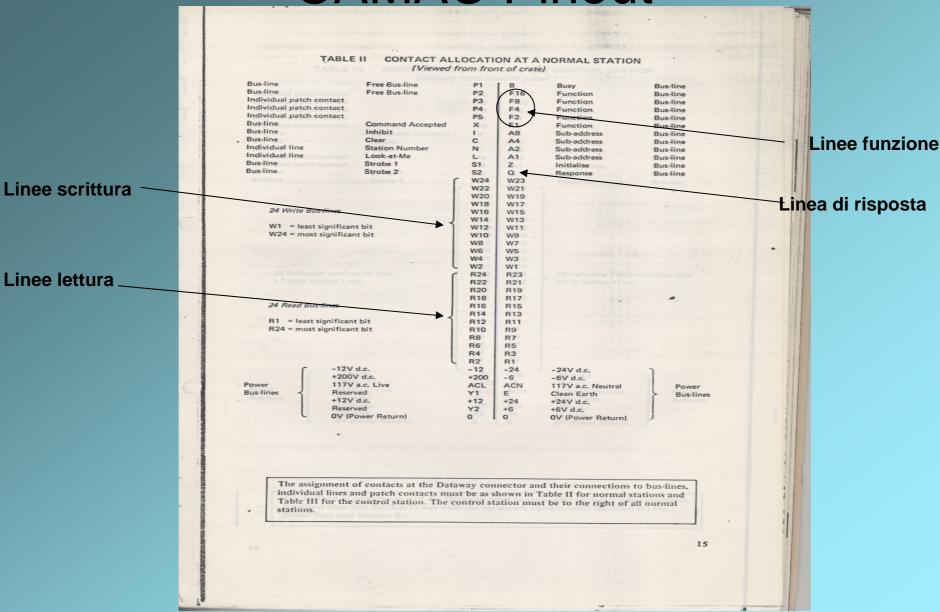

NIM - logica elettrica

		output	input		
NIM		•	•		
standard positive logic	logic 1	$+4 \rightarrow +12 \text{ V}$	$+3 \rightarrow +12 \text{ V}$		
	logic 0	$+1 \rightarrow -2 \text{ V}$	+1.5 → -2 V		
standard fast negative logic	logic 1	-14 → -18 mA	-12 → -36 mA		
(50 Ω impedance)	logic 0	$-1 \rightarrow +1 \text{ mA}$	$-4 \rightarrow +20 \text{ mA}$		
	logic 1	$-0.7 \rightarrow -0.9 \text{ V}$	-0.6 → -1.8 V		
	logic 0	-0.05 → +0.05 V	-0.2 → +1 V		
TTL	logic 1	$+2.4 \rightarrow +5 \text{ V}$	$+2 \rightarrow +5 \text{ V}$		
transistor transistor logic	logic 0	$0 \rightarrow \pm 0.4 \text{ V}$	-0.2 → +0.8 V		
BNC or lemo connections with coaxial cable					
ECL	high state	e -0.81 → -0.98 V	-0.81 → -1.13 V		
emitter-coupled logic	low state	-1.63 → -1.95 V	-1.48 → -1.95 V		
34-pin (two 17-pin rows) connector from 100 Ω twisted pair cable complementary outputs – one high, one low					


CAMAC - 1969

- Computer Automated Measurement and Control
- Origine: ESONE/NIM
 - EUR4100, IEEE 596, IEC 60516
- Strumentazione modulare controllata da computer
 - backplane da 25 slot ("dataway")
 - slot 24 & 25 speciali per il "Crate Controller"
 - Singolo master
 - Alimentazioni: +24V, +6V, -6V, -24V
 - 1µs/operazione
- Funzioni tipiche
 - ADCs, TDCs, discriminatori, scalers, etc
- Applicazioni
 - read-out, test e misurazioni, controllo industriale,...

Modulo CAMAC


Crate CAMAC

Standard CAMAC

- Eccetto per il controller, ciascuna slot è connessa con 24 linee in lettura/scrittura che possono trasmettere dati a 24 bit.
- I moduli non sono connessi fra di loro ma solo tramite il controller
- La stazione di controllo è connessa ad ogni modulo con linee private:
 - 24 linee di indirizzamento (linee N) che devono essere attivate per comunicare con la stazione
 - 24 linee "look at me" LAM (linee L) che segnalano al controller che una stazione necessita attenzione.
- Per comunicare, il computer manda un messaggio al controller che:
 - Attiva la linea N
 - Attiva le linee di sotto-indirizzamento A
 - Attiva le linee di funzione (5 linee F)
- Le coordinate di ciascun modulo sono B (branch), C (crate), N (slot), A (stazione).

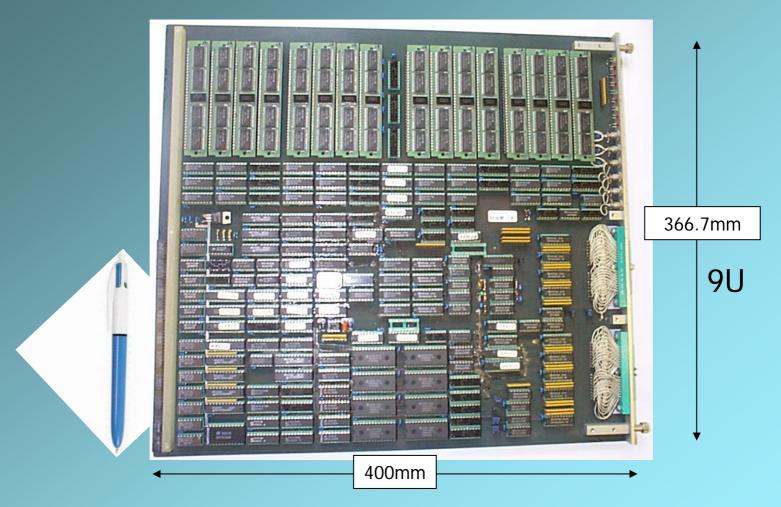
CAMAC Pinout

CAMAC Programming

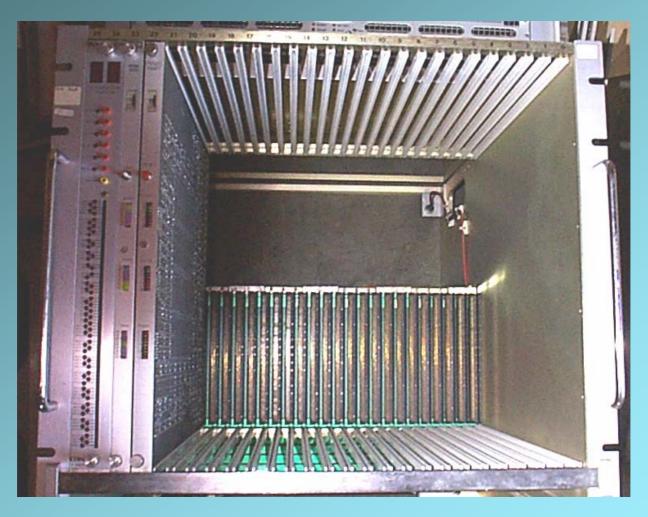
- Le funzioni di programmazione del CAMAC sono nate al tempo del FORTRAN ('77), e le successive implementazioni, per lo più, si riferiscono alle funzioni FORTRAN.
- •cdreg() Define a register
- cfsa() Execute a single function (32bit data)
- •cssa() Execute a single function (16bit data)
- •cccz() Crate initialize
- •cccc() Crate clear
- •ccci() Control crate inhibit
- •ctci() Test crate inhibit
- cccd() Control crate demand
- •ctcd() Test crate demand
- •ctgl() Test graded lam
- •cdlam() Define lam
- •cclm() Control lam
- •cclc() Clear lam
- •ctlm() Test lam

Esempio di programmazione CAMAC

```
#include "ca.h"
void cdreg(int *ext,int b,int c,int n,int a); /* ext = adddress repr. B,C,N,A */
void cfsa(int f,int ext,int *data,int *q);
void cssa(int f,int ext,short *data,int *q);
void cccz(int ext);
/* CAMAC readout example */
   int ext, q;
   int data;
   cdreg(&ext,0,1,3,0); /* address module at slot 3 */
  /*Read(Function 0) on ext and put data in data */
   cfsa(0,ext,&data,&q);
   if (q != 0)
                  printf("bad response %d from 0,1,3,0\n'',q);
   cfsa(16,ext,1234,&q);/* write (function 16) 1234 to register */
   cfsa(0,ext,&data,&g);/* read register into data */
   if (data !=1234)
            printf( "bad compare: wrote 1234, read %d\n",data);
```


Come comunica CAMAC con il PC?

- Il Camac controller comunica tramite una scheda PCI sul PC o VME con una SBC (Single Board Computer) sul bus VME.
- In entrambi i casi c'è bisogno di un driver e/o di un mapping dello spazio di indirizzamento del camac controller sul bus di comunicazione (PCI o VME).


Fastbus

- Origine: NIM/ESONE IEEE 960
- High-speed data acquisition
 - 26 station ECL backplane
 - Multi-master, arbitraggio distribuito
 - Power: +5V, -5.2V, -2V, ±15V
 - 160 Mbyte/s
- Funzioni tipiche
 - ADCs, TDCs, etc
- Aplicazioni
 - read-out in fisica, imaging in medicina
- Veloce, 9U boards, ma
- Abbandonata dal CERN per mancanza di interesse dall'industria (solo una dimensione per le schede,...)

Modulo FASTBUS

Crate FASTBUS

