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Abstract
Gravitational waveforms and production can be considerably affected by gravitomagnetic
corrections considered in the relativistic theory of orbits. Besides the standard periastron effect
of general relativity, new nutation effects arise when c−3 corrections are taken into account.
Such corrections emerge as soon as matter-current densities and vector gravitational potentials
cannot be discarded into dynamics. We study the gravitational waves (GWs) emitted through
the capture, in the gravitational field of massive binary systems (e.g. a very massive black hole
on which a stellar object is inspiralling) via the quadrupole approximation, considering
precession and nutation effects. We present a numerical study to obtain GW luminosity, total
energy output and gravitational radiation amplitude. From a crude estimate of the expected
number of events toward peculiar targets (e.g. globular clusters) and, in particular, the rate of
events per year for dense stellar clusters at the Galactic Center (Sagittarius region (SgrA∗)),
we conclude that this type of capture could give signatures to be revealed by interferometric
GW antennas, in particular by the forthcoming laser interferometer space antenna (LISA).

PACS numbers: 04.30.−w, 04.30.Tv, 95.85.Sz

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Searching for signatures of gravitational waves (GWs)
and achieving a suitable classification of emitting sources
have become two crucial tasks in GW science. In fact,
today’s sensitivity levels and theoretical developments are
leading toward a general picture of GW phenomena
that could not have been possible in the previous
pioneering era. Experimentally, several GW ground-based
laser interferometer detectors (10 Hz–10 kHz) have been built
in the United States (LIGO) [1], Europe (VIRGO and
GEO) [2, 3] and Japan (TAMA) [4], and are now taking data
at designed sensitivities. A laser-interferometer space antenna
(LISA) [5] (10−4–10−2 Hz) might fly within the next decade.

From a theoretical point of view, recent years have been
characterized by numerous major advances due, essentially,
to the development of numerical gravity. Concerning the
most promising sources to be detected, the GW generation
problem has improved significantly in relation to the dynamics
of binary and multiple systems of compact objects such as

neutron stars and black holes (BHs). Besides, the problem
of non-geodesic motion of particles in curved space-time
has been developed considering the emission of GWs (and
references therein) [6, 7]. Solving these problems is of
considerable importance in order to predict the accurate
waveforms of GWs emitted by extreme mass-ratio binaries,
which are among the most promising sources for LISA [8].

From a more genuine astrophysical viewpoint,
observations toward the central regions of galaxies have
detected peculiar compact massive objects that are present
in almost all observed galaxies. The occurrence of such
systems has been revealed because of the advance in high
angular resolution instrumentation for a wide range of
electromagnetic wavelengths. Space telescopes such as HST
or ground-based telescopes, which use adaptive optics, have
been extremely useful for studying the kinematics of galactic
internal regions reaching an accuracy of milli-pc for the
Milky Way and of pc-fractions for external galaxies. The
main conclusion of all these studies is that the central region
of most galaxies is dominated by large compact objects with
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masses of the order M ' 106–109 M�. In the case of the Milky
Way, the peculiar object in the Sagittarius region (SgrA∗) is
of the order M ' 3 × 106 M� and is usually addressed as a
massive black hole (MBH), even if its true physical nature is
far from being finally identified [9, 10].

In any case, a deep link exists between the central MBH
and the geometrical, kinematical and dynamical features of
the host galaxy. In particular, the MBH is correlated with
the global shape of the galactic spheroid, with the velocity
dispersion of surrounding stars, with the mean density and the
total mass of the host galaxy. The dynamics of stars moving
around the MBH has a series of interesting characteristics that
are of extreme interest for GW detection and production. Due
to this occurrence, searching for GWs coming from objects
interacting with MBHs is a major task for GW interferometry
from space and ground-based experiments.

In this paper, we study the evolution of compact binary
systems, formed through the capture of a moving (stellar)
mass m by the gravitational field, whose source is a massive
MBH of mass M where m � M . One expects that small
compact objects (1–20M�) from the surrounding stellar
population will be captured by these black holes (BHs)
following many-body scattering interactions at a relatively
high rate [11, 12]. It is well known that the capture of stellar
mass compact objects by massive MBHs could constitute,
potentially, a very important target for LISA [13, 14].
However, dynamics has to be carefully discussed in order to
consider and select all effects originating from standard stellar
mass objects inspiralling over MBHs.

In a previous paper [15], we have shown that, in the
relativistic weak field approximation, when considering
higher-order corrections to the equations of motion,
gravitomagnetic effects in the theory of orbits can be
particularly significant, leading to chaotic behavior in the
transient regime dividing stable from unstable trajectories.
Generally, such contributions are discarded because they are
considered too small. However, in a more accurate analysis,
this is not true and gravitomagnetic corrections could give a
peculiar characterization of dynamics.

In [15], the Newtonian and relativistic theories of orbits
were reviewed considering, in particular, how relativistic
corrections affect ‘classical’ orbits [17, 18]. Equations of
motion and phase portraits of solutions indicate that, besides
the standard periastron precession at order c−2, new nutation
effects appear at order c−3, and it is misleading to neglect
them.

According to these effects, orbits remain rather eccentric
until the final plunge, and display both extreme relativistic
perihelion precession and Lense–Thirring [19, 20] precession
of the orbital plane due to the spin of the MBH, as well as
orbital decay. In [21], it is illustrated how the measured GW
waveforms can effectively map out the space-time geometry
close to the MBH. In [22, 23], classical orbital motion
(without relativistic corrections in the motion of the binary
system) was studied in the extreme mass-ratio limit m � M ,
assuming stellar system density and richness as fundamental
parameters. The following conclusions were made: (i) GW
waveforms are characterized by orbital motion (in particular,
closed or open orbits give rise to very different GW production
and waveform shapes); (ii) in rich and dense stellar clusters,

a large production of GWs can be expected, so that these
systems could be very interesting for the above-mentioned
ground-based and space detectors; (iii) the amplitudes of the
strongest GW signals are expected to be roughly an order of
magnitude smaller than LISA’s instrumental noise.

In this paper, we investigate GW emission by binary
systems, in the extreme mass-ratio limit, by the quadrupole
approximation, considering orbits affected by both nutation
and precession effects and taking into account also
gravitomagnetic terms in the weak field approximation of the
metric. We will see that GWs are emitted with a ‘peculiar’
signature related to orbital features: such a signature may be
a ‘burst’ waveform with a maximum in correspondence to
the periastron distance or a modulated waveform, according
to orbit stability. Here we face this problem by discussing
in detail the dynamics of such a phenomenon, which could
greatly improve the statistics of possible GW sources.

Besides, we give estimates of the distributions of these
sources and their parameters. It is worth noticing that
the captures occur when objects in the dense stellar cusp
surrounding a galactic MBH, undergo a close encounter,
so that the trajectory becomes tight enough that orbital
decay through emission of GWs dominates the subsequent
evolution. According to [24, 25], for a typical capture, the
initial orbital eccentricity is extremely large (typically 1 − e ∼

10−6–10−3) and the initial pericenter distance is very small
(rp ∼ 8–100M , where M is the MBH mass [26]). The
subsequent orbital evolution may (very roughly) be divided
into three stages. In the first and longest stage the orbit is
extremely eccentric, and GWs are emitted in short ‘pulses’
during pericenter passages. These GW pulses slowly remove
energy and angular momentum from the system, and the
orbit gradually shrinks and circularizes. After ∼103–108 years
(depending on the two masses and the initial eccentricity) the
evolution enters its second stage, where the orbit is sufficiently
circular: the emission can be viewed as continuous. Finally,
as the object reaches the last stable orbit, the adiabatic
inspiral transits to a direct plunge, and the GW signal cuts
off. Radiation reaction quickly circularizes the orbit over the
inspiral phase; however, initial eccentricities are large enough
that a substantial fraction of captures will maintain high
eccentricity until the final plunge. It has been estimated [24]
that about half of the captures will plunge with eccentricity
e & 0.2. While individually resolvable captures will mostly
be detectable during the last ∼1–100 years of the second
stage (depending on stellar mass m and MBH mass), radiation
emitted during the first stage will contribute significantly
to the confusion background. As we shall see, the above
scenario is heavily modified since gravitomagnetic effects
play a crucial role in modifying the orbital shapes that are far
from being simply circular or elliptic and no longer closed. To
be precise, standard relativistic corrections, such as periastron
precession, give rise to non-closed orbits; however, in the case
of gravitomagnetism, the occurrence of combined precession
and nutation enhances the non-closure of orbits appearing, in
principle, as a strong signature of the effect.

The layout of the paper is as follows. In section 2,
we give a summary of gravitomagnetic corrections to the
metric, showing how the geodesic equation is modified by
their presence. Besides, we study in detail orbits with such
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corrections, showing the phase portraits and velocity fields
determined by the motion of mass m around the MBH.
GW luminosity in the quadrupole approximation is discussed
in section 3 while GW amplitude with gravitomagnetic
corrections is discussed in section 4, giving also a resumé
of numerical results. Rate and event number estimations are
given in section 5. Conclusions are drawn in section 6.

2. Gravitomagnetic corrections

In a previous paper [15], we studied how the relativistic
theory of orbits for massive point-like objects is affected
by gravitomagnetic corrections. In particular, we considered
the corrections on orbits of higher-order terms in v/c, and
this is the main difference with respect to the standard
gravitomagnetic effect discussed so far where corrections are
taken into account only in the weak field limit and not on
the geodesic motion. The problem of gravitomagnetic vector
potential, entering into the off-diagonal components g0l of
the metric gµν , can be greatly simplified and the corrections
can be seen as further powers in the expansion in c−1 (up to
c−3). Nevertheless, the effects on orbit behavior are interesting
and involve not only precession at the periastron but also
nutation corrections. Here we briefly recall such a previous
result (see [15] for a detailed analysis).

The metric, in a weak field limit where gravitomagnetic
corrections are present, is

ds2
=

(
1+

28

c2

)
c2dt2

−
8δl j V l

c3
cdtdx j

−

(
1−

28

c2

)
δi j dx i dx j ,

(1)
where 8 is the Newtonian potential and V j is the gravitational
vector potential (see [15] for details). It is clear that the
approximation is up to c−3 in the Taylor expansion. From
equation (1), it is straightforward to construct a variational
principle from which the geodesic equation follows. Then we
can derive the orbital equations. As a standard, we have

ẍα + 0α
µν ẋµ ẋν

= 0, (2)

where the dot indicates differentiation with respect to
the affine parameter. In order to put in evidence the
gravitomagnetic contributions, let us explicitly calculate the
Christoffel symbols at lower orders. By some straightforward
calculations, we obtain

00
00 = 0,

00
0 j =

1

c2

∂8

∂x j
,

00
i j = −

2

c3

(
∂V i

∂x j
+

∂V j

∂x i

)
,

0k
00 =

1

c2

∂8

∂xk
,

0k
0 j =

2

c3

(
∂V k

∂x j
−

∂V j

∂xk

)
,

0k
i j = −

1

c2

(
∂8

∂x j
δk

i +
∂8

∂x i
δk

j −
∂8

∂xk
δi j

)
.

(3)

In the approximation that we are going to consider, we
retain terms up to orders 8/c2 and V j/c3. It is important

to point out that we discard terms such as (8/c4)∂8/∂xk ,
(V j/c5)∂8/∂xk , (8/c5)∂V k/∂x j , (V k/c6)∂V j/∂x i and
those of higher orders. Our aim is to show that, in several
cases such as in tight binary stars, it is not correct to discard
higher-order terms in v/c since physically interesting effects
could arise. A vector equation for the spatial components of
geodesics accounting for gravitomagnetic effects is [15]

de
dleuclid

= −
2

c2
[∇8 − e(e · ∇8)] +

4

c3
[e ∧ (∇ ∧ V)]. (4)

The gravitomagnetic term is the second in equation (4) and is
usually discarded because it is not relevant. This is not true
if v/c is quite large as in the cases of tight binary systems
or point masses approaching BHs. Orbits corrected by such
effects can be explicitly achieved.

2.1. Orbits with gravitomagnetic corrections

Orbits with gravitomagnetic effects can be obtained starting
from classical theory and then correcting it by successive
relativistic terms. In [15], it is shown that, taking into account
gravitomagnetic terms, in the weak field approximation
and in the extreme mass-ratio limit m � M , one obtains
a motion with precession and nutation by solving the
Euler–Lagrange equations numerically. It is possible to obtain
parametric orbital equations of a massive particle starting
from a variational principle where the canonical Lagrangian
is derived by metric (1). With ∂L

∂t = 0, we have d
dt [ ∂L

∂ ṫ ] = 0 and
then ∂L

∂ ṫ = E , where E is a constant that can be interpreted
as an energy per mass unit. Owing to the dependence of the
Lagrangian on θ and φ, we have, in general, ∂L

∂φ
6= 0 and,

furthermore, considering the initial conditions θ =
π
2 and θ̇ =

0 we have θ̈ 6= 0. This means, by straightforward calculations,
a latitudinal motion in θ , i.e. an orbital precession coupled
with a nutation. On the other hand, planar motions are possible
setting the initial condition ṙ = 0, i.e. for the particular case of
circular orbits; otherwise orbital motions present precession
and nutation corrections. Giving explicitly the energy first
integral

ṫ =
1

c3r − 2cGµ

{
− 4Gµ(cos θ + sin θ(cos φ + sin φ))ṙ

+ r
[
c3 E − 4Gµ((− sin θ + cos θ(cos φ + sin φ))θ̇

+ sin θ(cos φ − sin φ)φ̇)
]}

(5)

and the Euler–Lagrange equations (where the energy first
integral can be suitably substituted), we obtain the differential
system

r̈ =
1

cr(rc2 + 2Gµ)

[
c(rc2 + Gµ)

(
θ̇2 + sin2 θφ̇2

)
r2

− 4Gµṫ
(
(cos θ(cos φ + sin φ) − sin θ)θ̇

+ sin θ(cos φ − sin φ)φ̇
)

r + cGµṙ2
− cGµṫ2

]
, (6)

φ̈ = −

2
(
c cot θ(rc2 + 2Gµ)θ̇ φ̇r2

+ṙ
(
2Gµ csc θ(sin φ − cos φ)ṫ + cr(rc2 + Gµ)φ̇

))
r2(rc3 + 2Gµc)

,

(7)
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Figure 1. Plots of r̈ = r̈(t) (left upper panel), φ̈ = φ̈(t) (right upper panel), θ̈ = θ̈ (t) (left bottom panel) and θ̈NO = θ̈NO(t) (right bottom
panel). As is seen, we have stiff equations owing to the turning points of the orbits. The example we show has been obtained by solving the
system for the following parameters and initial conditions: µ = 1.4M�, r0 = 500µ, E = 0.95, φ0 = 0, θ0 =

π

2 , φ̇0 = −
1

10 ṙ0 and ṙ0 = −
1

100 .

θ̈ =

c cos θr2(rc2 + 2Gµ) sin θφ̇2 + ṙ(4Gµ(cos θ(cos φ

+ sin φ) − sin θ)ṫ − 2cr(rc2 + Gµ)θ̇)

r2(rc3 + 2Gµc)
,

(8)
where µ =

mM
m+M . Following [15], it is worth noting that the

vector potential V j has disappeared from the equations of
motion having been substituted by the effective quantity
8(r) · v j where 8 '

Gµ

r .
Such a system is highly nonlinear. For its solution, we

have to adopt numerical methods. The main characteristics of
solutions can be deduced by a rapid inspection of figure 1.

As a first remark, we have to say that the above system
of differential equations presents some difficulties since the
equations are stiff and their numerical solution can diverge
in several test points. Some numerical algorithms allow one
to change the meshing dynamically in order to decrease the
mesh size near the critical points.

For our purposes, we have found solutions by using the
so-called stiffness switching method to provide an automatic
tool of switching between a non-stiff and a stiff solver coupled
with a more conventional explicit Runge–Kutta method for the
non-stiff part of our differential equations.

We have used for the computation the sixth version of
Wolfram Software Mathematica package [16]. The stiffness
of the differential equations is evident from the figure, where
the first and second derivatives of r , plotted with respect to
t , show steep peaks corresponding to points where the radial
velocity changes its sign abruptly. We show the time series
of both ṙ(t) and r(t) together with the phase portrait ṙ =

f (r) and r̈(t), assuming given initial values for the angular
precession and nutation velocities. The results for a given
value of nutation angular velocity with a time span of 10 000
steps are shown. It is interesting to see that by increasing the
initial nutation angular velocity, all the other initial conditions

remaining fixed, we obtain curves with decreasing frequencies
for ṙ(t) and r̈(t). This fact is relevant for an insight into
orbital motion stability. The expected error in the phase of
the orbit is of order 10−16. To show the orbital velocity
field, we have performed a rotation and a projection of the
orbits along the axes of maximal energy. In other words, by
a singular value decomposition of de-trended positions and
velocities, we have selected only eigenvectors corresponding
to the largest eigenvalues and, of course, those representing
the highest energy components.

The above differential equations for parametric orbital
motion are nonlinear and with time-varying coefficients. In
order to have a well-posed Cauchy problem, we have to define
the initial and final boundary condition problems and the
dynamical equilibrium of solutions (see the following pictures
and numerical integrations).

From a physical point of view, equations (6)–(8) show
additional terms with respect to classical Newtonian motion.
Such corrections are dependent on φ and θ . Obviously, these
terms become important as soon as the velocities approach
relativistic regimes and the ratio v/c is quite large. In some
physical situations, e.g. in extreme dense globular clusters or
around the Galactic Center, such a ratio can be in the range
10−2–10−3, being not negligible at all (see [14] and references
therein).

In figure 1, we have shown the trend of r̈ , φ̈, θ̈ ,
as a function of t , and θ̈NO, which is the trend without
gravitomagnetic correction. It can be seen that this last
plot gives deviations from zero that are essentially null,
confirming the planarity of orbital motions in the absence of
gravitomagnetic corrections (the differences have at least four
orders of magnitude between θ̈NO(t) and θ̈ (t)).

For a further insight into the gravitomagnetic correction
relevance on relativistic orbital motion, we have derived

4



Phys. Scr. 81 (2010) 035008 S Capozziello et al

Figure 2. Plots of θNO(t) −
π

2 (left upper panel) and θGrav(t) −
π

2 (right upper panel). In the bottom panels, rGrav − rNO (left) and tGrav − tNO

(right) are plotted (red lines). The ratio between coordinated time tGrav
τ

versus proper time τ is also plotted (blue line). The examples we
show have been obtained by solving the system for the following parameters and initial conditions: µ = 1.4M�, r0 = 500µ, E = 0.95,
φ0 = 0, θ0 =

π

2 , θ̇0 = 0, φ̇0 = −
1
10 ṙ0 and ṙ0 = −

1
100 .

a numerical solution with the following parameters and
initial conditions: µ ∼= 1.4M�, r0 = 500µ, E = 0.95, φ0 = 0,
θ0 =

π
2 , φ̇0 = −

1
10 ṙ0 and ṙ0 = −

1
100 c. In figure 2, we have

plotted θNO(t) −
π
2 without gravitomagnetic corrections and

θGrav(t) −
π
2 with gravitomagnetic corrections. In the bottom

panel, there is, starting from the left to the right, the trend
of the difference between the orbital radii rGrav and rNO with
and without gravitomagnetic corrections respectively; we also
plotted the differences rGrav − rNO and tGrav − tNO (red lines)
and the ratio between coordinated time tGrav

τ
versus proper

time τ (blue line). It is interesting to note the discrepancy
from π

2 of θ with and without the gravitomagnetic effect. It is
evident that we have planar orbital motion in the Newtonian
case, while, in the presence of gravitomagnetic corrections,
there is a tendency to precession and nutation of the orbital
plane that give rise, orbit by orbit, to cumulative effects (a
difference of five orders of magnitude between zNO(t) and
zGrav(t) can be evaluated). At the beginning, the effect is very
small but, orbit by orbit, it grows and, for a suitable interval of
time, the effect cannot be neglected (see figure 3, left bottom
panel in which the differences in x and y are shown starting
from the initial orbits up to the last ones by a step of about
1500 orbits). On the bottom right the basic orbit is shown.
For about 4850 orbits and a time interval of about 1.7 years,
we found that the differences in coordinated time, computed
with and without gravitomagnetic effects, are increasing as
well as the differences in x , y and z coordinates. See also
figure 4, in which we show the differences between the GW
dimensionless strain amplitude computed with and without
gravitomagnetic orbital corrections (see the discussion in
section 4).

3. GW luminosity in the quadrupole approximation

After the discussion of gravitomagnetic corrections to
orbital motion, let us take into account the problem
of how GW production and waveforms are affected by
such effects. For this purpose, we have to consider the
quadrupole approximation. This is, in our opinion, the best
way of observing how gravitomagnetic effects correct GW
luminosity and waveforms.

It is well known that the Einstein field equations give
a description of how the curvature of space-time is related
to the energy–momentum distribution. In the weak field
approximation, moving massive objects produce GWs that
propagate in vacuum with the speed of light. One can
search for wave solutions, generated by a system of masses
undergoing arbitrary motions, and then obtain the radiated
power. The result, assuming that the source dimensions are
very small with respect to the wavelengths (i.e. the quadrupole
approximation [18]), is that the power dE

d�
, radiated in a solid

angle � with polarization ei j , is

dE

d�
=

G

8πc5

(
d3 Qi j

dt3
ei j

)2

, (9)

where Qi j is the quadrupole mass tensor:

Qi j =

∑
a

ma(3x i
a x j

a − δi jr
2
a ), (10)

ra being the modulus of the vector radius of the ath particle
and the sum running over all masses ma in the system. We
must note that the result is independent of the kind of stresses

5
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Figure 3. Plots of zNO(t) (left upper panel) and zGrav(t) (right upper panel). It is interesting to see differences of about five orders of
magnitude between the two plots. At the beginning, the effect is very small but, orbit by orbit, it grows and, for a suitable interval of
coordinated time, the effect cannot be neglected (see the left bottom panel, in which differences in x and y, starting from the initial orbits up
to the last ones, by steps of about 1500 orbits, are reported). The internal red circle represents the beginning, the middle one is the
intermediate situation (green) and the blue one is the final result of the correlation between 1x and 1y, with 1x = xGrav − xNO and
1y = yGrav − yNO. On the bottom right, the basic orbit is shown.
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Figure 4. Plot of the differences of total gravitational waveform h, with and without gravitomagnetic orbital correction for a neutron star of
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100 . It is worth noting that frequency modulation gives cumulative effects after suitable long times.

present in dynamics. If one sums equation (9) over the two

allowed polarizations, one obtains

∑
pol

dE

d�
=

G

8πc5

[
d3 Qi j

dt3

d3 Qi j

dt3
− 2ni

d3 Qi j

dt3
nk

d3 Qk j

dt3

−
1

2

(
d3 Qi i

dt3

)2

+
1

2

(
ni n j

d3 Qi j

dt3

)2

+
d3 Qi i

dt3
n j nk

d3 Q jk

dt3

]
, (11)

where n̂ is the unit vector in the radiation direction. The total
radiation rate is obtained by integrating equation (11) over all
emission directions; the result is

P =
dE

d�
=

G

c5

(
d3 Qi j

dt3

d3 Qi j

dt3
−

1

3

d3 Qi i

dt3

d3 Q j j

dt3

)
. (12)

It is then possible to estimate the amount of energy emitted in
the form of GWs from a system of massive interacting objects.
In this case, the components of the quadrupole mass tensor are

6
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Qxx = µr2(3 cos2 φ sin2 θ − 1),

Q yy = µr2(3 sin2 φ sin2 θ − 1),

Qzz =
1
2r2µ(3 cos 2θ + 1),

Qxz = Qzx = r2µ( 3
2 cos φ sin 2θ),

Q yz = Qzy = r2µ( 3
2 sin 2θ sin φ),

Qxy = Q yx = r2µ
(

3
2 sin2 θ sin 2φ

)
,

(13)

where the masses mi have polar coordinates
{ri sin θ cos φ, ri sin θ sin φ, ri cos θ} and µ is the reduced
mass. The origin of the motions is taken at the center of
mass. Such components can be differentiated with respect
to time as in equation (12). The gravitomagnetic corrections
affect, essentially, these quantities and, consequently, the GW
amplitude h and the radiation rate P , as we will see below.

4. GW amplitude with gravitomagnetic corrections

Direct signatures of gravitational radiation are given by GW
amplitudes and waveforms. In other words, the identification
of a GW signal is strictly related to the accurate selection
of the waveform shape by interferometers or any possible
detection tool. Such an achievement could give information
on the nature of the GW source, the propagating medium
and, in principle, the gravitational theory producing such a
radiation [27].

Considering the formulas of the previous section, GW
amplitude can be evaluated by

h jk(t, R) =
2G

Rc4
Q̈ jk, (14)

where R is the distance between the source and the observer
and, due to the above polarizations, { j, k} = 1, 2.

From equation (14), it is straightforward to show
that, for a binary system where m � M and orbits have
gravitomagnetic corrections, the Cartesian components of
GW amplitude are

hxx
= 2µ

[(
3 cos2 φ sin2 θ − 1

)
ṙ2 + 6r

(
θ̇ cos2 φ sin 2θ

−φ̇ sin2 θ sin 2φ
)

ṙ + r
((

3 cos2 φ sin2 θ − 1
)

r̈

+ 3r
(
θ̇2 cos 2θ cos2 φ − φ̇θ̇ sin 2θ sin 2φ

− sin θ
(
sin θ

(
φ̇2 cos 2φ + φ̈ cos φ sin φ

)
−θ̈ cos θ cos2 φ

)))]
, (15)

h yy
= 2µ

[(
3 sin2 θ sin2 φ − 1

)
ṙ2

+ 6r
(
φ̇ sin 2φ sin2 θ + θ̇ sin 2θ sin2 φ

)
ṙ

+ r
((

3 sin2 θ sin2 φ − 1
)

r̈ + 3r
(
θ̇2 cos 2θ sin2 φ

+ φ̇θ̇ sin 2θ sin 2φ + sin θ
(
θ̈ cos θ sin2 φ

+ sin θ
(
φ̇2 cos 2φ + φ̈ cos φ sin φ

))))]
, (16)

hxy
= h yx

= 3µ
[
cos 2φ sin θ

(
4θ̇ φ̇ cos θ + φ̈ sin θ

)
r2

+ 2ṙ
(
2φ̇ cos 2φ sin2 θ + θ̇ sin 2θ sin 2φ

)
r

+ 1
2 sin 2φ

(
2r̈ sin2 θ + r(t)

(
2θ̇2 cos 2θ − 4φ̇2 sin2 θ

+ θ̈ sin 2θ)) r + ṙ2 sin θ sin 2φ
]
, (17)

where we are assuming geometrized units. The above
formulas have been obtained from equations (6)–(8). The
gravitomagnetic corrections give rise to signatures on the GW
amplitudes that, in the standard Newtonian orbital motion, are
not present (see for example [22, 23]). On the other hand,
as discussed in the Introduction, such corrections cannot be
discarded in peculiar situations such as dense stellar clusters
or in the vicinity of galaxy central regions.

Finally, the expected dimensionless strain amplitude
turns out to be h ' (h2

xx + h2
yy + 2h2

xy)
1/2. In particular,

considering a monochromatic GW, we have two independent
degrees of freedom that, in the TT gauge, are h+ = hxx + h yy

and h× = hxy + h yx . We evaluate these quantities and the
results are shown in figures 3–6.

4.1. Numerical results

Now we have all the ingredients to estimate the
effects of gravitomagnetic corrections on GW radiation.
Calculations were performed in geometrized units in order
to better evaluate relative corrections in the absence of
gravitomagnetism. For numerical simulations, we assumed
fiducial systems constituted by an m = 1.4M� neutron star or
an m = 10M� massive stellar object orbiting around an MBH
M ' 3 × 106 M� such as SgrA∗. In the extreme mass-ratio
limit, this means that we can consider µ =

mM
m+M of about

µ ≈ 1.4M� and µ ≈ 10M�. Computations were performed
starting with orbital radii measured in the mass unit and
scaling the distance according to the values shown in table 1.
As seen in table 1, starting from r0 = 20µ up to 2500µ, the
orbital eccentricity e=

rmax−rmin
rmax+rmin

evolves toward a circular
orbit. In table 1, the GW frequencies, in mHz, as well as the
dimensionless h amplitude strains and the two polarizations
h+ and h× are shown. The values are the mean values of the
GW dimensionless h amplitude strains (h =

hmax+hmin
2 ) and the

maxima of the polarization waves (see figures 5 and 6). In
figure 7, the fiducial LISA dimensionless h strains sensitivity
curve is shown [5], considering the confusion noise produced
by white dwarf binaries (blue curve). We also show the h
dimensionless strains amplitudes (red diamond and green
circles for µ ≈ 1.4M� and ≈ 10M�, respectively). It is worth
noting that, due to very high signal to noise ratio, the binary
systems that we are considering are extremely interesting, in
terms of probability detection, for the LISA interferometer
(see figure 7).

5. Event number estimations toward SgrA*

At this point, it is important to give some estimates of the
number of events where gravitomagnetic effects could be a
signature for orbital motion and gravitational radiation. From
the GW emission point of view, close orbital encounters,
collisions and tidal interactions have to be dealt with on
average if we want to investigate gravitational radiation in a
dense stellar system. On the other hand, dense stellar regions
are the favored target for the LISA interferometer [14]; hence
it is extremely useful to provide suitable numbers before its
launching.

To this end, it is worth giving the stellar encounter
rate producing GWs in astrophysical systems such as dense

7
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Figure 5. Plots along the panel lines from left to right of velocities along the axes of maximal covariance, total gravitational emission
waveform h and gravitational waveform polarizations h+ and h× for a neutron star of 1.4M�. The waveform was computed for the
Earth-distance from Sagittarius A (the central Galactic BH SgrA∗). The plots have been obtained by solving the system for the following
parameters and initial conditions: µ ≈ 1.4M�, E = 0.95, φ0 = 0, θ0 =

π

2 , θ̇0 = 0, φ̇0 = −
1
10 ṙ0 and ṙ0 = −

1
100 . From top to bottom of the

panels, the orbital radius is r0 = 20, 1500 and 2500µ. See also table 1. The velocity field is represented ‘face-on’ along the axes of maximal
covariance to better represent how gravitomagnetic corrections affect the phase space portrait of the system.

Table 1. GW amplitudes and frequencies as a function of eccentricity e, reduced mass µ and orbital radius r0 for the two cases of fiducial
stellar objects m ' 1.4M� and m ' 10M� orbiting around an MBH of mass M ' 3 × 106 M�.

1.4M� 10M�

r0/µ e f (mHz) h h+ h× e f (mHz) h h+ h×

20 0.91 7.7 × 10−2 2.0 × 10−22 5.1 × 10−23 5.1 × 10−22 0.98 3.2 × 10−2 1.5 × 10−18 1.6 × 10−19 4.3 × 10−18

200 0.79 1.1 × 10−1 1.2 × 10−20 2.2 × 10−21 3.1 × 10−20 0.87 9.2 × 10−2 1.5 × 10−16 2.5 × 10−18 4.1 × 10−16

500 0.64 1.4 × 10−1 6.9 × 10−20 8.7 × 10−21 1.7 × 10−19 0.71 1.4 × 10−1 8.5 × 10−16 7.0 × 10−18 2.4 × 10−15

1000 0.44 1.9 × 10−1 2.6 × 10−19 6.4 × 10−20 6.4 × 10−19 0.49 1.9 × 10−1 2.0 × 10−15 1.6 × 10−17 5.6 × 10−15

1500 0.28 2.3 × 10−1 4.8 × 10−19 3.6 × 10−20 1.2 × 10−18 0.32 2.3 × 10−1 2.7 × 10−15 2.5 × 10−17 7.4 × 10−15

2000 0.14 2.7 × 10−1 5.9 × 10−19 4.9 × 10−20 1.3 × 10−18 0.19 2.6 × 10−1 2.8 × 10−15 3.3 × 10−17 7.6 × 10−15

2500 0.01 3.1 × 10−1 5.9 × 10−19 1.7 × 10−20 9.2 × 10−19 0.08 2.9 × 10−1 2.1 × 10−15 4.0 × 10−17 5.6 × 10−15

globular clusters or the Galactic Center. In general, stars are
approximated as point masses. However, in dense regions of
stellar systems, stars can pass so close to another that they

raise tidal forces that dissipate their relative orbital kinetic
energy and Newtonian mechanics or the weak field limit of
GR cannot be adopted as good approximations. In some cases,

8
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Figure 6. Plots along the panel lines from left to right of velocities along the axes of maximal covariance, total gravitational emission
waveform h and gravitational waveform polarizations h+ and h× for a BH of 10M�. The waveform was computed for the Earth-distance to
SgrA∗. The plots we show have been obtained solving the system for the following parameters and initial conditions: µ ≈ 10M�, E = 0.95,
φ0 = 0, θ0 =

π

2 , θ̇0 = 0, φ̇0 = −
1
10 ṙ0 and ṙ0 = −

1
100 . From top to bottom of the panels, the orbital radius is r0 = 20, 1000 and 2500µ. See

also table 1. The field of velocities is represented ‘face-on’ along the axes of maximal covariance to better represent how gravitomagnetic
corrections affect the phase space portrait of the system.

the loss of energy can be so large that stars form binary (the
situation that we have considered here) or multiple systems; in
other cases, stars collide and coalesce into a single star; finally
stars can exchange gravitational interaction in non-returning
encounters.

To investigate and parameterize all these effects, one has
to compute the collision time tcoll, where 1/tcoll is the collision
rate, that is, the average number of physical collisions that a
given star suffers per unit time. As a rough approximation,
one can restrict oneself to stellar clusters in which all stars
have the same mass m.

Let us consider an encounter with initial relative velocity
v0 and impact parameter b. The angular momentum per unit
mass of the reduced particle is L = bv0. At the distance
of closest approach, which we denote by rcoll, the radial
velocity must be zero, and hence the angular momentum is
L = rcollvmax, where vmax is the relative speed at rcoll. It is easy

to show that [17]

b2
= r2

coll +
4Gmrcoll

v2
0

. (18)

If we set rcoll equal to the sum of the radii of the two stars,
a collision will occur if the impact parameter is less than the
value of b, as determined by equation (18).

The function f (va) d3va gives the number of stars per
unit volume with velocities in the range va + d3va . The number
of encounters per unit time with impact parameter less than b,
which are suffered by a given star, is f (va) d3va times the
volume of the annulus with radius b and length v0, that is∫

f (va)πb2v0 d3va, (19)

where v0 = |v − va| and v is the velocity of the considered
star. The quantity in equation (19) is equal to 1/tcoll for a star

9
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Figure 7. Plot of estimated mean values of GW emission in terms
of dimensionless strain h for two binary sources at the Galactic
Center SgrA∗ with reduced mass µ ≈ 1.4M� (red diamonds) and
µ ≈ 10M� (green circles). The blue line is the foreseen LISA
dimensionless h strains sensitivity curve. The waveforms were
computed for the Earth-distance to SgrA∗. The examples we show
have been obtained by solving the system for the parameters and
initial conditions reported in figures 5 and 6 and in table 1. It is
worth noting that we are considering here that the dimensionless
strain amplitudes and typical durations can be computed according
to figure 4. They are of the order 107–108 s.

with velocity v: to obtain the mean value of 1/tcoll, we average
over v by multiplying (19) by f (v)/ν, where ν =

∫
f (v) d3v

is the number density of stars and integration is over d3v. Thus

1

tcoll
=

ν

8π2σ 6

∫
e−(v2+v2

a )/2σ 2

×

(
rcoll|v − va| +

4Gmrcoll

|v − va|

)
d3v d3va . (20)

Replacing the variable va by V = v − va , the argument of the
exponential is then −[(v −

1
2 V)2 + 1

4 V 2]/σ 2, and if we replace
the variable v by vcm = v −

1
2 V (the center of mass velocity),

then one has

1

tcoll
=

ν

8π2σ 6

∫
e−(v2

cm+V 2)/2σ 2

(
rcollV +

4Gmrcoll

V

)
dV .

(21)
The integral over vcm is given by∫

e−v2
cm/σ 2

d3vcm = π3/2σ 3. (22)

Thus

1

tcoll
=

π1/2ν

2σ 3

∫ 0

∞

e−V 2/4σ 2 (
r2

collV
3 + 4GmV rcoll

)
dV . (23)

The integrals can be easily calculated and then we find

1

tcoll
= 4

√
πνσr2

coll +
4
√

πνGmrcoll

σ
. (24)

The first term of this result can be derived from kinetic theory.
The rate of interaction is ν6〈V 〉, where 6 is the cross-section
and 〈V 〉 is the mean relative speed. Substituting 6 = πr2

coll
and 〈V 〉 = 4σ/

√
π (which is appropriate for a Maxwellian

distribution with dispersion σ ), we recover the first term
of (24). The second term represents the enhancement in the
collision rate by gravitational focusing, that is, the deflection
of trajectories by the gravitational attraction of the two stars.

If r∗ is the stellar radius, we may set rcoll = 2r∗. It is
convenient to introduce the escape speed from the stellar

surface, v∗ =

√
2Gm

r∗

, and to rewrite equation (24) as

0 =
1

tcoll
= 16

√
πνσr2

∗

(
1 +

v2
∗

4σ 2

)
= 16

√
πνσr2

∗
(1 + 2),

(25)
where

2 =
v2

∗

4σ 2
=

Gm

2σ 2r∗

(26)

is the Safronov number [17]. In evaluating the rate, we
consider only those encounters producing GWs, for example,
in the LISA range, i.e. between 10−4 and 10−1 Hz (see
e.g. [28]). Numerically, we have

0 ' 5.5 × 10−10
( v

10 km s−1

) ( σ

U A2

) (
10 pc

R

)3

year−1

2 � 1, (27)

0 ' 5.5 × 10−10

(
M

105 M�

)2 ( v

10 km s−1

)
×

( σ

U A2

) (
10 pc

R

)3

years−1 2 � 1. (28)

If 2 � 1, the energy dissipated exceeds the relative kinetic
energy of the colliding stars, and the stars coalesce into a
single star. This new star may, in turn, collide and merge
with other stars, thereby becoming very massive. As its mass
increases, the collision time is shortened and then there may
be runaway coalescence leading to the formation of a few
supermassive objects per cluster. If 2 � 1, much of the mass
in the colliding stars may be liberated and forming new stars
or single supermassive objects (see [29, 30]). Both cases are
interesting for LISA purposes.

Note that when one has the effects of quasi-collisions
(where gravitomagnetic effects, in principle, cannot be
discarded) in an encounter of two stars in which the minimal
separation is several stellar radii, violent tides will be raised
on the surface of each star. The energy that excites the
tides comes from the relative kinetic energy of the stars.
This effect is important for 2 � 1 because the loss of a
small amount of kinetic energy may leave the two stars with
negative total energy, that is, as a bounded binary system.
Successive peri-center passages will dissipate more energy by
GW radiation, until the binary orbit is nearly circular with
negligible or null GW radiation emission.

Let us apply these considerations to the Galactic Center,
which can be modeled as a system of several compact stellar
clusters, some of them similar to very compact globular
clusters with high emission in x-rays [31].

For a typical globular cluster around the Galactic Center,
the expected event rate is of the order of 2 × 10−9 years−1,
which may be increased at least by a factor ' 100 if one
considers the number of globular clusters in the whole Galaxy.

10
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If the stellar cluster at the Galactic Center is taken into account
and assuming the total mass M ' 3 × 106 M�, the velocity
dispersion σ ' 150 km s−1 and the radius of the object R '

10 pc (where 2 = 4.3), one expects to have ' 10−5 open
orbit encounters per year. On the other hand, if a cluster with
total mass M ' 106 M�, σ ' 150 km s−1 and R ' 0.1 pc is
considered, an event rate number of the order of unity per year
is obtained. These values could be realistically achieved by
data coming from the forthcoming space interferometer LISA.
As a secondary effect, the above waveforms could constitute
the ‘signature’ to classify the different stellar encounters
thanks to the differences of the shapes (see figures 5 and 6).

6. Conclusions

In this paper, we have discussed gravitomagnetic effects on
orbital motions that could give rise to interesting phenomena
in tight binding systems such as binaries of evolved objects
(neutron stars or BHs). The effects become particularly
relevant when such objects orbit around or fall toward very
MBHs such as those at the center of galaxies. The effects are
particularly interesting if v/c is in the range (10−1–10−4)c.
Gravitomagnetic orbital corrections, after long integration
time, can induce precession and nutation effects capable
of affecting the stability basin of the orbits. The global
structure of such a basin is extremely sensitive to initial
radial velocities and angular velocities, initial energy and
masses, which can determine possible transitions to chaotic
behavior. In principle, GW emission could present signatures
of gravitomagnetic corrections after suitable integration times,
in particular for the ongoing LISA space laser interferometric
GW antenna.

Some remarks on the detectability of such effects are
necessary at this point. In a first scenario, the detection could
be possible by ignoring gravitomagnetic corrections at the
beginning. In this case, the presence of such corrections
could be investigated in a post-detection analysis. This
strategy means that a very fine off-line data reduction should
be pursued to test the presence of the effects. From a
genuine physical viewpoint, offline analysis means that a
clear theoretical classification of waveforms and signatures
of various phenomena is necessary. A second possibility
could be on-line detection. In such a case, suitable templates
for the signals should be available and then a preliminary
classification is necessary. It is worth stressing that the two
stategies are very different. In the first case, gravitomagnetic
effects can be seen as ‘anomalies’ or ‘corrections’ on the
standard templates adopted for detection. In the second
case, a fine theoretical study is necessary ‘a priori’ in
order to produce suitable templates. In other words, the first
approach seems more operative while the second seems more
correct. However, these preliminary considerations have to
be supported by a robust theoretical analysis of dynamics
around systems such as the MBHs that we have taken into
account [14]. A third strategy is also possible, i.e. a blind
search using adaptive filters such as the infinite impulse
response adaptive line enhancer (the so-called IIR ALE for
blind detection of GWs [32, 33]). Clearly, the signature for
gravitomagnetic effects emerges as soon as dynamics is going

to become critical and the standard weak field and slow
motion approximations fail in giving an accurate description
of phenomena. These will be the arguments of forthcoming
studies.
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