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Abstract
Corrections to the relativistic orbits are studied considering higher order approximations
induced by gravitomagnetic effects. We discuss in details how such corrections come out
taking into account ‘magnetic’ components in the weak field limit of gravitational field and
then the theory of orbits is developed starting from the Newtonian one, the lowest order in the
approximation. Finally, the orbital structure and the stability conditions are discussed giving
numerical examples. Beside the standard periastron corrections of General Relativity, a new
nutation effect is due to the c−3 corrections. The transition to chaotic behavior strictly depends
on the initial conditions. The orbital phase space portrait is discussed.
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(Some figures in this article are in colour only in the electronic version.)

1. Introduction

The analogy between the classical Newton and Coulomb laws
led to investigate if masses in motion, considered as charges,
could give rise to a ‘gravitational’ magnetic field.

In fact, the magnetic field is produced by the motion of
electric charge, i.e. the electric current. The analogy consists
of the fact that a mass–energy current can produce what is
called a ‘gravitomagnetic’ field.

The pioneering approach to the problem is due to
Maxwell himself who, in one of his fundamental works on
electromagnetism, turned his attention on the possibility to
formulate the theory of gravitation in a form corresponding to
the electromagnetic equations [1]. However, he was puzzled
by the problem of the energy of the gravitational field, i.e.
the meaning and the origin of the negative energy due to the
mutual attraction of material bodies. In fact, according to him,
the energy of a given field had to be ‘essentially positive’, but
this is not the case for the gravitational field. To balance this
negative energy, a great amount of positive energy is required,
in the form of energy of the space (a sort of back-reaction).
But, since he was unable to understand how this could be, he
did not proceed further along this line of thinking since the

problem can be addressed and solved only in the framework
of General Relativity.

Later, Holzmuller [2] and Tisserand [3] proposed to
modify the Newton law introducing, in the radial component
of the force, a term depending on the relative velocity of the
two attracting particles (see also [4, 5]). Also Heaviside [6, 7]
investigated the analogy between gravitation and
electromagnetism considering the propagation of gravitational
energy in terms of a sort of gravito-electromagnetic Poynting
vector; however, in this case also, he failed to frame the
problem of gravitational energy in a self-consistent scheme.

Finally, the formal analogy between electromagnetic and
gravitational fields was explored by Einstein [8], in the
framework of General Relativity, and then by Thirring [9].
This author pointed out that the geodesic equation can be
written as a Lorentz force splitting the gravitational field in
gravito-electric and gravito-magnetic components. The final
result of these studies was that any theory which combines
Newtonian gravity together with Lorentz invariance in a
consistent way, has to include a gravitomagnetic field, which
is generated by the mass–energy current. This is the case,
of course, of General Relativity: it was shown by Lense and
Thirring [10] that a rotating mass generates a gravitomagnetic
field, which in turn, causes the precession of planetary orbits.
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To be more precise, Pfister [11] has recently shown that it
would be better to speak about an Einstein–Lense–Thirring
effect.

It is interesting to notice that also Lodge and Larmor, at
the end of the 19th century, discussed the effects of frame
dragging on a non-rotating interferometer [12], but within
the framework of an aether-theoretical model. This frame
dragging corresponded, in fact, to the Lense–Thirring effect
of General Relativity. However, at the beginning of the 20th
century, when Lense and Thirring published their papers,
the effect named after them, which is indeed very small in
the terrestrial environment, was far from being detectable,
because of the technical difficulties and limitations of the
time. Contemporary improvements in technology have made
it possible to propose new ideas to reveal the Lense–Thirring
precession by analyzing the data sets on the orbits of
Earth satellites (see e.g. [13] where, for the first time, the
use of LAGEOS satellite was proposed). Several proposals
have been recently published to measure the Lense–Thirring
effect by natural and artificial bodies in some Solar System
scenarios. For example, in [14], the Sun with Venus is
considered. Mars with MGS spacecraft is discussed in [15],
whereas Jupiter with the Galilean moons (which is the original
idea by Lense and Thirring) is studied in [16]. Regarding the
Earth with the existing LAGEOS and LAGEOSII satellites,
recent results are reported in [17], whereas for the approved
experiment LARES the expected forthcoming measurement
is discussed in [18].

On the other hand, the experiment Gravity Probe-B [19]
has been devoted to another gravitomagnetic effect due to
Earth’s rotation, i.e. the Pugh–Schiff effect consisting of the
precessions of the spins of four gyroscopes carried onboard
the spacecraft [20, 21]. This experiment has detected the
effect and its magnitude in the gravitational field of the
Earth [22]. The originally expected accuracy was 1% or
better, but it is still unclear if it will be finally obtained
because of unexpected systematic effects arising in the data
analysis. Other experiments (like GP-C [23–25]) have been
proposed to reveal the space–time structure, which is affected
by gravitomagnetism, for example evidencing clock effects
around a spinning massive object. In particular, concerning
the so-called gravitomagnetic clock effect, we have to stress
that its most investigated form consists of the difference
between the orbital periods of two counter-rotating satellites.

Recently, gravitomagnetic effects have been considered
also in the framework of gravitational lensing. By using the
Fermat principle and the standard theory of gravitational
lensing, the gravitomagnetic corrections to the time-delay
function and the deflection angle for a geometrically thin lens
can be derived. Such corrections can induce observational
effects both in point-like [26] and in extended gravitational
lenses (such as the isothermal sphere and the disk of
spiral galaxies [27, 28]. Other researches concerning the
gravitomagnetic effects on time delay and light deflection
have been pursued. In [29], the gravitomagnetic effects
in the propagation of electromagnetic waves in variable
gravitational fields of arbitrary-moving and spinning bodies
have been studied, whereas, in [30–32], the gravitational
lensing due to stars with angular momentum, and then
inducing gravitomagnetic effects, has been considered.

Finally, the analogy between general relativity
and electromagnetism suggests that there is also a
galvano-gravitomagnetic effect, which is the gravitational
analogue of the Hall effect. This effect takes place when a
current carrying conductor is placed in a gravitomagnetic field
and the conduction electrons moving inside the conductor
are deflected transversally with respect to the current
flow. Such a galvano-gravitomagnetic effect, considering
current carrying conductors, could be used for detecting the
gravitomagnetic field of the Earth. A discussion of the effect
and its measurability are given in [33–35].

In this paper, we want to study how the relativistic
theory of orbits for massive point-like objects is affected
by gravitomagnetic corrections. In other words, we want to
consider the orbital effects of higher order terms in v/c
and this is the main difference with respect to the standard
gravitomagnetic effect so far considered. In this case, the
problem of gravitomagnetic vector potential entering into the
off-diagonal components g0l of the metric gµν can be greatly
simplified and the corrections can be seen as further powers
in the expansion in c−1 (up to c−3). Nevertheless, the effects
on the orbit behavior are interesting and involve not only the
precession at peri-astron but also nutation corrections as we
will show below. This means that it could be misleading to
neglect such effects when the weak field approximation is not
so weak, as in the case of point-like compact objects moving
in a tight-binding regime or spiraling about each other as in
the case of evolved binary systems constituted by black holes
and/or neutron stars. A study in this sense is in [36] where the
possibility of measuring the Lense–Thirring effect with the
double pulsar J0737-3039A is discussed.

In particular, we can study the evolution of compact
binary systems in the extreme mass ratio limit, i.e. the mass
of the moving particle is m and the mass that produces the
gravitational field is M , so that m � M . This constraint is
satisfied by several real systems. For example, there has been
gathering evidence suggesting the existence of supermassive
black holes with masses in the range 106–109 M�) in galactic
nuclei [37, 38]. One expects that small compact objects
(1–10M�) from the surrounding stellar population will be
captured by these black holes following many-body scattering
interactions at a relatively high rate [39, 40].

Our approach suggests that, in the weak field
approximation, when considering higher order corrections
in the motion equations, the gravitomagnetic effects can be
particularly significant, also in a rough approximation, giving
rise also to chaotic behavior in the transient regime dividing
stable from unstable orbits. Generally, such contributions are
discarded since they are assumed too small, but they have to
be taken into account as soon as the v/c is not so small.

Section 2 is devoted to the discussion of the gravito-
magnetic corrections which have to be considered when
relevant mass–energy current effects are presented in a given
problem. The geodesics, and then their spatial components,
the trajectories, are corrected by such terms. We derive
the Christoffel symbols with gravitomagnetic corrections
and the vector form of geodesics. In particular, the metric
‘gravitomagnetically’ corrected is achieved and the conditions
under which the vector potential V l can be substituted with
its point-like counterpart 8vl/c where 8 is the static Newton
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potential and vl the velocity of the test-particle m moving
around the generator of the gravitational field M .

In section 3, the theory of orbits is discussed. We review
the Newtonian and the relativistic theory considering, in
particular, the role of relativistic corrections [43, 44]. In
section 4, after constructing an effective Lagrangian coming
from the line element with the gravitomagnetic effect, we
derive the equations of motion. Numerical results for orbits
and their phase-space portrait are presented in section 5.
Discussion and conclusions are drawn in section 6.

2. Gravitomagnetic effects

Before treating the theory of the orbits with the
gravitomagnetic effects, let us get some insight into
gravitomagnetism and show how to derive the corrected
metric. A recent book concerning both theoretical and
experimental aspects of gravitomagnetism is [41], whereas
the Lense–Thirring effect is discussed in [42].

A remark is in order at this point: any theory combining,
in a consistent way, Newtonian gravity together with
Lorentz invariance has to include a gravitomagnetic field
generated by the mass–energy currents. This is the case,
of course, of General Relativity: it was shown by Lense
and Thirring [10, 46–49], that a rotating mass generates a
gravitomagnetic field, which, in turn, causes a precession of
planetary orbits. In the framework of the linearized weak-field
and slow-motion approximation of General Relativity, the
ensemble of so-called gravitomagnetic effects is induced
by the off-diagonal components of the space–time metric
tensor which are proportional to the components of the
matter–energy current density of the source. It is possible
to take into account two types of mass–energy currents
in gravity. The former is induced by the matter source
rotation around its center of mass: it generates the intrinsic
gravitomagnetic field which is closely related to the angular
momentum (spin) of the rotating body. The latter is due to
the translational motion of the source: it is responsible for
the extrinsic gravitomagnetic field. This concept has been
discussed in [50, 51]. Then, starting from the Einstein field
equations in the weak field approximation one obtains the
gravitoelectromagnetic equations and then the corrections in
the metric. Let us start from the weak field approximation of
the gravitational field 3

gµν(x) = ηµν + hµν(x),
∣∣hµν(x)

∣∣ � 1, (1)

where ηµν is the Minkowski metric tensor and |hµν(x)| � 1
is a small deviation from it [52].

The stress–energy tensor for perfect-fluid matter is given
by

T µν
= (p + ρc2)uµuν

− pgµν (2)

which, in the weak field approximation p � ρc2, is

T 00
' ρc2, T 0 j

' ρcv j , T i j
' ρviv j . (3)

From the Einstein field equations Gµν = (8πG/c4)Tµν , one
finds

5
2 h00 =

8πG

c2
ρ, (4)

3 Notation: latin indices run from 1 to 3, while greek indices run from 0 to 3;
the flat space–time metric tensor is ηµν = diag(1, −1, −1, −1).

5
2 hi j =

8πG

c2
δi jρ, (5)

5
2 h0 j = −

16πG

c2
δ jlρvl , (6)

where 5
2 is the standard Laplacian operator defined on the

flat space time. To achieve equations (4)–(6), the harmonic
condition

gµν0α
µν = 0 (7)

has been used.
By integrating equations (4)–(6), one obtains

h00 = −
28

c2
, (8)

hi j = −
28

c2
δi j , (9)

h0 j =
4

c3
δ jl V

l . (10)

The metric is determined by the gravitational Newtonian
potential

8(x) = −G
∫

ρ

|x − x′|
d3x ′, (11)

and by the vector potential V l ,

V l
= −G

∫
ρvl

|x − x′|
d3x ′, (12)

given by the matter current density ρvl of the moving
bodies. This last potential gives rise to the gravitomagnetic
corrections.

From equations (1) and (8)–(12), the metric tensor in
terms of Newton and gravitomagnetic potentials is

ds2
=

(
1 +

28

c2

)
c2dt2

−
8δl j V l

c3
c dt dx j

−

(
1 −

28

c2

)
δl j dx i dx j . (13)

From equation (13) it is possible to construct a variational
principle from which the geodesic equation follows. Then we
can derive the orbital equations. As standard, we have

ẍα + 0α
µν ẋµ ẋν

= 0, (14)

where the dot indicates the differentiation with respect
to the affine parameter. In order to put in evidence the
gravitomagnetic contributions, let us explicitly calculate the
Christoffel symbols at lower orders. By some straightforward
calculations, one gets

00
00 = 0,

00
0 j =

1

c2

∂8

∂x j
,

00
i j = −

2

c3

(
∂V i

∂x j
+

∂V j

∂x i

)
,

(15)

0k
00 =

1

c2

∂8

∂xk
,

0k
0 j =

2

c3

(
∂V k

∂x j
−

∂V j

∂xk

)
,

0k
i j = −

1

c2

(
∂8

∂x j
δk

i +
∂8

∂x i
δk

j −
∂8

∂xk
δi j

)
.

3
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In the approximation which we are going to consider, we
are retaining terms up to the orders 8/c2 and V j/c3.
It is important to point out that we are discarding
terms like (8/c4)∂8/∂xk , (V j/c5)∂8/∂xk , (8/c5)∂V k/∂x j ,
(V k/c6)∂V j/∂x i and of higher orders. Our aim is to show
that, in several cases like in tight binary stars, it is not
correct to discard higher order terms in v/c since physically
interesting effects could come out.

The geodesic equations up to c−3 corrections are then

c2 d2t

dσ 2
+

2

c2

∂8

∂x j
c

dt

dσ

dx j

dσ
−

2

c3

×

(
δim

∂V m

∂x j
+ δ jm

∂V m

∂x i

)
dx i

dσ

dx j

dσ
= 0, (16)

for the time component, and

d2xk

dσ 2
+

1

c2

∂8

∂x j

(
c

dt

dσ

)2

+
1

c2

∂8

∂xk
δi j

dx i

dσ

dx j

dσ
−

2

c2

∂8

∂x l

dx l

dσ

dxk

dσ

+
4

c3

(
∂V k

∂x j
− δ jm

∂V m

∂xk

)
c

dt

dσ

dx i

dσ
= 0, (17)

for the spatial components.
In the case of a null-geodesic, it is ds2

= dσ 2
= 0.

Equation (13) gives, up to the order c−3,

c dt =
4V l

c3
dx l +

(
1 −

28

c2

)
dleuclid, (18)

where dl2
euclid = δi j dx i dx j is the Euclidean length interval.

Squaring equation (18) and keeping terms up to order c−3,
one finds

c2dt2
=

(
1 −

48

c2

)
dl2

euclid +
8V l

c3
dx l dleuclid. (19)

Inserting equation (19) into equation (17), one gets, for the
spatial components,

d2xk

dσ 2
+

2

c2

∂8

∂xk

(
dleuclid

dσ

)2

−
2

c2

∂8

∂x l

dx l

dσ

dxk

dσ

+
4

c3

(
∂V k

∂x j
− δ jm

∂V m

∂xk

)
dleuclid

dσ

dx j

dσ
= 0. (20)

Such an equation can be seen as a differential equation
for dxk/dσ which is the tangent three-vector to the trajectory.
On the other hand, equation (20) can be expressed in terms of
leuclid considered as a parameter. In fact, for null geodesics and
taking into account the lowest order in v/c, dσ is proportional
to dleuclid. From equation (16) multiplied for (1 + (2/c2)8),
we have

d

dσ

(
dt

dσ
+

2

c2
8

dt

dσ
−

4

c4
δimV m dx i

dσ

)
= 0, (21)

and then

dt

dσ

(
1 +

2

c2
8

)
−

4

c4
δimV m dx i

dσ
= 1 , (22)

where, as standard, we have defined the affine parameter so
that the integration constant is equal to 1 [52]. Substituting

equation (18) into equation (22), at lowest order in v/c, we
find

dleuclid

c dσ
= 1. (23)

In the weak field regime, the spatial three-vector, tangent to a
given trajectory, can be expressed as

dxk

dσ
=

c dxk

dleuclid
. (24)

By defining

ek
=

dxk

dleuclid
, (25)

equation (20) becomes

dek

dleuclid
+

2

c2

∂8

∂xk
−

2

c2

∂8

∂x l
elek +

4

c3

(
∂V k

∂x j
− δ jm

∂V m

∂xk

)
e j

= 0,

(26)

which can be expressed in a vector form as

de
dleuclid

= −
2

c2
[∇8 − e(e · ∇8)] +

4

c3
[e ∧ (∇ ∧ V)] . (27)

The gravitomagnetic term is the second one in equation (27)
and it is usually discarded since considered not relevant. This
is not true if v/c is quite large as in the cases of tight binary
systems or point masses approaching black holes.

Our task is now to achieve explicitly the trajectories, in
particular the orbits, corrected by such effects.

3. Theory of orbits

Orbits with gravitomagnetic effects can be obtained starting
from the classical Newtonian theory and then correcting it
by successive relativistic terms. Here we give, for the sake
of completeness, a quick review of classical and relativistic
theory of orbits showing how gravitomagnetic effects are
the further corrections to be taken into account. A detailed
discussion of classical and relativistic theory of orbits can be
found in [53, 54]

3.1. The Newtonian theory

The motion of a test particle in a spherically symmetric
Newtonian gravitational field, can be achieved starting from
a variational principle where the Lagrangian is [45]

L=
1

2
v2 +

G M

r
, (28)

where the particle mass has been assumed unitary. The
velocity, in spherical coordinates, is

v2
= ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2. (29)

Here the dot denotes the ordinary derivatives with respect to
the time. The Euler–Lagrange equations are easily derived.
For θ -component, we have

d

dt
(r2θ̇ ) = r2 sin θ cos θϕ̇2, (30)

4
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where an obvious solution is θ = π/2; in fact, the motion is
plane and the variable θ cannot be taken into consideration
anymore. The equation

d

dt
(r2ϕ̇) = 0 (31)

gives
r2ϕ̇ = const = H, (32)

which is nothing else but the conservation of the angular
momentum. Finally, we have

r̈ = r ϕ̇2
−

G M

r2
. (33)

It is convenient to introduce the new variable

u(ϕ) =
1

r
. (34)

With

u′
=

du

dϕ
, (35)

and using equations (34) and (32), it results in

ṙ = −
1

u

du

dt
= −r2 du

dϕ

dϕ

dt
= −r2ϕ̇u′

= −Hu′. (36)

From this equation, one gets

r̈ = − H
d

dt

(
du

dϕ

)
= −H

dϕ

dt

d

dϕ

(
du

dϕ

)

= − H ϕ̇u′′
= −

H 2

r2
u′′

= −H 2u2u′′ (37)

and then equation (33) is

u′′ + u =
G M

H 2
, (38)

where the trivial solution u = 0 (r = ∞) is discarded. The
solution of equation (38) is

u =
G M

H 2
+ B cos(ϕ − ϕ0), (39)

and then, imposing ϕ0 = 0, one gets the orbits in polar
coordinates

r(ϕ) =
k

1 + e cos ϕ
. (40)

Here k = G M/H 2 and e is the ellipticity whose value
can give elliptic, hyperbolic and parabolic orbits [55].
Summarizing the solution for θ gives the planar motion, the
solution for ϕ gives the angular momentum conservation,
while the solution for r gives the orbits.

3.2. The relativistic theory

The relativistic case can be seen as a correction to the
Newtonian theory of orbits. As before, we can start from a
Lagrangian which can be deduced from the Schwarzschild
line element, that is

L= eν(ẋ0)2
− eλ(ṙ)2

− r2(θ̇2 + sin2 θϕ̇2). (41)

The Euler–Lagrange equation for θ is

d

ds
(r2θ̇ ) = r2 sin θ cos θ ϕ̇2. (42)

In analogy with equation (30) (the two equations differ for ds
in place of dt), the solution of this equation is θ = π/2; again,
as in the classical case, the motion is plane and θ disappears
as dynamical variable. The equations for x0

= ct and x3
= ϕ

admit two first integrals of motion since the Lagrangian does
not depend on x0 and on x3 but only on their derivatives. We
have (

1 −
Rs

r

)
ẋ0 = l, r2ϕ̇ = h, (43)

corresponding to the first integrals of energy and angular
momentum. Rs is the Schwarzschild radius. For x1

= r
we can use the definition L= gµν ẋµ ẋν = 1 instead of the
corresponding second order equation. With eν

= e−λ
= (1 −

Rs/r), we have

L=

(
1 −

Rs

r

)
(ẋ0)2

−
(ṙ)2

(1 − (Rs/r))
− r2 (

θ̇2 + sin2 θϕ̇2)
= 1.

(44)

Replacing equation (43) and considering θ = π/2, we have

l2
− ṙ2

−
h2

r2

(
1 −

Rs

r

)
=

(
1 −

Rs

r

)
. (45)

As in the Newtonian case, using the variable given by
equation (34) and using the second of equations (43), it is

ṙ = −hu′. (46)

Inserting equations (46) and (34) into equation (45),
we get

l2
− h2u′

− h2u2 (1 − Rsu) = (1 − Rsu) . (47)

This equation gives, by a quadrature, the solution
u = u(ϕ) with the periastron precession but, in order to
compare the result with the Newtonian case, we can derive
equation (47) considering that r̈ = −hu2u′′. One obtains

u′′ + u =
RS

2h2
+

3

2
RSu2. (48)

This equation can be easily compared with the corresponding
Newtonian case (38) since

h ' r2 1

c
ϕ̇ =

H

c
. (49)

With RS = 2G M/c2, it follows that

RS

2h2
'

(
G M

c2

) (
c2

H 2

)
=

(
G M

c2

)
. (50)

This means that the relativistic correction to the test particle
motion is due to the second member of (48). Such a term is
small if compared to the other. In fact, using (49) we have

3
2 RSu2

RS/2h2
= 3h2u2

'
3H 2

r2c2
= 3

(v

c

)2
, (51)

so we can use a perturbation approach to deal with it. As said,
such a relativistic correction is responsible for the perihelion
precession. However, in strong field and high relative velocity
regime, such a term has relevant effects.

5
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3.3. Relativistic corrections due to gravitomagnetic effects

Starting from the above considerations, we can see how
gravitomagnetic corrections affect the problem or orbits.
Essentially, they act as a further v/c correction leading to take
into account terms up to c−3, as shown in section 2.

Let us start from the line element (13) which can be
written in spherical coordinates. Here we assume the motion
of point-like bodies and then we can work in the simplified
hypothesis 8 = −G M/r and V l

= 8vl . It is

ds2
=

(
1 +

28

c2

)
c dt2

−

(
1 −

28

c2

)
[dr2 + r2dθ2 + r2 sin2 θ dϕ2]

−
88

c3
c dt{[cos θ + sin θ(cos ϕ + sin ϕ)] dr

+ [cos θ(cos ϕ + sin ϕ) − sin θ ]r dθ

+ [sin θ(cos ϕ − sin ϕ)]r dϕ}.

As in the Newtonian and relativistic cases, from the line
element (52), we can construct the Lagrangian

L=

(
1 +

28

c2

)
ṫ2

−

(
1 −

28

c2

) [
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2]

−
88ṫ

c3
{[cos θ + sin θ(cos ϕ + sin ϕ)]ṙ

+ [cos θ(cos ϕ + sin ϕ) − sin θ]r θ̇

+ [sin θ(cos ϕ − sin ϕ)]r ϕ̇}. (52)

Using relations (43) and being, as above, L= 1, one can
multiply both members for (1 + 28/c2). In the planar motion
condition θ = π/2, we obtain

l2
−

(
1 +

28

c2

) (
1 −

28

c2

) (
ṙ2 +

h2

r2

)
−

88l

c3
[(cos ϕ + sin ϕ)ṙ − (cos ϕ − sin ϕ)ϕ̇] =

(
1 +

28

c2

)
,

(53)

and then, with 28/c2
= −Rs/r and u = 1/r it is

l2
− h2 (

1 − R2
s u2) (

u′2 + u2) +
4RSul

c

×
[
(cos ϕ + sin ϕ) u′ + (cos ϕ − sin ϕ) u2]

= (1 − RSu) .

(54)

By deriving such an equation, it is easy to show that, if
the relativistic and gravitomagnetic terms are discarded, the
Newtonian theory is recovered, with

u′′ + u =
Rs

2h2
. (55)

This result probes the self-consistency of the problem.
However, it is nothing else but a particular case since we
have assumed planar motion. This planarity condition does
not hold in general if gravitomagnetic corrections are taken
into account.

4. Orbits with gravitomagnetic effects

From the above Lagrangian (52), it is straightforward to derive
the equations of motion

r̈ =
1

cr(rc2 + 2G M)

[
c(rc2 + G M)(θ̇2 + sin2 θφ̇2)r2

−4G Mṫ((cos θ(cos φ + sin φ) − sin θ)θ̇

+ sin θ(cos φ − sin φ)φ̇)r + cG Mṙ2
− cG Mṫ2], (56)

φ̈ = −

[
2(c cot θ(rc2 + 2G M)θ̇ φ̇r2 + ṙ(2G M csc θ

×(sin φ − cos φ)ṫ + cr(rc2 + G M)φ̇))

]
r2

(
rc3 + 2G Mc

) ,

(57)

θ̈ =

[
c cos θr2(rc2 + 2G M) sin θφ̇2 + ṙ(4G M(cos θ

×(cos φ + sin φ) − sin θ)ṫ − 2cr(rc2 + G M)θ̇)

]
r2(rc3 + 2G Mc)

,

(58)

corresponding to the spatial components of the geodesic
equation (20). Due to the numerical calculations which we
are going to perform below, we consider the explicit form
of the equations of motion. We have not considered the time
component ẗ since it is not necessary for the discussion of
orbital motion.

As remarked above, from L= 1 the first integral ṙ is
achieved. It is

ṙ =
1[

r2c6 + 4G2 M2(−c2 + 4 sin 2θ

×(cos φ + sin φ) + 4 sin2 θ sin 2φ + 4)

]

±

[
r(64G4 M4r

(
(2 cos 2θ(cos φ + sin φ) + sin 2θ sin 2φ)θ̇

+(2 cos 2φ sin2 θ + sin 2θ(cos φ − sin φ))φ̇
)2

−
(
r2c6 + 4G2 M2(−c2 + 4 sin 2θ(cos φ + sin φ)

+4 sin2 θ sin 2φ + 4)
) (

r3(θ̇2 + sin2 θφ̇2)c6

−4G Mc4
− r

(
(E2

− 2)c6 + 4G2 M2

×
(
(c2 + 4 sin 2θ(cos φ + sin φ) − 4 cos2 θ sin 2φ − 4

)
θ̇2

−8 sin θ(cos φ − sin φ) × (cos θ(cos φ + sin φ − sin θ)φ̇θ̇

+ sin2 θ(c2 + 4 sin 2φ − 4)φ̇2)
)))

−8G2 M2r ((2 cos 2θ(cos φ + sin φ) + sin 2θ sin 2φ)θ̇

+(2 cos 2φ sin2 θ + sin 2θ(cos φ − sin φ))φ̇
) ]1/2

, (59)

which is the natural constraint equation related to the energy.
The double sign comes from the quadratic form of the
Lagrangian. For our purpose, the positive sign can be retained.
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In the following calculations, we adopt geometrized
units. Our aim is to study how gravitomagnetic effects modify
the orbital shapes and what are the parameters determining the
stability of the problem. As we will see, the energy and the
mass, essentially, determine the stability. Beside the standard
periastron precession of General Relativity, a nutation effect is
genuinely induced by gravitomagnetism and stability greatly
depends on it. A fundamental issue for this study is to achieve
the orbital phase space portrait.

5. Numerical results

The solution of the above system of differential equations
presents some difficulties since the equations are stiff and
their numerical solutions can diverge in several test points.
Some numerical algorithms allow the meshing to change
dynamically in order to decrease the mesh size near the critical
points.

For our purposes, we have found solutions by using the
so-called stiffness switching method to provide an automatic
tool of switching between a non-stiff and a stiff solver coupled
with a more conventional explicit Runge–Kutta method for the
non-stiff part of our differential equations.

We have used for the computation the 6th version of
Wolfram Software Mathematica package [56]. The stiffness
of the differential equations is evident from figure 1, where
the first and second derivatives of r , plotted with respect
to t , show steep peaks corresponding to the points where
the radial velocity changes its sign abruptly. We show the
time series of both ṙ(t) and r(t) together with the phase
portrait ṙ = f (r) and r̈(t), assuming given initial values
for the angular precession and nutation velocities (see also
figure 5). In figure 1, the results for a given value of nutation
angular velocity with a time span of 10 000 steps is shown.
It is interesting to see that, by increasing the initial nutation
angular velocity, all the other initial conditions being fixed,
we get curves with decreasing frequencies for ṙ(t) and r̈(t).
This fact is relevant for an insight into the orbital motion
stability (see figure 4). We have taken into account the effect
of gravitomagnetic terms, in figure 2, showing the basic
orbits (left) and the orbit with the associated velocity field
in false colors (right). From a rapid inspection of the right
panel, the sudden changes of velocity direction induced by
the gravitomagnetic effects are clear (see figures 3–5).

To show the orbital velocity field, we have performed
a rotation and a projection of the orbits along the axes
of maximal energy. In other words, by a singular value
decomposition of the de-trended positions and velocities, we
have selected only the eigenvectors corresponding to the
largest eigenvalues and, of course, those representing the
highest energy components (see figure 2).

The above differential equations for the parametric orbital
motion are nonlinear and with time-varying coefficients. In
order to have a well-posed Cauchy problem, we have to
define:

• the initial and final boundary condition problems;
• the stability and the dynamical equilibrium of solutions.

We can start by solving the Cauchy problem, as in the classical
case, for the initial condition putting ṙ = 0, φ̇ = 0, θ̇ = 0 and
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Figure 1. Plots of ṙ(t) and r̈(t) for a test mass M = 1M�, energy
per mass unit En = 0.95 and initial values for the orbital radius
r0 = 20, given in terms of Schwarzschild radius. The initial values
of the angular precession velocity φ̇ and the angular nutation
velocity θ̇ have been chosen according to the following criterion:
assuming a given value of the initial radial velocity ṙ , the initial
values of the angular precession velocity and of the angular nutation
velocity are φ̇ = −

1
10 ṙ and θ̇ = −

1
100 ṙ =

1
10 φ̇. The phase portrait of

ṙ = f (r) is shown. The adopted time span is 10 000 steps.

θ = π/2 and the result we get is that the orbit is not planar,
θ̈ 6= 0. In this case, we are compelled to solve the system of
second-order differential equations numerically and to treat
the initial conditions carefully, taking into account the high
non-linearity of the system. A similar discussion, but for
different problems, can be found in [57, 58].

A series of numerical trials on the orbital parameters can
be done in order to get an empirical insight into the orbit
stability. The parameters involved in this analysis are the
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Figure 2. Plots of basic orbits (left) and orbits with the associated velocity field (right). The arrows indicate the instantaneous velocities.
The initial values are: M = 1M�; En = 0.95 in mass units; r0 = 20 in Schwarzschild radii; φ̇ = −ṙ/10; θ̇ = φ̇/10.
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Figure 3. Breaking points examples: on the left panel, the first four orbits in the phase plane are shown: the red one is labelled I, the green
is II, the black is III and the fourth is IV. As it is possible to see, the orbits in the phase plane are not closed and they do not overlap at the
orbital closure points; we have called this feature breaking points. In this dynamical situation, a small perturbation can lead the system to a
transition to chaos as prescribed by the Kolmogorov–Arnold–Moser (KAM) theorem [44]. On the right panel is shown the initial orbit with
the initial (squares) and final (circles) points marked in black.

mass, the energy, the orbital radius, the initial values of r, φ, θ

and the angular precession and nutation velocities φ̇ and θ̇ ,
respectively. We have empirically assumed initial conditions
on ṙ , φ̇ and θ̇ ,

The trials we have performed can be organized in two
series, i.e. constant mass and energy variation and constant
energy and mass variation.

• In the first class of trials, we assume the mass equal to
M = 1M� and the energy En (in mass units) varying
step by step. The initial orbital radius r0 can be changed,
according to the step in energy: this allows the dynamical
equilibrium of the orbit to be found numerically. We
have also chosen, as varying parameters, the ratios of
the precession angular velocity φ̇ to the radial angular
velocity ṙ and the ratio of the nutation angular velocity
θ̇ and the precession angular velocity φ̇. The initial
condition on φ has been assumed to be φ0 = 0 and the

initial condition on θ has been θ0 = π/2. For M = 1 (in
Solar masses), θ̇/φ̇ =

1
2 and φ̇ = −ṙ/10, we have found

two different empirical linear equations, according to the
different values of θ̇ and φ̇. We obtain a rough guess of
the initial distance r0 = r0(En) around which it is possible
to find a guess on the equilibrium of the initial radius,
followed by trial and error procedure.

• In the second class of trials, we have assumed the
variation of the initial orbital radius for different values
of mass at a constant energy value equal to En = 0.95
in mass units. With this condition, we assume φ̇ = ṙ/10
and assume that θ̇ takes the two values 1

2 and 1
10 . We

can approach the problem also considering the mass
parameterization, at a given fixed energy, to have an
insight into the effect of mass variation on the initial
conditions. The masses have been varied between 0.5 and
20 Solar masses and the distances have been found to vary

8
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Figure 4. Plots of orbits with various energy values. For each value of energy, four plots are shown: the first on the left column is the orbit,
with the orbital velocity field in false colors. The color scale goes from blue to red in increasing velocity. The second on the left column is
the orbit with a different nutation angular velocity. On the right column, the phase portraits ṙ = ṙ(r(t)) are shown. Energy varies from 0.3 to
0.4, in mass units. The stability of the system is highly sensitive either to very small variation of r0 or to variation of the initial conditions on
both precession and nutation angular velocities: a variation of a few per cent on r0 is sufficient to induce system instability.
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Figure 5. Time series r = r(t) and phase portrait ṙ = f (r) (top panels), time series ṙ = r(t) and r̈ = r(t) (middle panels), with the 3D
orbits (bottom panels) for a Chandrasekhar mass M = 1.4 in solar units. We assumed the following initial conditions: ṙ0 = −1/10,
φ̇0 = −ṙ0/10 while we have performed two trials assuming, for the initial condition on the nutation angular velocity θ̇0, two limit values
which we have found, according to our empirical procedure, i.e. θ̇0 = φ̇0/20 and φ̇0/2, respectively. At the bottom, the 3D orbits are plotted
(left panel with θ̇0 = φ̇0/10 and the right panel with θ̇0 = φ̇0/2.).

according to the two third-order polynomial functions,
according to the different values of θ̇ with respect to the
mass.

In summary, the numerical calculations, if optimized,
allow to put in evidence the specific contributions of
gravitomagnetic corrections to orbital motion. In particular,
specific contributions due to nutation and precession emerge
when higher order terms in v/c are considered.

6. Discussions and conclusions

In this paper, we have discussed the theory of orbits
considering gravitomagnetic effects in the geodesic motion.
In particular, we have considered the orbital effects of
higher-order terms in v/c which is the main difference with

respect to the standard approach to gravitomagnetism. Such
terms are often discarded but, as we have shown, they could
give rise to interesting phenomena in tight binding systems
such as binary systems of evolved objects (neutron stars or
black holes). They could be important for objects falling
toward extremely massive black holes such as those cited
in the galactic centers [57, 58]. The leading parameter for
such correction is the ratio v/c which, in several physical
cases, cannot be simply discarded. For a detailed discussion
see for example [26–28, 30]. Apart from the standard
periastron precession effects, such terms induce nutations
and are capable of affecting the stability basin of the orbital
phase space. As shown, the global structure of such a basin
is extremely sensitive to the initial angular velocities, the
initial energy and mass conditions which can determine
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possible transitions to chaotic behavior. Detailed studies on
the transition to chaos could greatly aid in gravitational wave
detections in order to determine the shape, the spectrum and
the intensity of the waves (for a discussion see [59, 66]).

In a forthcoming paper, we will discuss how
gravitomagnetic effects could affect also the gravitational
wave production in extreme gravitational field regimes.
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