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Abstract. Many of the astrophysical sources and violent phenomena observed in our
Universe are potential joint emitters of gravitational waves and high-energy cosmic
radiation, in the form of photons, hadrons, and also neutrinos. This has triggered a
collaborative analysis project between gravitational wave detectors and high-energy
neutrino telescopes. In this article, we review some of the motivations for having
pursuing science jointly and present the effort’s status.
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1. Introduction

This article reports the status of an on-going project [1, 2, 3] aiming at the joint detection

of gravitational waves (GW) and high-energy neutrinos (HEN). GWs and neutrinos are

similar in several ways. They are not absorbed‡ nor diffused by the interstellar medium
or background radiation as opposed to high-energy photons. They are not deflected

by extra-galactic magnetic fields as opposed to charged cosmic rays, so that the source

location can be traced back from the direction of arrival. They interact weakly with

the environment so that they can escape very dense media. Thanks to these properties,

GW and HEN are both able to convey information from the core of the most violent

astrophysical events in the Universe.
The basic motivation for the joint search of GW and HEN is the existence of

potential common sources. In Sec. 2, we list those sources. We give a short description

of the detectors involved in this project and examine the feasibility of the joint search

in Sec. 3. In Sec. 4, we report on the development of the data analysis strategies.

2. Potential common cosmic sources of GW and HEN

Several conditions have to be met for an astrophysical object to yield significant emission

of both GW and HEN. To generate GW, this object has to be compact (i.e, a massive

and dense distribution of matter), and display a relativistic bulk motion. In order to

be detectable by LIGO or Virgo, the periodic (i.e., orbital or spinning) or transient

motion has to be characterized by a typical time-scale of order of tens of milliseconds,

compatible with the detector sensitive frequency band. This must be accompanied
by the ejection of relativistic baryons for the production of HENs. The astrophysical

objects that satisfy those requirements include Galactic (e.g., connected to Soft Gamma

Repeaters [4, 5] during their flaring episodes) and extra-Galactic associated to Gamma-

Ray Bursts (GRBs). We will only discuss the latter in the following.

2.1. Gamma-ray bursts

Gamma-ray bursts (GRBs) are intense flashes of gamma-rays (see e.g., [6] for a recent

review). They are associated with an exceptional energy release in the electromagnetic

spectrum with an equivalent isotropic emission of order Eiso
EM ∼ 1050− 1052 erg within a

few seconds to few tens of seconds. GRBs are the most luminous events in the Universe

observed up to today. They are observed to be isotropically distributed and usually

located at cosmological distances.
The fireball model (see [7] for a review) provides a widely accepted phenomenological

picture that accommodates the observations. A central engine ejects blobs of plasma

at relativistic speeds. The inhomogeneities in the jet form shells that can propagate

at different speeds. The shells collide eventually and electrons get accelerated during

‡ Strictly a very small fraction of the cosmic neutrinos is absorbed by the interstellar medium.
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those shocks. They release their energy by producing synchrotron and inverse Compton

γ§ which are finally observed as a GRB. If protons are also present in the jet, their

interaction with the synchrotron photons can produce pions through the ∆-resonance

whose decays produce (muon and electron) neutrinos. The production of such a burst

of HENs would therefore be intimately related to that of the GRB [8].

There are two types of GRBs, phenomenologically distinguished by their duration.
The short (T ! 2 s) and long GRBs (T " 2 s) are associated with different progenitors.

The central engine of the former is thought to be a merger of neutron-star–neutron-

star or black-hole–neutron-star binary systems [9], while there are indications that the

latter is connected to the collapse of spinning massive star to a black-hole (so-called

“collapsar” scenario [10]). Both are expected to be sources of GW bursts [6].

“Failed” GRBs — The fireball model has been successful in explaining a large fraction

of the observations. There are however suspicions that the above mentioned process can

sometimes follow a different path. To understand possible alternative scenarios, some

insight into the physics of the fireball is needed. We need to explain why the GRB jets
have to be ultra-relativistic, an issue that is usually referred to as the “compactness

problem” [7].

Above a given critical energy, high-energy γ interact with photons of lower energies

and form electron-positron pairs. The optical depth for this process can be shown to be

∝ fp/Re where fp is the fraction of the photon pairs which satisfy the e−−e+ formation

condition and Re is the radius of the emission region. Ignoring relativistic effects, it
is estimated to be of order 1013 for a typical GRB, by far too large for any photon to

escape and hence the GRB to be observed. Relativistic effects blue-shift the photon

energy (less photon pairs satisfy the pair formation condition, hence reducing fp) and

allow to stretch Re (which is deduced from the observed time variability of the GRB)

by a substantial factor. The net result is the reduction of the optical depth by a factor

ofΓ 4+2α, with Γ the Lorentz factor, and α ≈ 1 to 2 the spectral index for high-energy
photons [7]. The jet becomes optically thin for ultra-relativistic jets withΓ ∼ 100 which

is thus a requirement for the observation of GRBs.

Baryonic mass slows down the flow. Too much of it prevents the jet to be

ultra-relativistic [7]. A slight baryonic pollution results in mildly relativistic jets with

Γ = O(1). In that case, the jet is optically thick and no GRB is observed. This scenario

is usually referred to as “failed” GRB [11]. While the GRB does not occur in this case,
GW and HEN emission remain.

The observation of such objects with conventional telescopes is challenging and

GW and HEN provide an alternative. Although the rate of such events is unknown, it

could be large [11] with a potential connection with the putative local under-luminous

population of GRBs.

§ Here, γ refers to photons with energies in the gamma and hard X-ray parts of the electromagnetic
spectrum.
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3. Presentation of the detectors and feasibility of a joint GW and HEN

search

The large-scale interferometric GW detectors Virgo and LIGO and the HEN telescopes

ANTARES and IceCube are involved in a joint search project. For the sake of
completeness, we present briefly the partner HEN telescopes. For more details, we

refer the reader to the specific presentations included in these proceedings [12, 13].

Presentation of the HEN telescopes — ANTARES and IceCube are large-scale arrays
of photo-multipliers connected to strings which instrument a large volume of sea water

or ice. IceCube (located at the geographic South pole) is larger in size than ANTARES.

The detector will reach the km3 scale when completed with 80 strings. With 22

strings, ANTARES (located in the Mediterranean sea, near Marseilles) is a large-scale

demonstrator for a future European km3 detector in sea water.

Those detectors follow the same principle: a cosmic neutrino interacts with the
detector environment and forms a relativistic muon. When the muon enters the water

or ice, it generates a flash of Cerenkov light. This signature is detected by the

optical modules if it occurs within the detector. The detection of the muon and the

reconstruction of its track is based on local coincidences of the light hits compatible

with the Cerenkov light front. Thanks to this detection principle, it is possible to

detect neutrinos in the energy range above few tens of GeV. The typical reconstruction
accuracy is about a degree with some difference whether ice or sea water is used.

The detectors are optimized to look downward. There is a large background coming

from above associated with muons from cosmic-ray air showers and to a lesser extent

from below due to the atmospheric neutrinos generated by the same process. The

detection of cosmic neutrinos is thus possible only in the hemisphere opposite to upward-

pointing vertical at the detector with an instantaneous sky coverage close to 2π sr. The
location of ANTARES provides an annual sky coverage of about 3.5π sr, covering the

Southern hemisphere and the Galactic center. The complementary IceCube detector

is observing the Northern hemisphere, with full acceptance of 2π sr for the considered

energy range (from a few tens of GeV to 100 TeV).

Because of the presence of background (due to atmospheric neutrinos and mis-

reconstructed downward-going muons), the observation of an anisotropy in the directions
of arrival or of a very energetic candidate event (with energy much larger than that of

background) is required to differentiate it from background. A third possibility is the

use of multi-messenger astronomy as discussed in Sec. 4.

Search feasibility — ANTARES and IceCube are operational and have been taking

data during the last years in partial configurations. Several data sets overlap with the

LIGO-Virgo science runs S5-VSR1 and S6-VSR2. It is likely that there will be more in

the future as the program of upgrades appears nicely synchronized.

All the ingredients are joined together to make the search viable: there is a good
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sky coverage thanks to the complementarity of ANTARES and IceCube. Their sky

coverage significantly overlaps with that of the GW detectors. The overlap is estimated

to be roughly ∼ 4 sr (∼ 30 % of the sky) ‖ for each HEN telescope.

4. Development of the data analysis strategy

Investigations of the search feasibility have been performed [1, 2] with simulated data.
The fundamental rationale for the coincidence search is that we are dealing with

independent detectors, based on radically different physics but targeting the very same

cosmic sources. The probability of an accidental time and spatial coincidence due to

background can be set to very small value.

The results obtained for a hypothetical IceCube-LIGO network [1] and an IceCube-

LIGO-Virgo network indicate that even if the individual observatories in the network
provide several triggers a day, the false alarm rate for the combined detector network

can be very low (e.g., ∼ 1/(500 yr) for a network composed of the two LIGO detector

and IceCube assuming a 1 second coincidence window).

The width of the time and spatial coincidence windows are particularly important

ingredients. The uncertainties in the source model largely dominate the timing accuracy

of each instrument. The width of the time coincidence window is thus determined by
the maximum time delay between GW and HEN emission. In the case of GRBs, the

production of HENs and γ are both expected to be comparable to the fireball lifetime.

We can thus use gamma-ray observations to deduce the time delay [14]. As pictured in

Fig. 1, the analysis of ∼ 103 GRBs in the 4th BATSE catalog [15] shows that in 95%

of the cases, the light curve has a duration T90 shorter than 150 seconds. Including the

possibility of precursors (observed for a fraction of the GRBs), the worst cases where GW
and HEN triggers are the most separated in time define the following time coincidence

[−350s,+200s].

The spatial coincidence window is essentially related to instrumental limitations.

The error box for the reconstruction of the source sky position has been shown to

be ∼ 10 square degrees for GWs [16, 17]and ∼ square degrees for HEN [13, 12] with

some dependency upon the characteristics of the event. Simulations are on-going to
determine these more systematically and more precisely. We expect that the lowering

of event selection threshold (allowed by the joint analysis) will worsen the average sky

resolution.

The detailed architecture for the joint analysis pipeline is not completely defined.

In addition to the approaches considered in the early works mentioned above [1, 2], we

will explore the potential of the pipelines normally used for externally triggered searches
(see [18] and references therein) such as the X-pipeline [19].

‖ The sky is considered “visible” to GW detectors where the combined antenna pattern is above the
half-maximum.
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Figure 1. Time delay between GW and HEN — (top) This plot displays the
distribution of the GRB duration taken from the 4th BATSE catalog. The duration of a
GRB is thus determined to be shorter than 150 seconds with 95% confidence. (bottom)
This figure shows the different components of the time delay between gravitational wave
and high energy neutrino signals. Based on the available results, we cannot exclude the
possibility of being able to detect GW, as well as HEN signals both from the precursor
and the main GRB event. The resulting time coincidence window is [−350s,+200s].

5. Concluding remarks

A collaboration between GW and HEN observatories has been started. A dedicated

workshop held in Paris in May 2009 [20] provided a first occasion for the two scientific

communities to meet and define a common plan. The working group joining GW and

HEN contributors met face to face for the first time in Rome just before the GWDAW-14

workshop. Data exchange agreements have been signed by the involved parties allowing

the more detailed definition of the joint data analysis procedure. In five to ten years from
now, large improvements of the sensitivity and reach are likely both for the observations

in GW and HEN channels. The project presented here is an important pioneering effort

with existing data and a crucial path-finder effort for this “advanced” detector era.
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