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Current gravitational wave searches for compact binaries coalescence are done using a bank of

templates (matched filters) on each running detector. Given a network of interferometers, we propose

to use a denoising strategy based on an independent component analysis which considers two interfer-

ometers at a time and then to use a standard matched filter on the processed data. We show that this

method allows to lower the level of noise and increases the signal-to-nose ratio at the output of the

matched filter.

DOI: 10.1103/PhysRevD.85.042001 PACS numbers: 04.80.Nn, 07.05.Kf

I. INTRODUCTION

It is commonly believed that gravitational waves (GWs)
first detections will come in the next few years. This will be
possible thanks to technological upgrades of current laser
interferometers (in particular Advanced VIRGO [1] and
Advanced LIGO [2]), which will lead a better sensitivity
and a bigger volume of the detectable Universe. A final
answer to the very first detection (and the following ones)
will be reliable only thanks to a coincident signal in all the
running antennas. Therefore, a network of GWs interfer-
ometers is and will be mandatory. Since the events rate is
still rather uncertain, also for the advanced detectors [3,4],
and lacking any direct observation (i.e. any true signal) up
to now, it is of fundamental importance to use data analysis
techniques which maximize the detection probability and
at the same time allow to estimate the physical parameters
of the astrophysical event in the most precise possible way.
With this aim, we propose a method which uses the outputs
of two interferometers. We show that applying an indepen-
dent component analysis (ICA) preprocessing to the data
coming from two interferometers, the performance of a
classical matched filter is enhanced. Roughly, since any
ICA algorithm separates independent components from a
mixture (we are interested in separating the ‘‘noise’’ from
the ‘‘signal’’ and they are statistically independent), we
find that after a preprocessing based on ICA only in one of
the resulting components the GW signal will be present,
whereas the noise will contaminate the other. If a classical
matched filter is applied to the processed time series, it
results in a bigger correlation with respect to the matched
filter applied directly to the original, unprocessed data.
This clearly indicates that the detection probability is
higher and since one of the obtained independent compo-
nent will be less noisy than the other, also the parameters
estimation will improve. We focus here only on coalescing
binaries: it is well known that the expected GW signal is a
so-called chirp signal (see [5] for an excellent review).

Nevertheless, the analysis can be run also for other GW
signals, for example, gravitational bursts.
In Sec. II, we review basic concepts about matched

filters and ICA. In Sec. III, we describe our analysis and
show that the preprocessing we propose is useful. Finally,
in Sec. IV we summarize the results of our work and
outline possible future and conclusive refinements of our
investigations on ICA for GW data analysis.

II. GENERALITIES ON MATCHED FILTER AND
INDEPENDENT COMPONENTANALYSIS

In this section, we briefly review the concepts of
matched filter (MF) [6] and ICA [7], focusing only on
the aspects useful to our purposes.
A classical result states that if one knows exactly the

shape of the signal, the matched filter is the optimum
(linear) filter which maximizes the output signal-to-nose
ratio (SNR) among all the filters. This is true in presence of
additive, white, Gaussian noise [6]. If the noise is not
Gaussian or correlated (colored), the performance of the
matched filter is degraded. This is also the reason to have
an instrument with an output noise that is as much
Gaussian and stationary as possible. Given an observed
signal xðtÞ ¼ sðtÞ þ nðtÞ (signal plus noise), the matched
filter output can be written as the scalar product (in the
frequency domain) between the measured signal and the
template, weighted by the power spectral density of the
instrument

mðtÞ ¼ 4
Z þ1

0

~xðfÞ~s�ðfÞ
SnðfÞ e2�iftdf (1)

where SnðfÞ is the one-sided power spectral density of the
noise and s is the template used for the detection (we use
definitions similar to the ones accepted by the GW com-
munity, as reported, for example, in [9]). If one evaluates
the quantities

�ðtÞ ¼ jmðtÞj
�

; (2)
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�2 ¼ 4
Z þ1

0

j~sðfÞj2
SnðfÞ df (3)

where � is a kind of template energy weighted by the
power spectral density of the noise, then �ðtÞ is the ampli-
tude signal-to-noise ratio and it will have a maximum in
correspondence of the time at which the signal has been
injected. The value of this maximum, with this normaliza-
tion, is equal to the input SNR.

ICA is a way to solve, for example, the classical cocktail
party problem. This refers to the situation in which one has
several people speaking with their voices recorded by a
certain number of microphones. If the number of people
and microphones is the same (the so-called determined
ICA), it is possible, under some quite general assumptions,
to separate (or estimate) the original voices (the wave-
forms) using only the observed data, i.e. the recorded
time series [10]. Note that since noise always enters in
the recording procedure (through echo effects, environ-
mental noise, or an original noise source rather than a clean
voice), the separation process is also a denoising technique.
For more details, see [8,11]. Thus, let x be the vector of the
observations and suppose that it is linearly related to the
original sources by a square matrixA (the so-called mixing
matrix)

x ¼ As: (4)

The purpose of any ICA algorithm is to estimate the
sources s using only information contained in the data x.
Of course, the mixing matrix, representing the full dynam-
ics of the physical system (with or without noise compo-
nents), is not known, otherwise the estimation problem
would be trivial. Indeed, one has to estimate at the same
time the demixing matrix W, i.e. the inverse of A, and the
original components. In order to do that, one can make
different assumptions on the nature of the sources, depend-
ing on the problem one has to face. These assumptions
select the separation criteria. The most interesting ones are
based on the non-Gaussianity of the sources (all of them
except at most one), on their different spectral contents and
on their nonstationarity. In particular, ICAwas formulated
initially to separate non-Gaussian components and a cor-
responding algorithm was developed, named FastICA [12].
FastICA is a classical ICA algorithm which uses, for
separation, higher-order statistical methods, for example,
concepts like mutual information and neg-entropy. The
computational complexity of FastICA is OðdNÞ, where N
is the number of samples and d is the number of sources.
The main iterations of FastICA are the following:

(1) choose an initial random vector w,
(2) wy ¼ EfxgðwtrxÞg � Efg0ðwtrxÞgw,
(3) w ¼ wy

jjwyjj ,
(4) if not converged, go back to 2

where g is certain nonlinearity function (and g0 is its first
derivative). The FastICA algorithm tries to maximize the

non-Gaussianity of wtrx (which is an estimated indepen-
dent component) measuring the neg-entropy of wtrx. For
more details, see [11]. Successively, more algorithms have
been developed to cope also with different situations. A
famous second-order algorithm has been developed in
[13], and named SOBI (second-order blind identification).
This takes into account the spectral properties of the
sources, and it is possible to separate also Gaussian com-
ponents. SOBI uses second-order statistical methods based
on covariance matrices. In fact, the algorithm evaluates a
certain number of covariance matrices at different time
lags and by a joint diagonalization of these latter it is
possible to estimate the original components. The compu-
tational complexity of SOBI is Oðd4MÞ where d is the
number of sources and M the number of covariance matri-
ces involved. For our simulations, we have used some
refinements of FastICA and SOBI known as EFICA
(Efficient FastICA) [14,15] and WASOBI (Weights
Adjusted SOBI) [16], respectively. These latter are imple-
mented in a simple and efficient way in MATLAB code
(see [17] for a MATLAB toolbox which contains also more
BSS algorithms and the webpages [18] for the original
version of the codes). EFICA has a complexity which is
only slightly higher than that of the original FastICA
algorithm. In particular, the test of saddle points and the
adaptive choice of the nonlinearity function (which are the
main refinements of the algorithm) have complexity
Oðd2NÞ andOðdNÞ, respectively. WASOBI has a computa-
tional complexity Oðd6 þ d3M3Þ, but the number M of
covariance matrices involved can be significantly lower
than that of SOBI.
Before moving on to our simulations, we need to remind

that ICA has an ambiguity which cannot be eliminated. In
fact, there is not a reasonable or simple (i.e. natural)
criterion to order the output components, in other words
the output of any ICA algorithm lacks any ordering defi-
nition. This is different from what happens, e.g., in the
more popular principal component analysis, where one
selects the principal components according to an energy
criterion, i.e. the ones corresponding to the biggest eigen-
values of the covariance matrix. The problem of ordering is
an important point in our analysis and will be discussed in
the next section.
Finally, in this paper we use determined ICA algorithms,

which assume the same number of sensors and sources.
This situation is not exactly what one encounters in real
life, since one has a certain number of interferometers (the
sensors), each one with its own noise, and one or more GW
signals (and the situation is even more intricate due to GW
polarizations, different antenna patterns, etc). We are con-
fident that determined ICA methods may work because the
noises in the interferometers, although stochastic pro-
cesses, are similar. Thus, one can hope to achieve at least
a good denoising preprocessing if not a perfect separation;
and we show that this is the case. To be more sophisticated
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and correct, one should use under-determined ICA meth-
ods, which assume a lesser number of sensors than sources.
This is, of course, a more difficult problem: the same well-
posedness of the problem (i.e. the existence and the
uniqueness of the solution) is still open in the general
case. In recent years, there has been a growing literature
on this subject, most approaches assume sparseness of the
sources, a concept which might not be true for GW signals.
Other approaches seem to be more promising, especially
the ones where one assumes the knowledge of (a part of)
the mixing matrix, which in the GW case corresponds to
targeted searches (tracking of a known source in a known
direction without assuming the shape of the signal). We
hope to investigate this idea in forthcoming papers.

An interesting approach about how to cope with the
under-determined case is given in [19], which uses classi-
cal, determined ICA methods (in the same way as we do in
this paper) followed by a so-called empirical mode decom-
position in order to retrieve the original sources. The
authors show that their method is effective in a low-noise
environment, which is the typical case for GW experi-
ments. Reference [19] also contains a quick introduction
to the concept of independent component analysis. Another
way to look at the under-determined case has been studied
in [20] with the tool of the Wigner-Ville transform which
has the important property to localize (linear) chirp signals
in the time-frequency plane. Reference [20] contains a
more detailed introduction to the ICA methods used also
in this paper.

III. SIMULATIONS AND RESULTS

We consider the ideal case of data coming from two
interferometric antennas: we assume that the (calibrated)
data have been (temporally) whitened and neglect time
delays, GW polarizations, etc. [21]. Basically, we inject
the same chirp signal into two independent time series of
WGN (White Gaussian Noise) at a certain SNR. Given the
noise assumptions, the input SNR can be defined as

SNR 2 ¼ EðsignalÞ2=varðnoiseÞ (5)

where E is the signal energy. In practice, given a certain
chirp signal sðtÞ (that we have generated with its own

physical units using LAL [22], a collection of libraries
written in C) we generate two independent realizations
n1; n2 of WGN (with unit power) and then we add the
signal to the noise at the chosen SNR [23], i.e.

xiðtÞ ¼ niðtÞ þ SNR � sðtÞ
jsðtÞj2 ði ¼ 1; 2Þ: (6)

The two time series x1; x2 model the output of two
different GW interferometers. Since we assume to know
the GW signal, the best strategy is to apply the matched
filter. This is what is generally used in the search for GWs:
in the case of coalescing binaries a bank of matched filters
is used in order to cope with the different physical parame-
ters of the astrophysical system. Finally, the analysis takes
advantage of the fact that there exists a network of antennas
and a coincident search is performed. Given a couple of
interferometers, we propose to preprocess the data by an
independent component analysis before applying a
matched filter search. In fact, as we mentioned in the
previous section, ICA separates a certain number of input
time series (2 in our case) on the basis of a certain criterion
(we focus on non-Gaussianity or spectral diversity) and the
idea is to separate the interferometers noise as much as
possible from the GW signal. As we show, this will lead in
an enhancement of the output SNR after applying the
matched filter, with respect to the case in which one only
applies the matched filter [24]. This is a desirable property
considering that the events rate is not so high [25] and that
the true gravitational waveforms could (substantially or
marginally) differ from the (approximate) analytical wave-
forms that we have now or the ones given by numerical
relativity methods.
The flowchart of our analysis is simple and is shown in

Fig. 1 (all simulations have been made in MATLAB). In
one case, we apply the matched filter to x1ðtÞ and x2ðtÞ
separately, obtain two outputs (i.e. two correlations with
the clean signal we have injected) and record the maximum
of these. In the other case, we first apply an ICA method
and obtain two time series, say y1ðtÞ; y2ðtÞ. On these latter,
we apply the matched filter. The result is that the MF on a
processed time series will give a better correlation with the
template (i.e. a higher value for the maximum) and the MF
filter on the other processed time series will give a negative

FIG. 1. The flowchart of our analysis.
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result (no signal detected). This confirms our previous
results [20]: classical (determined) ICA techniques work
as a powerful denoising strategy and can be very useful if
used in a network of GW interferometers.

These statements can be easily understood looking at the
Figs. 2–4. In Fig. 2, the typical output of the matched filter
on series x1ðtÞ is shown (the output of the matched filter for
series x2ðtÞ is not shown, but it is completely analogous). It
corresponds to an SNR ¼ 8. Figures 3 and 4 show the
output of the matched filter after applying an ICA separa-
tion to the series x1 and x2. It is clear that the matched filter
gives a higher correlation only with one of the processed
time series and no correlation with the other. We call� the
ratio between peaks as in Figs. 3 and 2. To quantify the
power of our method, we have run 10 000 simulations, each
time injecting the same chirp signal into two independent
noisy time series. The performance of our results is mea-
sured by the probability that �> 1, i.e. how many times
the separation through ICA gives a better correlation with
respect to the plain matched filter. These probabilities are
given in Table I. As one expects, the separation perform-
ance improves by increasing the SNR, and, as already

noted in [20], the WASOBI algorithm is slightly better
than EFICA. Probability distributions for these ratios
(which measure the enhancement of the output SNR) are
given in Fig. 5. One can see that, on average, the (linear)
SNR is boosted by a factor around 1.5 in most cases;
whereas only in 1%–2% of cases (as reported in the table),
a simple matched filter is better; however the minimum
value for the ratios in Fig. 5 is always between 0.8 and 0.9.
Final plots summarizing the results of our analysis are

shown in Figs. 6 and 7. Figure 6 shows the CDF (cumula-
tive distribution function) of � for various SNR (in accor-
dance to Fig. 5). Figure 7 shows the CDF of the output
SNR, more precisely the CDF of the peaks at the output
of the matched filter (MF only, EFICAþMF and
WASOBIþMF). The green curve is the usual MF curve
and can be reproduced (for WGN) also via theoretical/
analytical tools (see [6]). Basically, it is related to the so-
called receiving operator characteristic of the matched
filter for different SNR. The true receiving operator char-
acteristic curve contains also the information regarding the
detection probability and the false alarm probability. One
can give different but equivalent interpretations to the
curves in Fig. 7. In fact, one can say that the preprocessing
based on ICA allows to increase (thanks to a network of
interferometers) the detection probability and to lower the
false alarm probability with respect to the plain matched
filter, keeping fixed the input SNR. This is possible because
part of the noise has been taken off through the separation
algorithm, thus the optimality properties of the matched
filter are not violated, of course.
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FIG. 3 (color online). Typical output for the matched filter
between the template and one of the two time series after an
ICA algorithm (SNR ¼ 8). Note the value of the maximum.
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FIG. 2 (color online). Typicalmatched filter output (SNR ¼ 8).
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FIG. 4 (color online). Typical output for the matched filter
between the template and the other time series after an ICA
algorithm (SNR ¼ 8). Note the absence of any clear maximum.

TABLE I. Probability that �> 1 for the various algorithms at
different SNR.

SNR EFICA WASOBIl

8 98.05% 98.27%

10 98.33% 98.96%

12 98.60% 99.30%
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FIG. 5 (color online). Probability density function for the ratio between peaks � for the various SNR. Mean and standard deviation
are indicated for each distribution.
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FIG. 6 (color online). CDF for the ratio between peaks �. The two curves (blue) EFICA, (red) WASOBI tend to separate with an
increasing SNR.
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FIG. 7 (color online). CDF for the recovered SNR. Green (MF), Blue (EFICA), Red (WASOBI).
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Before moving to the conclusions, we need to clarify the
following point. An important issue concerns whether to
run ICA (i.e. separation) on a whole time series and run the
matched filter on some segments inside the original time
series or rather split the original time series into a certain
number of segments and run both ICA and the matched
filter on each segment. Indeed, since any ICA algorithm
has an inherent ambiguity problem for the ordering of the
output components, it would be dangerous to run ICA on
the same segments on which one runs the matched filter. In
fact, it might happen that part of the searched signal, a
chirp in our case, could be present in, say, segment 1 and
segment 2. Running ICA on segment 1 could move part of
the chirp to a certain output component and move part of
the chirp in segment 2 to another output component, and
one, a priori, is not able to concatenate in a sensible way
the output components coming from segments 1 and 2.
This is the main reason we have chosen to separate on the
whole time series and run the matched filters on subseg-
ments as usual. In this way, one can have a look also at the
whole processed time series after separation by ICA, for
example, investigating time-frequency plans (as in [20]) in
a consistent way.

IV. CONCLUSIONS AND FUTURE PERSPECTIVES

In this paper, we have investigated the possibility to use
an ICA preprocessing to data coming from a network of
interferometers for the purpose of decreasing the level of
noise and increase the SNR at the output of the matched
filter. This leads to a bigger detection probability.

Note that our considerations are based on the contem-
porary use of the data from two GW antennas: this is an
important point. Indeed, current detection pipelines (real-
time or offline) run a matched filter on all the operating
interferometers separately, and produce coincident triggers
only when the temporal delays of the single triggers are
compatible with the ones of a passage of a GW. We
investigate the possibility to use the network of antennas
before applying the matched filter with the goal to reduce
the noise and increase the detection probabilities. Note that
our analysis requires running the matched filter twice with

respect to single-interferometer pipelines, because one has
to run the matched filter twice for each pair of interfer-
ometers. This is because any ICA algorithm has an inherent
ambiguity which is the order of the output components:
there is no way to select interesting components. Thus, one
needs to run the matched filter on every estimated compo-
nent. This is the price to pay in order to increase the
detection capabilities. The total computational complexity
is the one of the matched filter (as described, for example,
in [9] in relation to GW searches) augmented by the com-
plexity of the chosen ICA algorithm as reported in Sec. II.
Since our method boosts the output SNR [26], it is clear

that also the maximum size of the detectable Universe
grows. In fact, if one defines, as usual [9], the horizon
distance as the distance of a particular binary system (two
neutron stars, 1:4M� � 1:4M�, optimally oriented) that
would produce a signal-to-noise ratio equal to 8, then our
method allows to search for GWs a little bit further. In fact,
since the horizon distance is proportional to the linear
signal-to-noise ratio, it is clear that with our preprocessing
one can gain a factor of about 1.5. A similar phenomenon
happens for a coherent search rather than a coincident one;
in fact, our method is a kind of coherent search, focused on
denoising.
One more issue regards the fact that compact binaries

coalescence search is blind, in the sense that one does not
know a priori the parameters of the binary, and a bank of
filters is used. This means that a more interesting compari-
son needs to be done between a matched filter on a bank of
templates with and without the preprocessing we have
proposed. This is a much more fair and interesting com-
parison, since the optimality property of the matched filter
is lost using a bank of filters (whatever be the chosen value
of the fitting factor), thus any preprocessing which sepa-
rates part of the noise could be very useful, especially in the
cases of low SNR events. We will discuss this point in a
forthcoming paper.
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