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Coalescing binaries are credited as being relatively abundant sources of gravitational radiation, with a

rich content of physical information. Their signals, apart from (important) complications due to higher-

order post-Newtonian corrections, spin-orbit and spin-spin couplings, etc., are so-called chirp signals, i.e.

a signal modulated both in amplitude and in frequency. The rate at which the frequency changes depends

basically on the chirp mass, a particular combination of the masses of the two objets. It is known that the

Wigner-Ville transform is an optimal time-frequency distribution in detecting chirping signals whose

instantaneous frequency grows linearly in time. We compare the performance of the plain Wigner-Ville

transform and of blind source separation-augmented Wigner-Ville transform. We consider a typical chirp

of interest for ground-based gravitational wave (GW) detectors and inject it at a SNR ¼ 12 into two

independent time series of white Gaussian noise. We show that the blind source separation preprocessing

acts as a powerful denoising tool, yielding a significant enhancement in the detection capability of the

Wigner-Ville transform alone. We report preliminary results, focused on detection performances, which

appear to be very promising; the improvement in parameters estimation will be discussed in a forthcoming

paper. The possibility to apply our analysis to a network of GW interferometers is briefly discussed.

Finally, we stress the fact the our methods are completely independent on the shape of the signal, and thus

have broader applications besides chirp gravitational wave signals.

DOI: 10.1103/PhysRevD.83.122006 PACS numbers: 04.80.Nn, 07.05.Kf

I. INTRODUCTION

Modern interferometric GWs detectors [1,2] have now
reached design sensitivities and in the next few years they
will enter a phase of technological up-grading (advanced
detectors) towards better sensitivities. This will increase
the effective volume of the Universe (horizon) seen by each
detector. Current estimates [3,4] on the rate of compact
binaries coalescence within this volume indicate that a few
detections per year should be a realistic figure for advanced
detectors sensitivity (although the rates are still pretty
uncertain). The expected gravitational signal for compact
binaries (neutron stars-neutron stars, black hole-black hole
or neutron star-black hole) is a so-called chirp signal, i.e. a
signal with a frequency varying in time at a rate basically
determined by the chirp mass of the system (for more
details see, for example, [5]). The derivation of this result
is based on perturbation theory in general relativity, mostly
on post-Newtonian and post-Minkowskian approxima-
tions. The waveform is also confirmed by the simulations
made in Numerical Relativity. Major complications are
due to the spins of the two objects, their couplings, etc.;
furthermore, for a neutron star (NS), there are many mod-
els for the equation of state, and this latter affects espe-
cially the merging phase of the coalescence (which

contains the most energetic part of the signal), leading to
different merging signals. Data analysis techniques for the
detection of chirps from compact coalescing binaries are
based on templates search, i.e. one builds a grid of tem-
plates (each template is a waveform of the type predicted
by perturbation theory, with physical parameters ranging in
an appropriate set) and filters the signals coming out of the
interferometers through this grid (a filter bank) in order to
apply the maximum likelihood detection/estimation prin-
ciple. The more similar the GW signal is to the template
used in the search, the higher will be the detection proba-
bility. Clearly, if the signal is, for some reason, different
from the expected ones, a search based on templates will be
useless. This is much more true when one considers that
for some astrophysical sources like supernovae events, a
realistic model is very complicated and thus the shape of
the sought signal is basically unknown. Until first detec-
tions will be available (including consistency among the
waveforms retrieved by several detectors), one cannot be
sure that the signal is the one predicted by perturbative
calculations
The Wigner-Ville transform (WVT) is a reliable tool for

detecting nonstationary unmodelled waveforms. In par-
ticular, it works well with chirps. On the other hand, its
detection performance is not as good as those of a
template-bank-based matched-filter detector. In this paper
we use, for the first time in this field, the concept of blind*forte@na.infn.it
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source separation (BSS) as a denoising tool. The BSS
technique is also independent from the shape of the sought
signals, and we prove that is capable of boosting the
performance of a WVT based detector considerably.

Since BSS concepts are likely new to the GW commun-
ity, we discuss shortly its formulation and possible imple-
mentations in Sec. II (more details on the used algorithms
are described in the Appendixes); then we present a
brief review of the WVT properties in Sec. III and finally
describe our simulations in Sec. IV. Future applications and
refinements are discussed in Sec. V, Conclusions.

II. INDEPENDENT COMPONENTANALYSIS

In this section we review the concepts of Blind Source
Separation (BSS) and Independent Component Analysis
(ICA). Note that these two terms mean slightly different
things [6]. Independent Component Analysis is a just
possible way to solve the BSS problem.

In BSS one has a certain number, n, of observations
xiðtÞ. Each observation is a linear, memoryless com-
bination of n independent signals siðtÞ produced by
different sources, which are not directly observable. The
problem is to retrieve (separate) the n signals (known as
the independent components) from the n observations. The
matrix A relating the observations to the signals is typically

unknown. Note that all or part of the signals may be in fact
pure stochastic processes, i.e. noise [7].
A classical example of BSS is the so-called cocktail

party problem. Suppose you are in a room where there
are several people speaking and an equal number of micro-
phones recording their voices. Each speaker is a source
originating a signal siðtÞ, whereas each microphone pro-
duces a time series xiðtÞ which contains a (linear) mixture
of all signals. The problem is to separate the original
waveforms using only the recorded data. Note that this is
also a problem of noise reduction. In fact, if all signals
(sources) are noise except one, and we are interested in
retrieving that one, we face a problem of noise reduction.
Figure 1 shows a typical example (see caption for de-

tails). Note that in order to perform separation, as further
discussed below, only the independence of the components
and their non-Gaussianity is important; the spectral prop-
erties of the signals do not matter, and have not been used.
Indeed, the results would not change if the signals were all
non-Gaussian stochastic processes.
Now, let us formalize the BSS through the ICA proce-

dure (see [8,9] for more details and precise definitions)
and explain the key underlying hypotheses, namely, the
statistical independence and non-Gaussianity. Let our data
x1; . . . ; xn be obtained by linearly mixing n independent
random variables si via a n� n matrix A, i.e.
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FIG. 1 (color online). Left: three deterministic signals and one random (non-Gaussian) noise are artificially generated and mixed via
a random matrix (arbitrary units for both axes). Middle: the resulting observations. Right: the estimated original sources. Note that
some of them are recovered up to a sign reversal, which is an ambiguity of the method.
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x ¼ As: (1)

This is called the noise-free model, although a more real-
istic model would require an additive noise term n in the
right-hand side of Eq. (1). The sources si are the indepen-
dent components, and they are latent variables, which
means that cannot be observed directly. All we observe is
the vector x; the mixing matrix (assumed full rank) is also
unknown. Thus we must estimate at the same time A and s
using only the observations. This is possible (see e.g [8])
under the assumptions that the sources are statistically
independent and have (possibly unknown) non-Gaussian
distributions [10]: we will see why these assumptions are
enough to separate the original components given only
their mixtures. Once one can estimate A, by evaluating
its inverse W, it is easy to estimate the sources:

s ¼ Wx (2)

The ICA model with noise is more complicated and also
its well-posedness (for example the identifiability of the
mixing matrix) is delicate. For time being, we omit explic-
itly the noise term in the determined case (number of
sources ¼ number of observations). This term will how-
ever be introduced in the under-determined case that
we will study with the help of the Wigner-Ville transform
(see below).

By its own nature, ICA presents some ambiguities. The
first one is that one cannot recover the variances of the
independent components. In fact, since both s and A are
not known, any multiplicative factor in front of some si
can be canceled by dividing by the same factor the corre-
sponding column of A. This also implies that each inde-
pendent component can only be determined up to a sign.
Consequently, one assumes that all components have unit
variance Efs2i g ¼ 1; we also assume that all variables have
zero mean. The second ambiguity is that in ICA there is no
notion of ordering among the components. In fact, multi-
plying a solution by a permutation matrix would still give a
solution to the same problem [11].

Let us stress that ICA is only a possible way to solve the
BSS problem and the two algorithms should not be con-
fused. Historically, there exist in literature three possible
routes to the problem of BSS: non-Gaussianity, spectral
diversity and nonstationarity. ICA was born to separate
statistically independent, non-Gaussian components.
However, different techniques allow us to separate also
Gaussian components. More on this and the relative algo-
rithms are described in the following sections.

A. Non-Gaussianity

Standard ICAworks if the components are non-Gaussian
(separation is still possible if there is at most one Gaussian
component). In fact, for Gaussian components the mixing
matrix (or equivalently its inverse) can be estimated only

up to an orthogonal transformation, see [8]. We face thus
the problem of measuring non-Gaussianity.
As a first measure of non-Gaussianity we can consider

the kurtosis. If x is a random variable, then

kurt ðxÞ ¼ Efx4g � 3ðEfx2gÞ2; (3)

which can be simplified if we assume x to have zero-mean
and unit variance, kurtðxÞ ¼ Efx4g � 3. Kurtosis is basi-
cally a normalized version of the fourth moment. For
Gaussian variables, the kurtosis is zero, whereas it is
nonzero for (almost) all the other distributions. From its
definition, kurtosis can be positive or negative: this corre-
sponds to super-Gaussian or sub-Gaussian variables, re-
spectively. The former have typically some spikes in the
probability density function (PDF) and heavy tails (for
example the Laplace distribution), the latter have usually
a flat PDF (for example the uniform distribution). Thus,
non-Gaussianity can be measured by the absolute value of
the kurtosis or its square. Note that to evaluate the kurtosis,
it is enough to estimate the fourth moment from the ob-
served data, so it is computationally easy. Furthermore,
from its definition, these properties follow

kurt ðxþ yÞ ¼ kurtðxÞ þ kurtðyÞ (4)

if x, y are independent, and

kurt ðaxÞ ¼ a4kurtðxÞ; (5)

where a is a scalar. To illustrate how maximization or
minimization of kurtosis could be used to solve the ICA
problem, let us assume that we have two original sources
s1, s2 and the observed data x ¼ As. We look for one of the
independent components as y ¼ wtx (t denotes the trans-
pose matrix). If we put z ¼ Atw, then y ¼ zts ¼ z1s1 þ
z2s2. From the properties of kurtosis, kurtðyÞ ¼
z41kurtðs1Þ þ z42kurtðs2Þ and since we assume that the origi-
nal sources have unit variance, it must also be Efy2g ¼ 1,
which is the constraint z21 þ z21 ¼ 1. So the optimization
problem is to find the maxima or minima of the function
jkurtðyÞj ¼ jz41kurtðs1Þ þ z42kurtðs2Þj on the unit circle. It
can be shown that the maxima are exactly at the points
where one of the elements of the z vector is zero and since
we are on the unit circle the other element must be 1 or�1.
In other words, y must be equal to one of the components
�si. This shows that, theoretically, maximization of
kurtosis solves the ICA problem. In practice, one starts
with a weight vector w and looks for a direction in which
the kurtosis of wtx grows or decreases. Then one uses
a gradient method or another method to find another
direction.
Although kurtosis may be used as an optimization cri-

terion for the determined ICA, it has the big drawback that
it is very sensitive to outliers, i.e. its value may depend only
on some values on the tail of the distribution, values which
could be physically irrelevant. In other words, kurtosis is
not a robust indicator of non-Gaussianity and we need a
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more reliable measure. Note that searching for non-
Gaussianity/independence in order to solve the ICA prob-
lem, we are using statistical methods which go beyond
classical second-order methods [12]; we have seen
that kurtosis is related to the fourth-order moment. The
need for higher-order methods is even more manifest
in the following approach to a robust measure of non-
Gaussianity, based on entropy concepts borrowed from
information theory.

The entropy of a random variable can be thought of as
the associated amount of information. The larger the en-
tropy, the more random or unstructured the variable is. For
a discrete random variable y, the entropy H is defined
according to Shannon as

H ¼ �X
i

pðy ¼ aiÞ logpðy ¼ aiÞ; (6)

where the ai are the possible values of y. The general-
ization to continuous-valued random vectors y is

HðyÞ ¼ �
Z

fðyÞ logfðyÞdy; (7)

where fðyÞ is the related first-order probability density.
A fundamental result in information theory states that,
among all random variables of equal variances, the
Gaussian distribution has the largest entropy. This means
that the Gaussian distribution is the most random, unstruc-
tured of all distributions. This leads to the definition of
negentropy JðyÞ

JðyÞ ¼ HðyGaussÞ �HðyÞ; (8)

where yGauss is a Gaussian variable having the same co-
variance matrix (or variance if we deal with scalar random
variables) of y. Negentropy is always non-negative and is
zero if and only if y has a Gaussian distribution. Thus,
negentropy is a very good estimator of non-Gaussianity;
the only problemwith it is that using negentropy one would
need to estimate the PDF via suitable approximations.

One way to approximate negentropy is via higher-order
momenta, in fact it can be shown that

JðyÞ � 1

12
Efy3g2 þ 1

48
kurtðyÞ2: (9)

This approximation suffers anyway from the nonrobust-
ness of kurtosis due to outliers. In [8] it is shown that other
approximations are possible, in particular

JðyÞ � Xp
i

ki½EfGiðyÞg � EfGið�Þg�2; (10)

where ki are some constants, � is a standardized Gaussian
variable and the Gi are nonquadratic functions. The im-
portant thing to note is that although Eq. (10) may not be so
good as a negentropy approximant, the expression in the
right-hand side is still a good measure of non-Gaussianity.

One can simplify further Eq. (10), and keep only one
nonquadratic function G

JðyÞ / ½EfGðyÞg � EfGð�Þg�2; (11)

the requests on G being very mild. Taking GðyÞ ¼ y4 one
has the kurtosis-based approximation. The choices

GðtÞ ¼ 1

a
log cosh at; GðtÞ ¼ � expð�t2=2Þ (12)

have been experimentally proven to be [8] effective. This
approximation of negentropy is a good compromise be-
tween the two classical measures of non-Gaussianity, i.e.
kurtosis and negentropy. Moreover, the previous expres-
sion is easy to compute, is robust and thus is a practical
contrast function. It is the one used in the FASTICA algo-
rithm, see Appendix A.
Another approach, also inspired by information theory,

is via minimization of mutual information. If we have m
scalar random variables yi, their mutual information is
defined as follows

Iðy1; . . . ; ymÞ ¼
Xm
i

HðyiÞ �HðyÞ: (13)

Note that HðyÞ contains the joint density fðyÞ while HðyiÞ
contains the i-th marginal density. It is clear that mutual
information is a natural measure of dependence among the
variables, being zero only if the variables are statistically
independent and otherwise always non-negative. If the yi
are (zero-mean, unit variance) uncorrelated variables, one
can show that mutual information and negentropy may
differ only by a constant and by a sign

Iðy1; . . . ; ymÞ ¼ const�X
i

JðyiÞ: (14)

Thus finding an invertible transformation W that mini-
mizes the mutual information is equivalent to finding
directions in which the negentropy is maximized. More
precisely, solving ICA by minimization of mutual infor-
mation is equivalent to maximizing the sum of the non-
Gaussianities of the estimates, when the estimates are
constrained to be uncorrelated.

B. Under-determined BSS/ICA

We have up to now made the hypothesis of having the
same number (n) of sources and sensors. In many practical
situations, and indeed in the case of interferometric detec-
tors for gravitational waves, this is not the case. Classical
BSS/ICA methods can-not be directly applied to this situ-
ation and one has to face the so-called under-determined
case, which is much more difficult to solve. In fact, in the
determined case the lack of a priori knowledge about the
mixing process is compensated by the statistical assump-
tion that the original components are independent, an
assumption which is often physically reasonable. In the
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under-determined case, this is not enough; separation is
still possible but one has to make further assumptions
about the sources, for example, considering sparse sources,
etc. (see [13] for applications of the under-determined case
to audio signals) [14]. Note that even if one could know the
mixing matrix A, the separation process in the strict sense
is not obvious, since A is a rectangular matrix and thus is
not invertible.

We circumvent this problem with the help of the
Wigner-Ville transform. As we will see, the joint use of
BSS/ICA and the WVT enhances the localization proper-
ties of the plain WVT.

III. THE WVTAND THE CROSS-WVT

Given an (analytical) signal xðtÞ, the Wigner-Ville trans-
form (see [15] for more details) is a time-frequency distri-
bution defined as

Wxðt; �Þ ¼
Z

xðtþ �=2Þx�ðt� �=2Þe�2�{�td�: (15)

For comparison, we remind also the definition of the short-
time Fourier transform

Fxðt; �; hÞ ¼
Z

xðuÞh�ðu� tÞe�2�{�tdu (16)

where hðtÞ is a short-time analysis window. Note first of all
that the WVT is a quadratic distribution (in the signal),
whereas the short-time Fourier transform is a linear one.
The WVT belongs to the so-called Cohen’s class of time-
frequency distributions (i.e. those which are covariant by
translations in time and frequency) and has some interest-
ing mathematical and physical properties (unitarity, etc.).
Like the spectrogram, it preserves the energy condition, i.e.

Z þ1

�1

Z þ1

�1
Wðt; �Þdtd� ¼ Ex ¼

Z
jxðtÞj2dt (17)

The WVT is real-valued and has the property of perfect
localization for linear chirp signals

xðtÞ ¼ e2�{�ðtÞt; �ðtÞ ¼ �0 þ 2�t (18)

) Wxðt; �Þ ¼ �ð�� ð�0 þ �tÞÞ (19)

being the only distribution in the Cohen’s class with this
property. Note that this result is true only for chirp signals
with a linear frequency law. For example, for power-law
chirps, the best identification of the frequency line is
achieved by the Bertrand distribution (see [16]), which
belongs to the affine time-frequency distributions. In this
paper, we use the WVT for its simplicity.

The WVT given by Eq. (15) is also known as an auto-
WVT, since the integral is evaluated on the same copy of
the signal shifted in time. It is possible also to introduce a
cross Wigner-Ville transform (XWVT) between two sig-
nals xiðtÞ and xjðtÞ

Wxixjðt; �Þ ¼
Z

xiðtþ �=2Þx�j ðt� �=2Þe�2�{�td�: (20)

In general, we use the term WVT to mean both the auto-
WVT and the cross-WVT, and differentiate the two only
when wewant to emphasize that the transform is made on a
copy of the signal or another signal, respectively. The
utility of this will be clear from our simulations.
Finally, in our simulations we have used for the WVT a

moving window of 4096 points and the result of the trans-
form has been normalized (equalized) by an empirical fit as
obtained and described in [17]. This enhances the detection
performance.

IV. SIMULATIONS

As we saw in the previous sections, standard ICA or
other BSS methods allow us to separate independent com-
ponents under the assumption that the number of sources
and the number of sensors is the same. Now if we have n
GW interferometers (each one with its own noise) and a
GW signal impinging on all of them, it is evident that we
have nþ 1 sources but only n sensors. Thus, determined
ICA or BSS cannot be applied in a straightforward fashion.
One has to use under-determined techniques. Yet, in the
case of chirping signals [18], we know that the Wigner-
Ville transform has optimal properties in detecting chirping
waveforms. Since any BSS method separates on the basis
of the independence and other factors, the idea is to use
these techniques to lower the level of noise in each time
series at the output of the algorithm, i.e. reduce the
contamination among different processes and then use
the WVT or the XWVT to enhance the detection per-
formances. We illustrate these ideas by numerical simula-
tions. All simulations were made in MATLAB; in particular,
for the BSS algorithms, we capitalize the toolbox BSSGUI

[19], which implements EFICA, WASOBI and BARBI (as well
as other BSS algorithms, details for the algorithms of our
interest are given in the Appendices A, B, and C), for the
WVT we used the time-frequency toolbox [20] and the
empirical equalization factor derived in [17]. The rest of
the code was also written in MATLAB.
For the sake of clarity, let us consider a typical chirp

signal s, see Figs. 2 and 3. This signal has been generated
by the LAL software [21] using random parameters for the
values of the masses, inclination of the orbit, etc. This
means that the chirp could originate from a NS-NS system
or a BH-BH system or a mixed system, it does not make
any difference for our analysis. Then we consider two
noise time series n1, n2, with MATLAB we have produced
two independent realizations of white Gaussian noise.
Finally, we inject the signal s into n1, n2 with a linear
signal to noise ratio (SNR) of 12. More precisely, we
identify the SNR with the deflection d as defined in [22]
in relation to the matched filter
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d ¼ �signal

�noise

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsamples

q
: (21)

Thus the observed data [23] x ¼ As take the form

x1ðtÞ ¼ asðtÞ þ n1ðtÞ (22)

x2ðtÞ ¼ asðtÞ þ n2ðtÞ (23)

x1ðtÞ
x2ðtÞ

� �
¼ a 1 0

a 0 1

� � sðtÞ
n1ðtÞ
n2ðtÞ

0
@

1
A; (24)

where a ¼ d=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsamples

p
, d ¼ 12 is a constant which fixes

the SNR and Nsamples is the number of samples. We con-

sider six seconds of data sampled at fs ¼ 4096 Hz. This is
clearly a particular situation of under-determined BSS
(with noise) where the mixing is made via the rectangular
matrix

A ¼ a 1 0
a 0 1

� �

(to control the SNR) rather than a random matrix. The
signals s, n1, n2 have been normalized to unit variance
before mixing.
Each time we apply a BSS algorithm to x, we obtain two

time series at the output y1ðtÞ, y2ðtÞ. For the purposes of our
analysis, we distinguish two cases: the only noise case (H0)
where we do not inject the signal s (i.e. a ¼ 0) and the
signal plus noise case (H1). Note that in theH0 hypothesis,
it does make sense only to apply the XWVT since there is
no mixing between the components (in other words the
observed data x1, x2 are already independent and sepa-
rated). The utility of the XWVTon the noises n1, n2 will be
clarified later. Our analysis is sketched in the flow chart in
Fig. 4. Note that since BSS separates the input time series
x, the output time series y1ðtÞ, y2ðtÞ will be as much
independent as possible, so it is more convenient to run
an auto-WVTon each estimated component rather than run
a single cross-WVT between the two estimated compo-
nents. In this way, after any BSS algorithm, we have two
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FIG. 2 (color online). Time plot of a typical chirp signal
generated by LAL.

FIG. 3 (color online). Spectrogram of the chirp.

FIG. 4. The flow chart for our analysis (see text for more details). (Top) The XWVT is applied to two time series containing noise
only and signal plus noise in a direct way. (Bottom) BSS algorithms are applied to the same time series before doing a WVT.
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sets of points in the time-frequency plane (TFP) to com-
pare with the TFP obtained by the XWVTon the data x. In
order to understand the performance improvement due to
the BSS algorithms, we overlap the TFP obtained by the
XWVTwith the TFP of the clean chirp (see Fig. 5) and the
TFPs obtained by BSSþWVT with the TFP of the clean
chirp. In this way, we can count the number of points, say
I , in the TFP recovered by a specific algorithm. In other
words, we integrate each TFP after XVWTor BSSþWVT

along the original time-frequency line (Fig. 5). It is evident
that a higher value of I corresponds to a better identifica-
tion of the chirp frequency line and consequently to a better
estimation of the physical parameters. The goal is to reduce
the level of noise in the observed data x. To be more
precise, given a BSS algorithm, only in one of the output
series yiðtÞ (and after performing an auto-WVT), the chirp
will be evident. When overlapping with the TFP of the
clean chirp, and for each simulation (i.e. each generation of
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FIG. 5 (color online). Instantaneous time-frequency line of the
chirp evaluated by the auto-WVT.
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FIG. 6 (color online). Typical TFP for the XWVT in the only
noise case ðH0Þ.
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FIG. 7 (color online). Typical TFP for the XWVT in the H1

case.
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FIG. 8 (color online). Typical TFP for the EFICAþWVT
case.
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FIG. 9 (color online). Typical TFP for the WASOBIþWVT
case.
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FIG. 10 (color online). Typical TFP for the BARBIþWVT
case.
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white Gaussian noise), we take the value of I which has
the maximum value and compare this latter with the
corresponding value of I given by the XWVT on the
data x. Finally, we compare the minimum value of I

with the value obtained by XWVT on the noises
n1, n2. The results of these simulations are shown in
Figs. 6–10, where we show some typical TFPs obtained
by the different algorithms. In Figs. 11–14, we show the
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FIG. 11 (color online). Probability distribution functions for our statistical observable I , under both H0 and H1 (only noise/signal
plus noise). Note the presence of longer tails in the signal plus noise case analyzed by the combined algorithms BSSþWVT.
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FIG. 12 (color online). Cumulative distribution functions of I .
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PDF and the cumulative distribution function (CDF) of I .
It is interesting to note that the CDF’s of the XWVT and
BSSþWVT in the case H0 are very similar, which means
that the BSS algorithms do not change the statistical prop-
erties of the noise. It is also evident that the performance of
the combined algorithms are better, i.e. the detection per-
formance of the WVT is enhanced by the preprocessing
with BSS.

We have also verified that by increasing the SNR the
differences between the approach with the only WVT and
the combined one with the BSS-WVT tend to disappear.

V. CONCLUSIONS

The present analysis can be extended to a network of N
interferometers. For the moment, we neglect time delays,
but this is not a serious obstacle. For each couple of GW
interferometers we can apply our method. The joint use of
WVT and BSS gives one TFP. For N interferometers, we
can produce N independent TFPs to compare. Indeed, a
suitable combination (i.e. a simple superimposition) of the
N TFP plots allows to increase the detection probability of
the GW chirp and to improve the parameters estimation.
We are currently investigating the best combinations of the
TFP functions yielding the best performance.

Note also that, although the WVT has the property to
localize optimally a chirp in the TFP, for other astrophys-
ical sources it may not be the optimal choice. On the other
hand, the denoising properties of BSS algorithms are com-
pletely independent of the shape of the sought signal, and
thus can be very useful as a preprocessing step for any kind
of gravitational signal.
We have made the simplifying assumptions of only

one signal, two independent noises and no time-delays.
Because of the finite speed of GW propagation, different
interferometers detect the same signal with a certain
(known) time delay. Furthermore, the output of a GW
detector is

xðtÞ ¼ DijhijðtÞ þ nðtÞ; (25)

whereDij describes the directional responde of the antenna
and hij are the transverse, traceless components of the

incoming GW. Thus, for any given astrophysical source,
one has two signals, hþ, h� and a number of independent
observations, each corrupted by its (independent noise),
equal to the number of interferometers in the network. The
problem is clearly under-determined and current methods
may allow us to extract both polarizations using sparse
decomposition or correlation with rough templates, etc.
Yet, if the GW direction of arrival is known, e.g., from

different (optical, radio) observations, one knows the time-
delays and the antenna directional response tensors. The
problem of under-determined BSS with known or partly
known mixing matrix is easier than the general one, and we
are confident that the methods may work with the real data
provided the coordinates of the source and the positions of
the interferometers are known, even if the GWwaveform is
unspecified. This important point will be further discussed
in a future paper.
In a forthcoming paper, we will compare the perform-

ance of a classical matched filter on the observed data x
with the performance of the matched filter after the pre-
processing with BSS algorithms [24]. This will allow us to
fully characterize our method (i.e. derive a Receiving
Operator Characteristic). Note that BSS algorithms per se
are not suitable for detection, since they estimate the
original components but do not allow us to set up an
hypothesis test. It is only in combination with pure detec-
tion algorithms (like matched filter, time-frequency meth-
ods, etc.) that BSS techniques can be used for detection.

APPENDIX A: FASTICA

Before describing the FASTICA algorithm [25], let us
remind that usually some preprocessing steps are in order
before applying any BSS technique. The first one is to
center the data by removing the mean m ¼ Efxg; after
estimating the mixing matrix one can reintroduce the
mean by adding A�1m. A further useful preprocessing
consists in finding a linear transformation x ! ~x such that
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FIG. 13 (color online). CDF of I in the H0 case. The curves
are nearly coincident.
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FIG. 14 (color online). CDF of I in the H1 (signalþ noise)
case. (a) XWVT, (b) EFICAþWVT, (c)WASOBIþWVT, (d)
BARBIþWVT.
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Ef~x~xtg ¼ I: (A1)

The resulting data are referred to as sphered. This is always
possible using, for example, an eigenvalue decomposition
of the covariance matrix Efxxtg ¼ EDEt, where E is the
orthogonal matrix of eigenvectors of Efxxtg and D is the
diagonal matrix of its eigenvalues, D ¼ diagðd1; . . . ; dnÞ.
Then, sphered data are given by

~x ¼ ED�1=2Etx (A2)

and a scatter plot would indicate a spherical symmetry
which explains its name. The advantage in doing this
preprocessing is that

~x ¼ ~As; (A3)

where the mixing matrix ~A is now orthogonal, thus we are
left with the problem to find an orthogonal demixing
matrix, which has less free parameters than the original
one.

Let us now describe the popular FASTICA algorithm. It is
based on a learning rule that finds a direction w such that
non-Gaussianity of wtx is maximized; non-Gaussianity is
measured by negentropy, and in practice by one of its
approximation, see Eq. (11) above. Since one assumes
that all the original components have unit variance and
the data x have been sphered, w must have unit norm. The
main iteration of FASTICA are the following:

(i) take an initial vector w, for example, random
(ii) put wy ¼ EfxgðwtxÞg � Efg0ðwtxÞgw
(iii) w ¼ wyn k wy k
(iv) continue until convergence

where g, g0 are the first and the second derivative of the G
function in Eq. (11). The convergence is reached when
successive approximations to w become aligned, i.e. when
the scalar product between an old value of w and an up-
dated value of w is �1.

The algorithm described just finds one direction, i.e.
one component; it is a one-unit algorithm. To estimate
more independent components, one needs to run the
algorithms many times with different weight vectors
(units) w1; . . . ;wn and one needs, obviously, to prevent
different weight vectors converging to the same maxima
of the contrast function, that is converging to the same
independent component. In order to do that, one must
decorrelate the quantitities wt

1x; . . . ;w
t
nx after each

iteration. A simple way to achieve this is to use the
Gram-Schmidt-like algorithm. One estimates the compo-
nents one by one (deflation scheme). Once p components
have been estimated, that is p weight vectors, one runs the
algorithm for wpþ1, subtracts from wpþ1 the projections

wt
pþ1wjwj of the previously estimated p vectors and then

renormalizes wpþ1

� wpþ1 ¼ wpþ1 �
Pp

j¼1 w
t
pþ1wjwj

� wpþ1 ¼ wpþ1n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wt
pþ1wpþ1

q
:

Another possibility is to use a symmetric scheme, in which
no privileged weight vectors exist; in this scheme the
components are estimated all together via, for example, a
symmetric decorrelation, see [8]. Both schemes (deflation
and symmetric) are implemented in the FASTICA algorithm
as well as the choice of alternative nonlinearity g functions.
In our simulations, we have used an improved version of

FASTICA known as EFICA developed in [26,27], which

implements an adaptive choice of the nonlinearity function
g and refines the estimate of the demixing matrix.

APPENDIX B: SPECTRAL DIVERSITY

As we have mentioned, ICA is a way to solve the blind
source separation problem: it is a method that works in the
time domain, based on the non-Gaussianity of the compo-
nents one wants to recover and uses higher-order statistical
momenta. On the other hand, BSS can be solved using
different algorithms which take into account frequency
information or spectral properties [28]. In this and the
following section, we describe two such methods which
are suitable for separating signals with different spectral
contents or with nonstationary properties.
A classical BSS algorithm which allows to separate

components with different spectra is known as SOBI

(second-order blind identification) [29]. For our conve-
nience, we have used a refinement of this algorithm known
as WASOBI (weight adjusted SOBI), described in [30],
which has shown to be asymptotically optimal for
Gaussian autoregressive (AR) processes. As usual, one
considers the determined, noiseless model

x ½n� ¼ As½n�; (B1)

where n ¼ 1; . . . ; N is a discrete time index and A is a
d� d mixing matrix. We assume that there are d sources
which are Gaussian AR processes of known order and let
pmax be the maximal AR order of the original sources [31].
One can then show that the quantity

1

2
ðR̂x½�� þ R̂t

x½��Þ (B2)

forms a sufficient statistics for the separation of the AR
sources (� ¼ 0; . . . ; pmax). The correlation matrices are
estimated via

R̂ x½�� ¼ 1

N

XN
n¼1

x½n�x½nþ ��: (B3)

For more details see [30].
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APPENDIX C: NON-STATIONARITY

An algorithm aimed to use both spectral diversity and
nonstationarity has been proposed in [32], and it is known
as BARBI (block auto-regressive blind identification). It is
asymptotically optimal when the sources are piecewise
stationary AR processes. One assumes that the received
signals can be divided into M blocks, for simplicity of
equal length, and that the sources are Gaussian AR sources
of order less or equal than a maximum value pmax. If N is
the data length, NB ¼ N=M the length of each block and
L ¼ pmax þ 1, one considers the followingM � L matrices

R̂ ml ¼ 1

2NB

fXðm;0Þ½Xðm;lÞ�t þXðm;lÞ½Xðm;0Þ�tg (C1)

where m ¼ 1; . . . ;M (it is the block index) and l ¼
0; . . . ; pmax. Finally the matrix

X ðm;lÞ ¼ ½X:;ðm�1ÞNBþlþ1; . . . ;X:;mNBþl� (C2)

is the m-th signal block of the observed data, shifted to the
right by l samples. The separation procedure is done by

evaluating a demixing matrix V̂ such that the matrices

V̂R̂mlV̂
t are all roughly diagonal. This is achieved by an

approximate joint diagonalization of the matrices R̂ml, see
[32]. Note also that the unknown mixing matrix A is
assumed to be the same in each block, i.e. at each instant
of time. This is reasonable for short duration signals.
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