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ABSTRACT

Laser interferometry is one of the most sensitive methods for small displacement measurement for scientific and
industrial applications, whose wide diffusion in very different fields is due not only to the high sensitivity and
reliability of laser interferometric techniques, but also to the availability of not expensive optical components
and high quality low-cost laser sources. Interferometric techniques have been already successfully applied also to
the design and implementation of very sensitive sensors for geophysical applications.1 In this paper we describe
the architecture and the expected theoretical performances of a laser interferometric velocimeter for seismic
waves measurement. We analyze and discuss the experimental performances of the interferometric system,
comparing the experimental results with the theoretical predictions and with the performances of a state-of the
art commercial accelerometer. The results obtained are very encouraging, so that we are upgrading the system
in order to measure the local acceleration of the mirrors and beam splitter of the velocimeter using an ad hoc
designed monolithic accelerometers for low frequency direct measurement of the seismic noise.
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1. INTRODUCTION

The most common differential length measurement is a measurement of the length fractional change of a given
baseline, referred in geophysics as local strain. The magnitudes of the strains encountered in practice are spread
over a wide range: Earth-tide strain may be as large as 10−7 while strains produced by teleseismic earthquakes
rarely exceed 10−9. The strain noise at quiet sites has been measured by Berger and Levine,2 who used data
from very different instruments located about 2000 km apart in very different geological conditions. Nevertheless,
their results are in good agreement over the frequency range extending from approximately 1 cycle ·month−1 to
several cycles ·sec−1. Therefore, it seems reasonable to assume that their results represent a reasonable estimate
of the earth noise.

There are many kinds of instruments adequate for the observations of seismic signals. The periods of these
signals are of the order of seconds or minutes and these periods are sufficiently short (relatively speaking) so
that considerations on the instrument long-term stability or on its sensitivity to slowly changing environmental
parameters (such as environmental temperature) are usually not so relevant for the design success. In particular,
a strainmeter is generally considered adequate for a measurement if it is limited by earth noise over its whole
operating frequency range. On the other hand, the secular stability and the residual sensitivity to external
noise souces like the environmental temperature usually completely dominates the noise budget of instruments
designed to observe signals with periods of a few hours or longer. The residual sensitivity to fluctuations of the
environmental temperature or of the barometric pressure often sets a lower-bound on the minimum detectable
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vibration level which is independent from the intrinsic resolution of the sensor or from the amplification of its
read-out system.

Laser interferometry3 is one of the possible techniques to design a sensor for seismic wave measurement. In
this paper we describe the architecture of a laser interferometric sensor developed for geophysical applications,
to be used as a velocimeter for seismic waves detection, that is an improvement of a system we began to develop
some years ago4.5 Particular attention was given to the definition of the theoretical model, necessary also for
the choice of optimal system parameters. The performances of the interferometric system are analyzed, both
theoretically and experimentally, and then compared to a standard state-of the art commercial accelerometer.
The results obtained are very encouraging, so that we are upgrading the system in order to measure the local
acceleration of the mirrors and beam splitter of the velocimeter using ad hoc designed monolithic accelerometers
for low frequency direct measurement of the seismic noise.11

2. MODEL OF INTERFEROMETRIC SEISMIC SENSOR

2.1 Optical Model

The best and most versatile interferometric device is the interferometer developed by Michelson in 1880. The
basic scheme is shown in Figure 1. In a Michelson Interferometer, the beam from from the laser source is splitted
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Figure 1. Optical scheme of a Michelson Interferometer

by the Beam Splitter BS into two beams, that are then reflected back to BS by the mirrors M1 and M2. The
interference pattern is observed on the detector plane, DET .

Assuming a plane wave beam, then the Michelson Interferometer output, I(t), can be generally expressed as

I(t) = Imin +
Imax − Imin

2
[1 + cos(φ(t))] (1)

where φ(t) is the phase difference between the two beams, and Imax and Imin are the maximum and the minimum
output intensities, respectively. In particular, the maximum value of the intensity is reached when the two beams
are recombined in phase, while the minimum is instead obtained when they are recombined in opposition of phase.
Generally, these quantities are time dependent, but for a Michelson Interferometer with well aligned mirrors and
nearly equal arm lengths, negligible laser source amplitude noise and coherence lenght of the laser source much
longer than the arm-lengths, we can consider them constant. Therefore, the only time dependent quantity in
Equation 1 is the phase change φ(t), that can be expressed as
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4πn(t)
λ(t)

⎧
⎨

⎩
[l2(t) − l1(t)] +
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⎫
⎬

⎭
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where λ(t) is the laser beam wavelength, n(t) is the spatial mean refraction index, li(t) is the ith arm-length, d
is the distance of the beam-splitter from the output photodiode, and θi,j is the jth tilt of the mirror in the ith

arm.

All these functions are in principle time dependent. But, since very effective techniques exist for the alignment
control of the optics, it is possible to assume the hypothesis of a perfectly aligned system, so that Equation 2
can be written as

φ(t) =
4πn(t)
λ(t)

leq(t) (3)

where leq(t) = l2(t) − l1(t) is the longitudinal Michelson Interferometer arm-length difference, that is, of course,
a time dependent function. Then, to extract the arm-length change due to the presence of a seismic wave, we
choose one arm as reference, mechanically fixing its length and screening it from refraction index changes, which
may simulate mechanical length changes. The other arm, that is the measurement arm, is instead allowed to
change its length in order to measure the passage and the amplitude of a seismic wave.

In this model we did not take into any account the effects of the mirror mechanical mounts in the measurement
band of the interferometer. If we assume that the mechanical mounts are linearly coupled with the interferometer,
then the interferometer output can be expressed as the convolution of the input signal and the mechanical mounts
impulse response, that is:

∆leq(t) = k2(t) ∗ l2(t) − k1(t) ∗ l1(t) (4)

where k1(t) and k2(t) are the mechanical mount impulse response relative to mirror 1 and to mirror 2, respectively.
In particular, if the mechanical mounts are the same for both the mirrors then k1(t) = k2(t) = k(t) and
leq(t) = k(t) ∗ (l2(t) − l1(t)). Furthermore, taking into account that the resonance frequencies of the optical
holders are generally enough high not to produce effects in the measurement band of our detector, we can
approximate k(t) = 1.

Two further approximations can be done to simplify Equation 2. The first approximation consists in assuming
the laser wavelength enough stable so that we can neglect the time dependence of λ. This approximation
can be practically obtained using a commercial stabilized laser source. For example, the laser model 05-STP-
903, produced by Melles-Griot c© and used in our setup as laser source, has a (nominal) frequency of f =
473.61254THz, a guaranteed frequency stability of ∆f = ±2.0MHz and wavelength λ = c/f = 632.8nm. The
wavelength fluctuation is in this case ∆λ ≈ 10−15 m. Therefore, assuming a constant laser wavelength in our
model, then we get a relative error of ∆λ/λ ≈ 10−9, that is fully acceptable for our applications. Finally, for what
concerns the intensity stability, the amplitude fluctuations of the laser source can be cancelled by monitoring the
laser source power and normalizing the output of the interferometer.

The second approximation consists in assuming a constant and equal index of refraction in both arms. The
index of refraction, one of the most significant parameters of the atmosphere for optical wave propagation, is
very sensitive to small-scale temperature fluctuations. In fact, temperature fluctuations combined with turbulent
mixing induce a random behavior in the filed of atmospheric index of refraction. At the point R in the space
and time t, the index of refraction can be expressed by

n(R, t) = n0 + ∆n(R, t) (5)

where n0 =< n(R, t) >≈ 1 is the mean of the index of refraction and ∆n(R, t) represents the random deviation,
thus < ∆n(R, t) >= 0. Normalizing the values of n(R, t) to n0, the fluctuations of the index of refraction can
be related to corresponding temperature and pressure fluctuations. In particular, the index of refraction for the
atmosphere can be written for optical and IR wavelengths as:6

n(R, t) = 1 + 77.6 · 10−6(1 + 7.52 · 10−3λ−2)
P (R, t)
T (R, t)

(6)

where λ is the optical wavelength in µm, P is the pressure in mbar, and T is the temperature in Kelvin. According



to this expression, the change in the refraction index can be expressed as:

∆n(R, t) = +77.6 · 10−6(1 + 7.52 · 10−3λ−2)
1

T (R, t)
∆P (R, t)

−1.17 · 10−9λ−3 P (R, t)
T (R, t)

∆λ − 1
T 2(R, t)

∆T (R, t) (7)

As it is possible to see from this equation, the wavelength dependence is small for optical frequencies, that is
positive since we use laser emitting in the optical and near infrared bands (from 0.4µm up to 1.2µm). Moreover,
since the pressure fluctuations are generally negligible, it is easy to see that the refractive index fluctuations
associated with the visible and near infrared region of the spectrum are mainly due to random temperature
fluctuations (humidity fluctuations only contribute in the far infrared region). Changes in the optical signal due
to absorption or scattering by molecule or aerosols are not considered here.

An alternative approach is the following. If a more accurate measure is necessary, we can operate in this way.
We define λn as the wavelength of the laser source in vacuum and λa as the laser wavelength in air. Therefore,
the index of refraction is

n =
λn

λa
(8)

and we can define the wavelength correction number (WCN) as the inverse of the index of refraction. This
wavelength correction number can be derived by a direct measurement of the index of refraction with a refrac-
tometer or by using empirical data. If a refractometer is not available, it is preferable to measure the air pressure,
temperature and relative humidity, and then to relate this data to the refractive index using the semi-empirical
formulas obtained by Barrel and Sears7 and by Edlin8

WCN =
1
n

=
106

N + 106
(9)

where

N = 0.3836391P ·
[
1 + (0.817 − 0.0133T )106 · P

1 + 0.0036610T

]

− 3.033 · 10−3 · e−0.057627T · H (10)

and where the pressure P is measured in mmHg, the temperature T in degrees Celsius and the humidity in
percentage %.

For example, assuming standard and homogeneous air composition, a one part-per-million error (ppm) will
result from any one of the following condition:

• 1o C change in air temperature;

• 2.5mm of mercury change in the air pressure;

• 80% in relative humidity.

Equation 10 gives only an approximation of the refractive index, and thus it has some limitations related to the
accuracy in measuring the atmospheric conditions. Generally it is possible to obtain an accuracy of 0.01 ppm
using the Equation 10.

Therefore, as a conclusion, when the interferometer is in vacuum or positioned in a quiet and thermally stabi-
lized environmental place, then the index of refraction can be considered constant at first level of approximation.

2.2 Transfer Function

To measure the transfer function of the interferometer for a seismic signal, we assume that the seismic wave s(t)
has its propagation vector k laying in the plane where the sensitive arm l2(t) of the interferometer is located,
as shown in Figure 2. Therefore, the arrival of the seismic wave along the plane of the interferometer is sensed
first by the end mirror M2 and then, after a delay time t0, by the mechanical support, hosting the remaining



components of the interferometer (beam splitter BS, mirror M1, etc.). For simplicity, in our model we assume
that the mechanical support is equivalent to a mass located at the beam splitter position.

Of course, due to its structure, the model is symmetric. In fact, the same seismic wave traveling in the
opposite direction will be first sensed by the mechanical support, and then, after the same time delay t0, will be
detected by the end mirror, M2.

Figure 2. Scheme of interferometer response to a seismic wave

Let α be the angle between the wave vector k and the optical axes line l2, L2 the position of the mirror M2,
Lb the position of the mirror M1 respect to the beam splitter, gb(t) the residual noise on the mirror M1, and vs

the wave group velocity of signal s(t), then t0 can be written as:

t0 =
[L2 + g2(t) + s(t)] cos α

vs
(11)

where g2(t) quantifies the residual noise on the mirror M2, filtered by the mechanical transfer function of the
mounting.

For t > t0 the wave front moves both the mirror and the optical lengths become:

l1(t) = Lb + gb(t)
l2(t) = L2 + g2(t) + [(s(t) − ass(t − t0)] cos(α) (12)

where as is the attenuation factor expressing the ratio of the seismic wave amplitude at the second mirror with
respect to the first one (0 ≤ as ≤ 1). In this way the phase changes as

φ(t) =
4πn

λ
[L2 − Lb + g2(t) − gb(t) + (s(t) − ass(t − t0)) cos(α)] (13)

Let ∆L(t) = [L2 − Lb] + g2(t) − gb(t) be the length change in absence of signal, then the relationship in the
Laplace domain between the seismic signal s(t) and the phase is

φ(s) =
4πn

λ

[
∆L(s) + S(s)

(
1 − ase

−t0s
)
cos(α)

]
(14)

The transfer function of the system that links the input seismic signal s(t) with the Michelson phase change φ(s)
can be written as

H(s) =
φ(s)
S(s)

=
4πn

λ

(
1 − ase

−t0s
)
cos(α) (15)



while the transfer function for the noise can be written as

Hn(s) =
φ(s)

∆L(s)
=

4πn

λ
(16)

that shows that the interferometer is fully sensitive to all local micronoise (mechanical, refraction index changes,
etc.).

Let us now analyze the behavior of the interferometer in the limit of short arm-length with respect to the
seismic waves wavelenghts. In this case the delay time t0 becomes small and it is possible to expand e−t0s in
Taylor series as

H(s) =
4π n

λ
cos(α)

(

1 − as

∞∑

k=0

sk

k!
dke−t0s

dsk

∣
∣
∣
∣
t0=0

)

=
4π n

λ
cos(α)

(

(1 − as) + as

∞∑

k=1

sk

k!
dke−t0s

dsk

∣
∣
∣
∣
t0=0

)

(17)

Having assumed a short arm-length interferometer, then we can neglect the terms of the Taylor series with
k > 1 of Taylor series and assume an attenuation factor as = 1. In this way the relation between the input
seismic signal s(t) and the output Michelson phase change φ(t) can be written in the Laplace domain as:

φ(s) =
4πn

λ
cos(α)t0sS(s) (18)

and then in the time domain as

φ(t) =
4πn

λ
cos(α)t0

(

U(t − t0)
ds(t)
dt

)

(19)

This means that, according to the above hypothesis, the phase, φ(t), is proportional, at least at the first order,
to the input signal derivative, and, therefore, to the velocity of the seismic waves. In the following we evaluate
the harmonic response of the interferometer to seismic signals whose wavelengths are much larger than the
interferometer arm-lengths. Using the explicit form of t0, the harmonic response is:

H(jω) =
4πn

λvs(jω)
jω cos2(α) (20)

where vs(jω) is the velocity of seismic wave at angular frequency ω. To show the angular dependence of the
instrument sensitivity, we plotted the sensitivity diagram according to equation 20 (see Figure 3).

In can be easily seen that this diagram has the classical shape of a dipole, in which the maximum sensitivity
is for α = 0 and α = π and the minimum sensitivity is for α = π/2 and α = 3π/2. According to this diagram it is
easy also to conclude that it is possible to build an omni-directional instrument for seismic waves measurement,
by simply using two Michelson interferometers oriented perpendicularly each other.

The only point still to discuss is how to extract the function φ(t) by the measurement of the interferometer
intensity through the output photodiode. For this task it is necessary the inversion of Equation 1 to obtain

φ(t) = cos−1

[

2
I(t) − Imin

Imax − Imin
− 1
]

(21)

Particular care is needed in the application of this formula. In fact, if during the selected time interval the output
intensity of the interferometer reaches its maximum or minimum value, then the Equation 21 is not longer valid
due to the periodicity of the cosine function. Physically, it means that the interferometer is passing from the
working fringe to the next one. The method used to solve this problem is presented in T.R. Judge and P.J.
Bryanston-Cross (1994).9 Therefore, to evaluate the free mirror acceleration with respect to the reference arm,
it is sufficient to numerically derive Equation 19:

a(t) =
d2s(t)
dt2

=
λ

4πnto cos(α)
φ̇(t) (22)



Equation 19 has been approximated using only the first term of the Taylor series expansion of H(s) as shown
in Equation 17, thus introducing then error due to the Taylor series truncation. This error can be quantified
using the formula of the remainder Taylor series:

Rn(t0) =
∫ t0

0

f (n+1)(t)
(t − t0)n

n!
dt

Therefore, if we keep only the first term of the Taylor series, then we make an error equal to

R2 =
∥
∥
∥
∥

3π2f2L4

v4
s

∥
∥
∥
∥ (23)

In Figure 4 the Taylor series truncation error is shown for our prototype (L = 0.2m) as function of the
seismic wave frequency.

2.3 Data Acquisition

As it is well known from the Nyquist theorem, the sampling frequency Fc must be at least twice the maximum
frequency of the output signal of the Michelson Interferometer, I(t). Thus the sampling frequency Fc should be
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Figure 3. Normalized sensitivity diagram for a Michelson interferometer with free mirror in the 0 rad direction.
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higher than φ̇(t)/π, where φ̇(t) is the velocity of the phase. Being the phase given by the equation:

φ(t) =
4πnt0

λ

ds(t)
dt

(24)

and the propagation time is t0 = L/vs, then the instantaneous frequency of I(t) is:

f(t) =
φ̇

2π
=

2nL

λvs

d2s(t)
dt2

(25)

It is also possible to choose the sampling frequency using as requirement the maximum acceleration ap

measured by the instrument. In fact, since the sampling frequency is related to the phase derivative by the
relation:

Fc > 2fmax =
φ̇

π
(26)

hence it is possible to determine the minimum sampling frequency as a function of the instrument parameters:

Fc >
4nL

λvm
ap (27)

where the peak acceleration ap is a calibration parameter and vm is the expected minimum wave velocity.

3. EXPERIMENTAL APPARATUS

The experimental apparatus used as prototype for a laser interferometry based seismic sensor consists mainly
of a Michelson interferometer in air, an accelerometer for comparison, a digital acquisition system to get data
from these instruments and to store them in an electronic archive. A triaxial episensor (model FBA ES-T, from
Kinemetrics c©) is located close to the interferometer to monitor the acceleration in that point. The episensor is
made of three independent accelerometers oriented in the different directions of the space. In this way the probe
can measure the accelerations along the three spatial axis: x, y and z. The user selectable full scale of all the
accelerometers was chosen at ± g/4, where g is the standard gravitational acceleration while the voltage output
level is fixed at 20V . Using an instrument amplifier implemented by us, the acceleration signal is amplifier of
a factor 100. In this configuration the episensor sensitivity is ± 800V/g. The frequency band nominally spans
from DC to 200Hz, while the nominal dynamic range is 155 dB, according to the instrument specifications.

3.1 Optical setup

A scheme of the implemented interferometer test system is shown in Figure 5.

The light beam coming from the laser is sent to a first beam-splitter Bs1. The reflected beam is sent to the
photodiode Ph1 used to monitor the light source power, while the transmitted one is split again by the second
beam-splitter Bs2 and, after the reflection of the two resulting beams on the end mirrors M1 and M −2, is finally
recombined on the interferometer output photodiode Ph2. The arm-lengths of the interferometer are about 20 cm.
An optical isolator, located between the laser and the first beam-splitter, prevents the backscattering of light
toward the laser source. A phase modulator, managed by a lock-in amplifier, is placed along the fixed arm. All
the optical elements of the interferometer are fixed to an optical bench with 30 cm high and 60 cm wide.

3.2 Electronic setup and Data Acquisition

The signals coming from the photodiodes, from the lockin amplifier and from the episensor are collected by
an acquisition system. This is composed by an analog pre-processing board followed by the analog to digital
converter (ADC) board. The analog pre-processing consists in amplifying the signals to fit their amplitude to
the ADC converters dynamic range. All the chain is shown in Figure 6.

The signals are filtered with suitable anti-aliasing filters. In our experiment we use a 16-bit ADCs, so that
we have a dynamic range of 96 dB. The implemented antialiasing filter guarantees that, for sampling frequencies
above the frequency of about 470Hz, the aliasing error is lower that the ADC noise. The filter is an eight order



Chebyschev low pass filter with a band pass ripple of 0.5 dB and a cut-off frequency of 200Hz. Each filter used in
the acquisition system was characterized to ensure that its behavior matches with the one used in the calculated
response. The digital converter consists of a VME board equipped with a 16 bit ADC with 32 channels. The
sampling frequency, Fs, is fixed at 5000Hz for the tests, in order to guarantee very good performances of the
antialiasing filters. According to equation 27, in this configuration the instrument is able to measure a maximum
acceleration of

ap <
λvmFs

4nL
≈ 3.15

m

s2
(28)

for vm ≈ 800m/s, as calculated in the next paragraph.

Figure 5. Optical setup of our prototype (not in scale).

Figure 6. Data Acquisition system.



Actually the phase shift induced by the filtering is not significant for the following analysis, because all signals
are affected by the same shift. The sampling frequency is generated by an internal clock of the ADC board and
the general timing system is simply the CPU clock. This arrangement is very useful during the test phase, but
in order to setup a complete measurement system, a GPS timing board is necessary to provide a precise timing
to perform coincidence with other seismic stations.

The ADC board is managed by a PowerPC CPU based computer board on VME bus, running LynxOS
operating system. The CPU collects the data acquired by the ADC and pack them in frames, each frame 1
second long. These frames are then sent to a workstation through a Fast Ethernet network for the analysis. The
frames are then packed together in groups of defined length and then analyzed in real-time, since the analysis
process does not require high computing power. The processed data are packed again and sent to another
workstation, equipped with a very large hard disk space, for the final storage.

Preliminary tests of data acquisition are being also performed with a prototype of hybrid acquisition and
control system with an on-board communication link designed developed by our group.10 This solution has the
advantage of allowing the collection of data into a control station and the actuation/tuning with a maximum
sampling frequency ranging of fc > 40 kHz with a standard protocol over an Enhanced Parallel Port (EPP).
The goal is to use this system in the next future, replacing the one reported in Figure 6.

4. EXPERIMENTAL RESULTS

In this section we present and discuss the experimental results of the implemented prototype. To reduce the
influence of the acoustic noise, the interferometer has been protected with a cover. Of course, the environmental
effects can be controlled and reduced only by monitoring the pressure and temperature of air.

With reference to Figure 5, it is easy to see that the fluctuations of the interference signal from photodiode
Ph2 can be reduced using the signal from photodiode Ph1. In fact, if there is a change ∆I(t) in the laser power
I(t), then photodiode Ph1 measures the quantity

Ph1(t) = k(I(t) + ∆I(t)) (29)

where k is the fraction of the laser beam separated by the beam splitter (in theory k is 0.5). The photodiode
Ph2 measures the quantity

Ph2(t) =
(1 − k)(I(t) + ∆I(t))

2
[1 + C cos(φ(t))] (30)

where C is the visibility of the fringes. If we evaluate the ratio

Ph2(t)
Ph1(t)

=
(1 − k)

2k
[1 + C cos(φ(t))] (31)

it is easy to see that it is possible to cancel, at least at the first order, the laser power fluctuations ∆I(t).

The first step of the procedure is the quadrature correction to normalize the interferometer signal and the
lockin signal in the range [−1 : 1]. After the phase correction, the phase unwrapping algorithm is applied to
recover the interferometer phase without ambiguity.9 Then the ground acceleration can be evaluated using the
Equation:

ak(t) = ax(t) cos(α) =
d2s(t)
dt2

=
λ

4πnto
φ̇(t) (32)

where ax is the acceleration along the sensitive arm of the interferometer and ak is the seismic wave. The nu-
merical derivative of the phase is evaluated using the central differences algorithms approximating the derivative
as

dφ(t)
dt

≈ φ(n + 1) − φ(n − 1)
2∆t

(33)

In Figure 7 the power spectral density of the acceleration measured by the episensor and by the interferometer
is shown. It is easy to verify the good agreement between the two instruments in the band 0.5 ÷ 100Hz. The
signal at frequency ≈ 17Hz must be yet understood.



10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

Frequency (Hz)

m
 s

−
2  H

z−
1/

2

Episensor
Interferometer

Figure 7. Psd of the acceleration measured by the episensor and by the protected interferometer.

Figure 8. Time evolution of acceleration measured by the episensor and by the interferometer.

The empirical value t0 is evaluated comparing the power spectral density of the acceleration measured by the
episensor and by the interferometer. Considering the interferometer arm-length (L = 0.2m), then the velocity
on the ground of the acoustic waves in our laboratory results about 800m/s. The decreasing of the sensitivity
in the low frequency band is probably due to the laser frequency noise and to the fluctuations of the index of the
refraction. We have to consider also that in the case of a low frequency wave, the wave velocity can be so high
that the sampling frequency may be not enough high to measure the fringe frequency, reducing the sensitivity
at low frequency.

In Figure 8 the time evolution of the acceleration measured by the episensor and by the interferometer is
shown. As it can be seen, the sensitivity of the interferometer is enough to show a particular structure in the



data: in fact the acceleration measured by the interferometer seems composed by separable different signals. A
more accurate analysis is, therefore, necessary to understand the sources of these signals. Note that these signals
are not clearly present in the episensor output, probably due to the high noise level at high frequency.

5. CONCLUSIONS

We demonstrated that a very simple array of two Michelson Interferometers can be used as an effective seismic
sensor, with an output proportional to the velocity of seismic waves. Main limitations of this sensor are environ-
mental parameters like temperature and pressure, whereas the effects of laser intensity changes can be cancelled
at least at the first order. Experimental tests of this technique, using a single Michelson Interferometer, confirm
the theoretical results, allowing interferometric measurements of the ground waves speed that is in good agree-
ment with the measurements provided by a state-of the art commercial accelerometer for seismic applications.
The results obtained are very encouraging, so that we are upgrading the system in order to measure the local
acceleration of the mirrors and beam splitter of the velocimeter using ad hoc designed monolithic accelerometers
for low frequency direct measurement of the seismic noise.11
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