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Abstract—Seismic noise limits Earth based gravitational wave
interferometric detectors at low frequencies. The detection
threshold can be lowered down to a few Hz using a seismic atten-
uation system based on Inverted Pendulum (IP) which sustains
interferometer optical components by means of a chain of pendu-
lums. The IP, acting as a mechanical low pass filter, is able to filter
out seismic noise in the horizontal plane and at the same time it
provides a quasi-inertial stage where the suspension point of the
chain of pendulums lies.
The main degrees of freedom of an IP are three: two transla-

tional modes and one rotational mode. Therefore, to fully deter-
minate its position, three independent sensors are mounted at the
periphery of the IP top table. For the same reason, three inde-
pendent actuators are used to move the IP. The geometrical po-
sition of the sensors is different from actuator positions, in addi-
tion, both of them are not connected to the normal modes of the
IP. Each sensor will be sensitive in all the three IP normal modes
and each actuator will generate movements which are a mix of the
three modes. To take advantage of controlling a Single Input Single
Output (SISO) system instead of aMultiple Input Multiple Output
(MIMO) system, a diagonalization of the actuation and detection
system is needed. An original andmodel independent experimental
procedure for determining the system dynamics, giving an effective
diagonalization has been developed and tested.

Index Terms—Diagonalization, multiple input multiple output
systems, sensor and actuators.

I. INTRODUCTION

T HE model design of a MIMO system is often a difficult
task. For instance a typical problem is related with a

possible disagreement between measured response and the
model estimation, especially in cases where the model depends
on many parameters that cannot be precisely determined by
means of measurements.
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When possible, decoupling multiple input and output chan-
nels into several independent single input and output channels
can be considered a classical procedure in control system de-
sign.
In the following we will consider a procedure to transform a

multivariable mechanical system into a set of single input single
output system. As we will describe, this method was born in the
framework of the control system design in suspended gravita-
tional wave interferometers [1]–[4], but obviously the procedure
can be applied on different physical systems.
Let suppose our system to be linear and stationary. This

means that when we will apply the numerical procedure to
actual physical systems we will restrict our consideration only
where their dynamical range has a linear behavior.
Let us suppose that the system is equipped with sensors

and actuators respectively capable to sense and actuate on the
main normal modes.
The input vector represents the

signals sent to the actuators whereas the output vector
is the signal provided by the sensors.

If the normal modes of the system are not orthogonal to the
sensitivity axis of the sensors, each sensor should be sensitive
to the projections of all normal modes on its axis. In the same
way, each actuator will generate movements that are a mix of
system modes.
Here and in the following, the word diagonalization means

the procedure to obtain a new sensor/actuator space in which
each normal mode is independently sensed. In this virtual space
it will be possible also to actuate on a specific normal mode.
From the mathematical point of view, it should be mentioned

that it is not always possible converting a system from MIMO
to SISO as explained for instance in [5].
To diagonalize the systemmeans to find a suitable linear com-

bination of the sensor outputs (virtual sensors) each sensitive
to a single normal mode. In the same way as virtual actuators
we intend a linear combination of the actuator signals which is
able to excite a single normal mode of the system. Before the
diagonalization we can consider our system a MIMO system.
The diagonalization procedure allows to consider our system as
composed of many SISO systems.
The reason to prefer a SISO system is that a single degree of

freedom system is often much easier to control: each mode is
controlled by means of an independent feedback loop, simpli-
fying the overall loop design.
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As it will be shown, using this method we just require the
system to be linear and stationary with the same number of in-
puts and outputs. This point makes such a procedure very flex-
ible and suitable to be applied in different physical systems.

II. THE SEISMIC ATTENUATION SYSTEM

The purpose of the VIRGO experiment is to detect gravita-
tional waves produced by astrophysical sources in a frequency
range between 10 Hz and some kHz. VIRGO is the unique in-
terferometric detector capable to detect signals below 50 Hz
and one of its main goals is to extend the low frequency de-
tection threshold down to a few Hz (to enlarge the potentially
detectable sources number). In this frequency range, the seismic
noise limits the detector sensitivity. One of the most efficient
Seismic Attenuation System (SAS) for gravitational waves in-
terferometers is a chain of pendulums, suspended from a very
low-frequency stage called Inverted Pendulum [6]. Each optical
component of the interferometer is supported by means of this
particular suspension system. In the Naples VIRGO laboratory
a simplified prototipe of this interferometric detector is avail-
able. Thanks to this small interferometer it will be possible to
develop and test new sensors and new control systems to em-
ploy for the VIRGO interferometer.
The seismic vibrations of the ground are many orders of mag-

nitude greater than the displacements we need to detect.
Measurements of seismic noise at frequencies have

been carried out by many groups [7]–[9]. Above some Hz, the
spectrum of seismic vibrations is well approximated by the em-
pirical expression:

(1)

where is the frequency and is a constant varying in the range
depending on sites.

Considering that the length variation induced by a gravita-
tional wave is less than , with a ground motion ampli-
tude around , the required attenuation factor should be
at least .
For this reason we need a very efficient seismic attenuation

system. The simplest seismic filter we can consider is a simple
pendulum. A pendulum is a harmonic oscillator of natural fre-
quency:

(2)

where is the pendulum length. It acts as a low-passmechanical
filter with the following response:

(3)

being is the quality factor of the pendulum. It is clear that:
• At low frequencies the pendulum is a short circuit
for ground vibrations.

• At high frequencies the ground motion is attenu-
ated.

Fig. 1. Seismic Attenuation System used to test the numerical procedure. The
horizontal seismic attenuation is achieved by means of the inverted pendulum.
The vertical attenuation is performed by means of filters based on linear anti-
spring effect [10].

In order to achieve a suitable attenuation factor, several pen-
dulums are chained. This is the reason why in the VIRGO inter-
ferometer (and in the Naples interferometer too) all the optical
components are suspended by means of a chain of pendulums.
Theoretically, just the seismic oscillation along the interfer-

ometer optical axis should have some practical effect. But in the
real systems, themotion in all the degrees of freedommust be at-
tenuated because of the unavoidable coupling between transla-
tional and rotational components. This means, for instance, that
a vertical displacement (which is ineffective for a plane mirror
interferometer) has effect also along the beam direction; more-
over, cross-couplings between vertical and horizontal (longitu-
dinal) oscillations potentially limit the performance of mechan-
ical isolation systems.
The whole attenuation system is composed by 5 stages (see

Fig. 1). Schematically, we can describe our system in terms of
four elements:
• the pre-isolation stage (the inverted pendulum);
• the vertical filters;
• the chain of pendulums;
• the mirror.
The vertical isolation is achieved, in our system, by means

of Monolithic Geometric Anti-Spring filters (MGAS) (see for
instance [10]). The MGAS, based on linear anti-spring effect,
is a set of radially arranged cantilever springs, mounted from a
common retainer ring structure and opposing to each other via a
central disk. The payload to be isolated (the chain of pendulums)
is connected to the central part.
Such a solution realizes low frequency resonance, typically

about a few hundreds of mHz
In the following we will briefly describe the inverted pen-

dulum and the way to control the mirror.

A. The Inverted Pendulum

The interferometer optical elements (mirrors and beam
splitter) and the chain of pendulums are sustained by means of
a very low frequency stage: the Inverted Pendulum. This stage
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Fig. 2. The inverted pendulum is the element on which is based the horizontal
seismic attenuation system. In a simplified model it can be described as a rigid
massless rod with length and mass , supported by means of a perfectly
elastic element having spring constant .

itself is an oscillator but its resonance frequencies are lower
than the resonance frequencies of the chain of pendulums. The
IP is composed of three flexible joints, each supporting a leg.
At the top, the three legs are connected to a rigid table by means
of small flexures. Such a rigid table is called Filter Zero (F0).
It is a vertical filter which uses blades to suspend the chain of
pendulums.
The IP has a triple function:
• pre-filtering low frequency seismic noise, providing atten-
uation at frequencies of microseismic peak;

• providing a quasi-inertial stage to actively damp the mo-
tion of the suspended chain, avoiding actuation noise re-in-
jection (taking advantage of the passive attenuation be-
tween the IP itself and the test mass);

• providing a mean to allow precision positioning of the
mirror and the chain of pendulums using small forces.

The IP is a three degrees of freedom system. It has two trans-
lational modes and one torsional mode. An inverted pendulum
can be described, in a simplified model, as a rigid massless rod
having length and mass , supported by a perfectly elastic
element having spring constant , as it is shown in Fig. 2.
The motion equation is

(4)

where is the angle between the vertical axis and the rod
whereas I is the IP momentum of inertia with respect to the
suspension point. The term is the torque acting on
mass due to gravity, which tends to pull the rod away from the
vertical position, and is (in the small-angle approxi-
mation). The restoring force from the flexure is . The full
torque acting on the rod is .
In the small angle approximation we can write the (4) as

(5)

where is the effective spring constant acting
as an antispring is able to reduce the overall stiffness.
If the (4) is rewritten in terms of the linear displacement mea-

sured on the top of the IP and introducing the linear stiff-

ness , solving in the frequency domain, we can find the
IP resonance angular frequency , which is given by

(6)

One of the advantage in using an IP is the easy way to con-
trol it. In fact, the force needed to move the IP of the amount

at frequencies lower than the resonant frequency
is something like . Assuming a mass of the order
of 1 ton and a resonant frequency of 30 mHz, only 0.36 N are
required to move the IP top of 1 cm.
As previously mentioned, on the top of the IP there is the

Filter Zero where is placed the suspension point of the chain of
pendulums.
The Filter Zero is actively controlled. The reason to control

actively the system is the following: the attenuation system ele-
ments described until now and the results they are able to obtain
are not sufficient to match the locking requirements. Each ele-
ment provide a passive filtering out. In particular:

. The seismic noise is com-
pletely transmitted to the mirror (because no filter is present). In
the VIRGO case the displacement produced by tidal effects can
be even .

Normal
modes of the attenuation system itself (IP and chain of pendu-
lums elements) are responsible of mirror oscillation that in the
VIRGO case can exceed }
In both cases amplitude oscillation exceeds design limit for

several orders of magnitude (8 in the VIRGO case). The solu-
tion is offered by an active control. This control should not act
directly on the mirror because the amplitude attenuation to per-
form is too expensive (in terms of dynamical range). This is the
reason why the control is realized in a hierarchical way [11] in
different points of the system and each control acting at its com-
petence bandwidth. In our system those points are:
The inverted pendulum. Thanks to its peculiar structure it

is possible obtaining displacement of in the frequency
range without injecting electronic noise.
The intermediate stage. On this element is possible to apply

forces which produce displacement of in the bandwidth
0.1–1 Hz.
The mirror. For forces can be applied directly on

the reference mass which holds the mirror.

III. SENSORS AND ACTUATORS SYSTEM

The framework where the diagonalization idea was born
is the control system development in suspended gravitational
wave interferometers [16], [17] . In particular this procedure
was used on the position control of the Filter Zero. Before to
use the procedure on a complex system, we tested the method
on a simpler system. In the following we will describe the
sensors and actuators system on which the procedure has been
applied.

A. Sensors and Actuators on Simple Pendulum

The preliminary testing bench was a system very similar to
the last stage of the chain of pendulums: a mirror suspended by
means of a simple pendulum.
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Fig. 3. System composed by electrostatic actuators and optical lever used to
additionally test the diagonalization procedure. If the PSDs are placed in the
focal plane of the lens or in the conjugate point of the mirror, they detect only
the tilt or the translation of the mirror respectively. In the experimental setup,
the PSDs were not placed in this configuration, so that each photodiode senses
both tilt and translation.

This experimental setup is used to test electrostatic actua-
tion instead of the magnet coil actuation presently used in the
VIRGO interferometer. Electrostatic actuators (EA) [14] are
promising devices for mirror control in next generation inter-
ferometric gravitational wave detectors.
In the system depicted in Fig. 3 the mirror position is detected

using an optical lever: light from a superluminescent diode is
sent through a single-mode optical fibre to the mirror. The re-
flected beam is detected by means of a position sensing photo-
diode (PSD).
In this case the main degrees of freedom of the mass/mirror

system are: a translational mode and a rotational mode (with re-
spect to the vertical). Electrostatic actuators are used to excite
the mass. The reflected optical beam is split by means of a beam
splitter and a lens is used to perform a preliminary uncoupling
of the two degrees of freedom as described in [13]. Two PSDs
receive the optical signals carrying information on tilt and trans-
lation of the suspended mass/mirror.

B. Sensors and Actuators on the Inverted Pendulum

On the Filter Zero a set of sensors and actuators are mounted.
A triplet of linear variable differential transformer (LVDT)
[12] that are high-precision position sensors is mounted in a tri-
angular configuration at the edge of Filter Zero plate.
Such position transducers have been expressly designed to

this purpose. An LVDT is composed by a primary and two sec-
ondary windings. The moving central coil (the exciter) is driven
by a 20 kHz signal; the two secondary coils, symmetric with re-
spect to the primary, are in series and oppositely wound. A dis-
placement of the exciter induces current changes in the windings
proportional to the displacement amplitude. The signal from
the receiver is amplified, then demodulated in phase and low-
pass filtered. They are low-power, ultra-high-vacuum compat-
ible, non contacting position sensor with nanometer resolution
and centimeter dynamic range.
LVDTs are used to measure the relative motion of the IP with

respect to the ground. For this purpose the exciter is mounted
on the Filter Zero and the secondary coils are connected to an
external frame (mechanically connected to the ground).

The horizontal actuation system is realized by a triplet of
magnet-coil actuators [15]. They are composed by a couple of
coils and a central magnet. The magnet coil is orthogonal to the
coil axis and a current passing through the coil generates a pro-
portional force.
As happens for position sensors, the windings are connected

to the Filter Zero and magnets are placed on the external frame.
Actuators aremounted in a triangular configuration as the LVDT
but, for practical reason, not in the same position.
The sensor and actuator signal are processed by a 16 bit

analog-to-digital converter (ADC) a central processing unit
(CPU) and a 16 bit digital-to-analog converter (DAC). The
CPU handles all sensors and actuators signals and recombines
them using matrices. In this way is possible to create complex
feedback filters with high pole/zero placement precision and
perform calculation with a sampling frequency of 4 kHz.

IV. THE DIAGONALIZATION METHOD

The diagonalization procedure has been conceived to help
the control system design of the Filter Zero position described
previously.
The method described in this section can be used on linear

and stationary systems and is effective in extracting their normal
modes. It is based on the measure of the transfer function matrix
and on the possibility to express it in diagonal form.
To this purpose we will describe the diagonalization method

in a general way. It will be easy to express the terms of the
procedure on a different physical system.
Let consider generic actuators that are able to excite the

system. Their signals are represented by means of the vector
. Moreover let consider detectors signals
that give a measure of the response of the

system.
What we want is to make the system diagonal i.e., write down

the right linear combination of sensor signals to obtain virtual
uncoupled detector signals .
Furthermore, we would like to write down the right linear
combination of real actuator signals to obtain virtual actuators

capable to act on a single
degree of freedom at a time.
In other words the condition we wish to obtain is

As depicted in detail in Fig. 5:
But the starting situation is

where the matrix is composed by the experimental
transfer functions obtained exciting the system by means of
the th real detector and detecting signals using the th real
actuator.
We define the sensing matrix as the matrix which de-

scribes the coupling of the th virtual detector with the th real
detector:
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Fig. 4. Simplified scheme of sensors and actuators system placed on the Filter
Zero (top view). The main eigen modes of the inverted pendulum are two trans-
lational mode and one rotational mode.

Fig. 5. Diagonalization goal: each actuator is able to excite a specific mode
that is detected by means of a specific sensor.

The driving matrix describes the coupling of the th real
actuator with the th virtual actuator and it is defined as

So the overall transfer function of virtual detectors over vir-
tual actuators can be written as follows:

or

where we can identify

(7)

The goal is to estimate the sensing matrix and the driving
matrix from experimental data . The transfer function
matrix is experimentally evaluated exciting with white
noise the system by means of the actuator and detecting the
response of the th sensor . For each exci-
tation we can detect a row of . This means that to fully
determine we need to excite times our system building
the response matrix row by row.
Several approaches have been used for this purpose

[16]–[18]. Our method is very simple in principle: we es-

timate and building the matrix function
which have to be in a diagonal form.
Using a mathematical algorithm, we look for the and

which are able to minimize all off diagonal elements.
This algorithm has been implemented in a Matlab® code

using, as solver, the lsqnonlin library function, designed for non-
linear least-squares minimization [19].
Lsqnonlin manages function whose sum of squares is mini-

mized. In our case, we minimize the function consisting in the
sum of the squared off-diagonal elements where

.
Furthermore we request the transformation matrices to have

some additional condition to avoid to find trivial solution only.
We request the normalization of each row of (such a condition
will preserve also measurement units in the virtual sensors) and
the the normalization of each row of the inverse of (which is
the matrix we want to preserve measurement units). In order to
implement those requirements we have to minimize the quan-
tity:

(8)

where is an arbitrary weight and the second term
corresponds to the required

normalization condition. The reason to insert in the quantity
to minimize (8) is justified because of the extreme unbalancing
in the sum between the terms (whose number is re-
lated to the frequency range considered) and the single term

. We have chosen
equal to the number of measured data in order to balance the
weight between the two terms in the (8).

V. THE DIAGONALIZATION RESULTS

The preliminary tests have been performed on the simple pen-
dulum previously described. In this case the signals we send to
EA are and (we use only two horizontal electrodes
among four available electrodes stripes). Electrostatic actuators
excite the suspended mass and two PSDs detect mirror move-
ments. Exciting one electrode at time using white noise we are
able to measure .
An example of real transfer function is shown in Fig. 7 and

the sensing matrix found is

(9)

At the same time the procedure found the driving matrix:

(10)

Taking into account the previous matrices (9) and (10) it is
possible to build virtual sensor signals and virtual actuator sig-
nals. Applying those results on our system it has been possible
to uncouple the degrees of freedom, as shown in Fig. 8.
Table I reports the upper and lower limits for the elements

of the simple pendulum and matrices corresponding to the
95% confidence level, estimated by using the nlcparci Matlab®
function [20].
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Fig. 6. Matrix definition: is the sensing matrix, is the system transfer
function and is the driving matrix.

Fig. 7. Transfer functions obtained exciting the mirror using the horizontal
electrodes of the EA. In particular the transfer function in the figure is referred
to the right electrode.

Fig. 8. Diagonalized transfer function in the optical lever system. This plot is
the superposition of two different experimental transfer function obtained ex-
citing the system by means of each virtual actuator and detecting by means the
corresponding virtual detector.

After the preliminary tests on a single stage pendulum, the
procedure has been applied on a more complex system: the IP
previously described.
In this case, LVDT are the sensors used to detect the IPmotion

and magnet-coil systems are the actuators. Each sensor should
be sensitive to movements in all three IP normal modes. In the

TABLE I
UPPER AND LOWER LIMITS FOR THE ELEMENTS OF THE SIMPLE PENDULUM
SENSING AND DRIVING MATRICES CORRESPONDING TO THE 95% CONFIDENCE

LEVEL.

Fig. 9. Real LVDT transfer function obtained exciting the system by means
of real actuator (Coil 3). The translational peaks (0.55 Hz and 0.58 Hz) are
quasi-degenerate.

same way, each actuator will generate movements of the IP in-
volving a mix of the three modes. In the following we will call
the IP normal modes , and although they do not corre-
spond necessarily to orthogonal translations and a rotation. If
the system would have been perfectly symmetrical, we would
notice a degeneration in the translational modes. In a real system
the two translational modes are quasi-degenerate.
An example of non diagonalized system is shown in figure

(9). In the same figure it is possible to notice the quasi-degener-
ation in the translational modes.
Using the method described in the previous section, we have

found the LVDT sensing matrix :

and the driving matrix :

The diagonalization results obtained (sensing and driving
matrices) can be experimentally evaluated and compared with
the diagonalization procedure prediction. Such a prediction is
simply obtained combining real actuator and real sensor signals
using driving and sensing matrices. This comparison is shown
in Fig. 10.
Table II reports the upper and lower limits for the elements of

the IP and matrices corresponding to the 95% confidence
level.
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Fig. 10. Transfer function comparison between measurements results and pre-
dicted behavior obtained using diagonalization procedure results (simul in the
label).

TABLE II
UPPER AND LOWER LIMITS FOR THE ELEMENTS OF THE IP SENSING AND
DRIVING MATRICES CORRESPONDING TO THE 95% CONFIDENCE LEVEL.

Analyzing the values in Table I it results that all the errors
affecting the elements of the matrices and are below 1%,
except for and . In the case of Table II, instead, the errors
on the matrix elements are below 5% but for , and .
In particular the value found for this last element is consistent
with zero, and indicates that the actuation along the axis does
not need to use the actuator. This means that the axis results
to be orthogonal to the direction of the force exerted by .
In both cases the effect of the errors affecting the matrix ele-

ments was estimated by computing the following quantity:

(11)

(12)

where the integrals were calculated on the whole frequency
range used to estimate the experimental transfer functions, and
the matrices and are

(13)

(14)

and the , , , matrices are obtained from
the corresponding and matrices, by substituting all their el-
ements by the minimum and maximum values in the respective
confidence interval.

Fig. 11. Comparison of transfer functions as computed with the proce-
dure described in this work and with the procedure described in [16].

The matrices and give a rough estimate of the
deviation induced by the errors on all the elements of . For
both applications all their elements are below 5%; in particular
all the diagonal elements are below 0.5% indicating the low
impact of the errors on the results.
A comparison of the performances of this procedure can be

done only with the sensing matrix as calculated with the pro-
cedure described in [16]. The outcome of the comparison is
shown in Fig. 11 for the virtual sensor when actuation is
performed using the coil. From the figure is clear that our
procedure produce a better uncoupling, since the other transfer
function shows a larger residual structure around the resonance
frequencies of the and degrees of freedom. Other degrees
of freedom behave similarly. More direct comparisons are not
possible since the other procedure requires a second set of mea-
surements to compute the driving matrix.

VI. CONCLUSIONS

In this paper we have examined a numerical procedure to di-
agonalize a MIMO system. Preliminary tests, performed on a
simpler system have been successful. The same procedure has
been extensively used on a more complex mechanical system.
The method developed and previously described offers the ad-
vantage to rely only on direct measurements without requiring
a detailed model of the system. As a consequence of this char-
acteristic, it can be easily adopted in complex system which
presents some difficulties into determining a perfect model to
describe the system response (obviously if degrees of freedom
are not intrinsically entangled).
This point makes such a method very flexible and suitable to

be applied in different physical systems. Especially systems in
which could be difficult to find a correct model to describe them.
But this is not the only advantage showed by this method. In

addition:
• it does not require two distinct steps to obtain sensing and
driving matrices (as usually done in VIRGO, TAMA, etc.);

• it works even with quasi-degenerate systems.
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