PERFORMANCE OF A SCINTILLATING FIBRES

 SEMIPROJECTIVE ELECTROMAGNETIC CALORIMETERM. Bertino, C. Bini, G. De Zorzi, G. Diambrini Palazzi, G. Di Cosimo, A. Di Domenico, F. Garufi, P. Gauzzi and D. Zanello

Dipartimento di Fisica, Universita' "La Sapienza", Roma, and INFN Sezione di Roma, P.le A.Moro 2,00185 Roma, Italy
(Presented by G. De Zorzi)

ABSTRACT
A highly segmented scintillating fibres / lead electromagnetic calorimeter has been tested. Each calorimeter module has semiprojective geometry and is shaped as a wedge with an angle of $(0.82)^{\circ}$. The fibres are however parallel to the wedge axis and the two small lateral regions are not fibre-instrumented. This simple and cheap approach to a projective geometry allows to achieve still good energy and space resolution. Results with electrons in the range $10-100 \mathrm{GeV}$ are presented.

1. The Calorimeter

We have studied a lead-scintillating fibres segmented electromagnetic calorimeter with a semiprojective geometry. The modules have the shape of a truncated pyramid, $ו 1$ such a way that the sides are pointing towards an axis at a distance of 1.43 m . Figure 1.1 shows the geometry of a module.

The main feature of this calorimeter is that the fibres fill only the parallelepiped pant of a module, so that the two small lateral regions are not fibre-instrumented. The purje n of our test has been to verify how much the calorimeter performance, in terms of enelis and space resolution, is affected by the loss of energy deposited in the wedge-shaper regions, which are not sampled.

The calorimeter is segmented in 25 modules, 35 cm long, of $20.5 \times 20.5 \mathrm{~mm}$ (front) and $25.5 \times 20.5 \mathrm{~mm}^{2}$ (back) cross area. The main features of the calorimeter atr summarized in table 1 .

Table 1

Scintillating fibres
Absorber alloy (\% in weight)
Volume ratio fibres: absorber
Average density
Average radiation length
Average Moliere radius
Module cross area
(horizontal x vertical)
Calorimeter total cross area
Calorimeter total length

Kuraray SCSF81, 1 mm diameter
AF17 (52.5\% Bi, $32 \% \mathrm{~Pb}, 15.5 \% \mathrm{Sn})$
$1: 3.17$
$7.1 \mathrm{~g} / \mathrm{cm}^{3}$
1.0 cm
2.3 cm
$20.5 \times 20.5 \mathrm{~mm}^{2}$ (front)
$25.5 \times 20.5 \mathrm{~mm}^{2}$ (back)
$10 \times 10 \mathrm{~cm}^{2}$ (front)
35 cm

2. Test and Results

The test was performed at the CERN-SPS. The calorimeter was placed on a platform movable with respect to the electron beam both in the horizontal and vertical directions. A telescope of two delay wire chambers in front of the calorimeter was used to measure the electron impact point, with a space accuracy of about 0.2 mm . The calorimeter was operated with a tilt angle of 2.5° in both horizontal and vertical directions.
Figure 1 lb shows the detected energy as a function of the electron impact position for three calorimeter modules along horizontal and vertical directions, at an electron energy of 50 GeV . In the x-coordinate there is a systematic difference of about 20% between the measurement of the energy at the centre and the border of the modules, but as the impact point is measured by the calorimeter itself a correction can be applied to the detected
energy. energy

Fig. 1: a) Schematic view of a semiprojective module. The two lateral wedge-shaped regions with (0.41$)^{\circ}$ angular aperture are not filled with scintillating fibres. b) The calorimeter response uniformity in the coordinates of 50 GeV electrons. Energy detected by the calorimeter as a function of the x and y impact through a second module, up to the centre of a performed from the centre of a module (-20 cm) horizontal scan, corresponding to he centre of a third module (20 cm). Two dips are seen in the honzontal scan, corresponding to the two non-instrumented wedge-shaped regions.

The calorimeter response turns out to be linear within 2% in the explored energy range $10-100 \mathrm{GeV}$, as shown in fig. 2 a . The linearity does not depend on the electron impact position on the module.

The energy resolution of E is a linear function of $1 / \sqrt{ }(\mathrm{E}(\mathrm{GeV}))$ as shown in fig. 2 b , but there is some dependence on the impact position (see fig.1b) :
$\sigma / E=(13.9 \pm 0.9) \% / \sqrt{ }(\mathrm{E}(\mathrm{GeV}))+(1.4 \pm 0.2) \%$, at the module centre; $\sigma / \mathrm{E}=(11.0 \pm 1.0) \% / \sqrt{(\mathrm{E}(\mathrm{GeV}))}+(0.6 \pm 0.4) \%$, at the middle of the module x -border; $\sigma / \mathrm{E}=(14.0 \pm 1.0) \% / \sqrt{ }(\mathrm{E}(\mathrm{GeV}))+(2.0 \pm 0.5) \%$, at the middle of the module y -border.

The x-border corresponds to an electron impinging between two modules, where only a fraction of the e.m. shower energy is sampled because the fibres are missing in the wedge-shaped volume. The y-border corresponds to the separation between two modules
with full energy sampling with full energy sampling.

Fig. 2: a) Percentage non-linearity versus energy from 10 to 100 GeV . The horizontal and the vctlu il tilt angles are 2.5° (up); the horizontal tilt angle is 5° (down). b) Energy resolution as a funtion in $1 / \sqrt{ }(\mathrm{E}(\mathrm{GeV}))$. The electron beam hits the module centre (circles), y-border (downward triangles). The horizontal and the vertical tilt angle are 2.5

The energy resolution of this calorimeter is in agreement with the typic.11 erformance of a 'spaghetti calorimeter' [1,2]. The present result is also comparabl: 14 (3] and fully projective [4] 'spaghetti' calonmeter having full fibre instrumented modules.

Moreover it should be noticed that the energy resolution turns out to be slightl) better near the non-instrumented region (i.e. at the x-border) respect to the whol. detector. Although the signal in this region is reduced by 20% with respect to the centi.ll region (see fig. 1b), the signal fluctuation is reduced even more. We do not have a simple explanation for this phenomenon.

Horizontal and vertical scans of the beam were done, in order to explore the calorimeter response, along the x-coordinate and the y-con modules. The electron energy was 25,50 , and 100 GeV .

The (x, y) position is directly measured vy in the modules surrounding the e.m. shower vertex. Tis can ber, a better impact poill of gravity' algorithm but, as usual for segitical algorithms. determination can be achieved by more sophisticated algorihms. We have parametrized the dependence of : 'true' coordinate with the following formula [S]

$$
\begin{equation*}
x_{g}=a+b \arctan \left[c\left(x_{w}+d\right)\right] \tag{1}
\end{equation*}
$$

where: x_{w} is the x -coordinate measured with the chambers; xg_{g} is the x -coordinalc measured with the calorimeter utilizing the simple 'centre of gravity' algorithm; $\mathbf{a}, \mathrm{b}, \mathrm{c}$. and d are four parameters which are determined by fitting the experime. xg) with the function (1). The same formula holds for the y -coordinate.

I'te. 3: a) Comparison between the x-coordinate measured by the beam chambers, and the same "romilinate reconstructed by the calorimeter with a simple 'centre of gravity' algorithm. The 50 GeV Nectron bcam scans 3 calorimeter modules, i.e. from -30 cm to 30 cm . b) The same result is shown with superimposed the fit of equation (1).

Figure 3 a shows the x_{g} coordinate versus the x_{W} coordinate for 50 GeV electrons detceted in the three central modules: the waving behaviour is typical of any modular culorimeter. Figure 3 b shows the x -coordinate data with the fit of equation (1) nuperimposed. The fit is carried on from a module centre to the adjacent module centre. The values of the four fitted parameters do not depend on the electron energy in our encrgy interval.

The parametrization (1) can be inverted as follows:

$$
\begin{equation*}
x_{c}=-d+(1 / c) \tan \left[\left(x_{g}-a\right) / b\right] \tag{2}
\end{equation*}
$$

und applied event by event in order to obtain an unbiased x_{c} coordinate from x_{g}.

The waving behaviour in both horizontal and vertical coordinates is clearly reduced to un almost straight line by applying the equation (2). Figure 4a shows x_{C} (y_{c}) versus x_{W} (y_{w}) at 50 GeV . A small residual waving is still present, but it does not deteriorates the space resolution which is basically determined by the width of the ($\mathrm{x}_{\mathrm{W}}, \mathrm{x}_{\mathrm{C}}$) distribution, und ($\mathrm{y}_{\mathrm{w}}, \mathrm{y}_{c}$) distribution, for the horizontal and the vertical coordinate respectively.

Fig. 4: (a) Scatter plot for 50 Gev electrons, showing the x -coordinate determined by the calorimeter With the algorithm of equation (2) versus the x-coordinate measured by the beam chambers. The centre of a module is at $-20,0$, and 20 cm respectively. Same plot for the y-coordinate. b) Distribution of the difference between the calorimeter reconstructed abscissa (see equation (2)) and the 'true' one at 50 GeV fitting a gaussian function one finds $\sigma_{\mathrm{x}}=0.87 \mathrm{~mm}$. Same plot for the y-coordinate; the gaussian fit gives $\sigma_{y}=0.94 \mathrm{~mm}$.

An example of impact points distribution as a function of the difference ($\mathrm{x}_{\mathrm{W}}-\mathrm{x}_{\mathrm{C}}$) and ($y_{w}-y_{c}$), is given in the fig. 4 b at 50 GeV . The impact point resolution turns out to be slightly dependent on the impact position, as shown in fig. 5 a at 50 GeV for both coordinates.

Fig. 5: a) Impact position resolution in x -coordinate and in y -coordinate, as a function of the impan Fosition x and y respectively. The module centre is at about 0 cm , and its edges at -10 cm and 10 cm , phition x and y respectively. The module centre is at about 0 cm , and its edges at -10 cm and 10 cm
The electron energy is 50 GeV . b) Impact point resolution of the electron slower as a function of iln electron energy for tie horizounal (circles) and the vertical (squares) coordinate respectively. The finear tit electron energy for the horizontal (circles) and the v
in $1 / \sqrt{(E(G e V)})$ gives the result quoted in section 2 .

After all corrections the space resolution is a linear function of $1 / \sqrt{ }(\mathrm{E}(\mathrm{GeV}))$:

$$
\begin{aligned}
& \sigma_{\mathrm{X}}=(1.8 \pm 0.1) \mathrm{mm} / \sqrt{ }(\mathrm{E}(\mathrm{GeV}))+(0.6 \pm 0.1) \mathrm{mm} \\
& \sigma_{\mathrm{y}}=(1.7 \pm 0.1) \mathrm{mm} / \sqrt{ }(\mathrm{E}(\mathrm{GeV}))+(0.7 \pm 0.1) \mathrm{mm}
\end{aligned}
$$

This result is obtained by averaging oover the full module size and is plotted in fig. '小 It is worth noting that the resolution is the same in both x and y coordinates. IIn different energy sampling at the two module borders in the horizontal coordinate docs w. ${ }^{\text {. }}$ affect the impact point reconstruction accuracy of this calorimeter.

The present result should be compared with the resolution obtained with hight segmented [2] and less segmented calorimeters [1,6], and furthermore having diff cor \cdots fibre: lead volume ratio.

3. Conclusions

A simple approach to the design of a segmented semiprojective e. m. calorime 1 c has been carried out. The main feature of this calorimeter is that the wedge-shaped latco.ll region, at both the sides of a module, is not filled with fibres.

The energy and the space resolution have been measured on an electron beam 11.11 energy range from 10 to 100 GeV .

Our results show that both these features are uniform over the whole calorime"' i.e. no worsening effect is found when the electron hits the wedge-shaped regions. III, energy resolution compares with the common values of the so called spagh "" calorimeters: $\sigma / E=14.0 \% / \sqrt{(E(G e V)})+1.5 \%$. The space resolution, in both thw coordinates, is as good as that obtained with highly segmented, but non-projecll.. fibres/lead calorimeters: $\sigma=1.7 \mathrm{~mm} / \sqrt{ }(\mathrm{E}(\mathrm{GeV}))+0.6 \mathrm{~mm}$.

4. Acknowledgements

We warmly thank R. De Salvo for many discussions and for helping us in the preparation of the test.

5. References

[1] R. Wigmans, Nucl. Instr. and Meth. A 315 (1992) 299
[2] A. Asmone et al., Nucl. Instr. and Meth. A 326 (1993) 477.
(1) B. Bencheikh et al., Nucl. Instr. and Meth. A 315 (1992)354
[4] J. Badier et al., CERN-PPE/93-20 (1993).
5] D. Acosta et al., Nucl. Instr. and Meth. A 305 (1991) 55
6] S. Dagoret et al., CERN-PPE/93-147 (1993).

