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Relativisti orbits with gravitomagneti orretionsS. Capozziello1, M. De Laurentis1,2, F. Garu�1, and L. Milano1

1Dipartimento di Sienze �sihe, Università di Napoli � Federio II� and INFN Sez. di Napoli,Compl. Univ. di Monte S. Angelo, Edi�io G, Via Cinthia, I-80126, Napoli, Italy
2Dipartimento di Fisia, Politenio di Torino and INFN Sez. di Torino,Corso Dua degli Abruzzi 24, I-10129 Torino, Italy(Dated: Deember 21, 2008)Corretions to the relativisti orbits are studied onsidering higher order approximations induedby gravitomagneti e�ets. We disuss in details how suh orretions ome out taking into aount"magneti" omponents in the weak �eld limit of gravitational �eld and then the theory of orbitsis developed starting from the Newtonian one, the lowest order in the approximation. Finally,the orbital struture and the stability onditions are disussed giving numerial examples. Besidethe standard periastron orretions of General Relativity, a new nutation e�et is due to the c−3orretions. The transition to a haoti behavior stritly depends on the initial onditions. Theorbital phase spae portrait is disussed.Keywords: theory of orbits; gravitomagneti e�ets; stability theory.I. INTRODUCTIONThe analogy between the lassial Newton and Coulomb laws led to investigate if masses in motion, onsidered asharges, ould give rise to a "gravitational" magneti �eld.In fat, the magneti �eld is produed by the motion of eletri-harge, i.e. the eletri urrent. The analogyonsists of the fat that a mass-energy urrent an produe what is alled "gravitomagneti" �eld.The pioneering approah to the problem is due to Maxwell himself whih, in one of his fundamental works oneletromagnetism, turned his attention on the possibility to formulate the theory of gravitation in a form orrespondingto the eletromagneti equations [1℄. However, he was puzzled by the problem of the energy of the gravitational�eld, i.e. the meaning and the origin of the negative energy due to the mutual attration of material bodies. Infat, aording to him, the energy of a given �eld had to be "essentially positive", but this is not the ase for thegravitational �eld. To balane this negative energy, a great amount of positive energy is required, in the form ofenergy of the spae (a sort of bak-reation). But, sine he was unable to understand how this ould be, he did notproeed further along this line of thinking sine the problem an be addressed and solved only in the framework ofGeneral Relativity.Later, Holzmuller [2℄ and Tisserand [3℄ proposed to modify the Newton law introduing, in the radial omponentof the fore, a term depending on the relative veloity of the two attrating partiles (see also [4, 5℄). Also Heaviside[6, 7℄ investigated the analogy between gravitation and eletromagnetism onsidering the propagation of gravitationalenergy in terms of a sort of gravito - eletromagneti Poynting vetor: however, also in this ase, he failed to framethe problem of gravitational energy in a self-onsistent sheme.Finally, the formal analogy between eletromagneti and gravitational �elds was explored by Einstein [8℄, in theframework of General Relativity, and then by Thirring [9℄. This author pointed out that the geodesi equation an bewritten as a Lorentz fore splitting the gravitational �eld in gravito-eletri and gravito-magneti omponents. The�nal result of these studies was that any theory whih ombines Newtonian gravity together with Lorentz invarianein a onsistent way, has to inlude a gravitomagneti �eld, whih is generated by the mass-energy urrent. This isthe ase, of ourse, of General Relativity: it was shown by Lense and Thirring [10℄, that a rotating mass generatesa gravitomagneti �eld, whih in turn, auses the preession of planetary orbits. To be more preise, H. P�ster hasreently shown that it would be better to speak about an Einstein - Lense - Thirring e�et [11℄.It is interesting to notie that also Lodge and Larmor, at the end of the nineteenth entury, disussed the e�ets offrame dragging on a non-rotating interferometer [12℄, but within the framework of an aether-theoretial model. Thisframe dragging orresponded, in fat, to the Lense-Thirring e�et of General Relativity. However, at the beginningof the XX entury, when Lense and Thirring published their papers, the e�et named after them, whih is indeedvery small in the terrestrial environment, was far from being detetable, beause of the tehnial di�ulties andlimitations of the time. Contemporary improvements in tehnology have made possible to propose new ideas to revealthe Lense-Thirring preession by analyzing the data-sets on the orbits of Earth satellites (see e.g. [13℄ where, for the�rst time, the use of LAGEOS satellite was proposed). Several proposals have been reently published to measurethe Lense-Thirring e�et by natural and arti�ial bodies in some Solar System senarios. For example, in [14℄, the
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2Sun with Venus is onsidered. Mars with MGS spaeraft is disussed in [15℄, while Jupiter with the Galilean moons(whih is the original idea by Lense and Thirring) is studied in [16℄. Regarding the Earth with the existing LAGEOSand LAGEOSII satellites, reent results are reported in [17℄, while for the approved experiment LARES the expetedforthoming measurement are disussed in [18℄.On the other hand, the experiment Gravity Probe-B [19℄ has been devoted to another gravitomagneti e�et dueto Earth's rotation, i.e. the Pugh-Shi� e�et onsisting of the preessions of the spins of four gyrosopes arriedonboard the spaeraft [20, 21℄. This experiment has deteted the e�et and its magnitude in the gravitational �eld ofthe Earth [22℄. The originally expeted auray was 1% or better, but it is still unlear if it will be �nally obtainedbeause of unexpeted systemati e�ets arisen in the data analysis. Other experiments (like GP-C [23, 24, 25℄) havebeen proposed to reveal the spae-time struture, whih is a�eted by gravitomagnetism, for example evidening loke�ets around a spinning massive objet. In partiular, onerning the so-alled gravitomagneti lok e�et, we haveto stress that its most investigated form onsists of the di�erene between the orbital periods of two ounter-rotatingsatellites.Reently, gravitomagneti e�ets have been onsidered also in the framework of gravitational lensing. By usingthe Fermat priniple and the standard theory of gravitational lensing, the gravitomagneti orretions to the timedelay funtion and the de�etion angle for a geometrially thin lens an be derived. Suh orretions an indueobservational e�ets both in point-like [26℄ and in extended gravitational lenses (as the isothermal sphere and the diskof spiral galaxies [27, 28℄. Other researhes onerning the gravitomagneti e�ets on time delay and light de�etionhave been pursued. In [29℄, the gravitomagneti e�ets in the propagation of eletromagneti waves in variablegravitational �elds of arbitrary-moving and spinning bodies have been studied, while, in [30, 31, 32℄, the gravitationallensing due to stars with angular momentum, and then induing gravitomagneti e�ets, have been onsidered.Finally, the analogy between general relativity and eletromagnetism suggests that there is also a galvano-gravitomagneti e�et, whih is the gravitational analog of the Hall e�et. This e�et takes plae when a urrentarrying ondutor is plaed in a gravitomagneti �eld and the ondution eletrons moving inside the ondutor arede�eted transversally with respet to the urrent �ow. Suh a galvano-gravitomagneti e�et, onsidering urrentarrying ondutors, ould be used for deteting the gravitomagneti �eld of the Earth. A disussion of the e�et andits measurability is in [33, 34, 35℄.In this paper, we want to study how the relativisti theory of orbits for massive point-like objets is a�eted bygravitomagneti orretions. In other words, we want to onsider the orbital e�ets of higher-order terms in v/c andthis is the main di�erene with respet to the standard gravitomagneti e�et so far onsidered. In this ase, theproblem of gravitomagneti vetor potential entering into the o�-diagonal omponents g0l of the metri gµν an begreatly simpli�ed and the orretions an be seen as further powers in the expansion in c−1 (up to c−3). Nevertheless,the e�ets on the orbit behavior are interesting and involve not only the preession at peri-astron but also nutationorretions as we will show below. This means that it ould be misleading to neglet suh e�ets when the weak�eld approximation is not so weak, as in the ase of point-like ompat objets moving in a tight-binding regimeor spiralizing eah other as in the ase of evolved binary systems onstituted by blak holes and/or neutron stars.A study in this sense is in [36℄ where the possibility of measuring the Lense-Thirring e�et with the double pulsarJ0737-3039A is disussed.In partiular, we an study the evolution of ompat binary systems in the extreme mass ratio limit, i.e. themass of the moving partile is m and the mass that produes the gravitational �eld is M , so that m ≪ M . Thisonstraint is satis�ed by several real systems. For example, there has been gathering evidene suggesting the existeneof supermassive blak hole with masses in the ranges 106÷ 109M⊙) in galati nulei [37, 38℄. One expets that smallompat objets (1 ÷ 10M⊙) from the surrounding stellar population will be aptured by these blak holes followingmany-body sattering interations at a relatively high rate [39, 40℄.Our approah suggests that, in the weak �eld approximation, when onsidering higher order orretions in themotion equations, the gravitomagneti e�ets an be partiularly signi�ant, also in a rough approximation, givingrise also to haoti behaviors in the transient regime dividing stable from unstable orbits. Generally, suh ontributionsare disarded sine they are assumed too small but they have to be taken into aount as soon as the v/c is not sosmall.Se.II is devoted to the disussion of the gravitomagneti orretions whih have to be onsidered when relevantmass-energy urrent e�ets are presented in a given problem. The geodesis, and then their spatial omponents, thetrajetories, are orreted by suh terms. We derive the Christo�el symbols with gravitomagneti orretions and thevetor form of geodesis. In partiular, the metri "gravitomagnetially" orreted is ahieved and the onditions inwhih the vetor potential V l an be substituted with its point-like ounterpart Φvl/c where Φ is the stati Newtonpotential and vl the veloity of the test-partile m moving around the generator of the gravitational �eld M .In Se. III, the theory of orbits is disussed. We review the Newtonian and the relativisti theory onsidering, inpartiular, the role of relativisti orretions [43, 44℄. In Se.IV, after onstruting an e�etive Lagrangian omingfrom the line element with the gravitomagneti e�et, we derive the equations of motion. Numerial results for orbits



3and their phase-spae portrait are presented in Se.V. Disussion and onlusions are drawn in Se.VI.II. GRAVITOMAGNETIC EFFECTSBefore treating the theory of the orbits with the gravitomagneti e�ets, let us get some insight into gravitomag-netism and show how to derive the orreted metri. A reent book onerning both theoretial and experimentalaspets of gravitomagnetism is [41℄, while the Lense-Thirring e�et is disussed in [42℄.A remark is in order at this point: any theory ombining, in a onsistent way, Newtonian gravity together withLorentz invariane has to inlude a gravitomagneti �eld generated by the mass-energy urrents. This is the ase, ofourse, of General Relativity: it was shown by Lense and Thirring [10, 46, 47, 48, 49℄, that a rotating mass generatesa gravitomagneti �eld, whih, in turn, auses a preession of planetary orbits. In the framework of the linearizedweak-�eld and slow-motion approximation of General Relativity, the ensemble of the so-alled gravitomagneti e�etsare indued by the o�-diagonal omponents of the spae-time metri tensor whih are proportional to the omponentsof the matter-energy urrent density of the soure. It is possible to take into aount two types of mass-energy urrentsin gravity. The former is indued by the matter soure rotation around its enter of mass: it generates the intrinsigravitomagneti �eld whih is losely related to the angular momentum (spin) of the rotating body. The latter is dueto the translational motion of the soure: it is responsible of the extrinsi gravitomagneti �eld. This onept hasbeen disussed in Refs.[50, 51℄. Then, starting from the Einstein �eld equations in the weak �eld approximation oneobtain the gravitoeletromagneti equations and then the orretions in the metri. Let us start from the weak �eldapproximation of the gravitational �eld1
gµν(x) = ηµν + hµν(x), |hµν(x)| << 1. (1)where ηµν is the Minkowski metri tensor and |hµν(x)| << 1 is a small deviation from it [52℄.The stress-energy tensor for perfet - �uid matter is given by

T µν =
(

p + ρc2
)

uµuν − pgµν (2)whih, in the weak �eld approximation p ≪ ρc2, is
T 00 ≃ ρc2, T 0j ≃ ρcvj , T ij ≃ ρvivj . (3)From the Einstein �eld equations Gµν = (8πG/c4)Tµν , one �nds

▽2 h00 =
8πG

c2
ρ , (4)

▽2 hij =
8πG

c2
δijρ , (5)

▽2 h0j = −
16πG

c2
δjlρvl , (6)where ▽2 is the standard Laplaian operator de�ned on the �at spaetime. To ahieve Eqs. (4)-(6), the harmoniondition

gµνΓα
µν = 0 , (7)1 Notation: latin indies run from 1 to 3, while greek indies run from 0 to 3; the �at spaetime metri tensor is ηµν = diag(1,−1,−1,−1).



4has been used.By integrating Eqs. (4)-(6), one obtains
h00 = −

2Φ

c2
, (8)

hij = −
2Φ

c2
δij , (9)

h0j =
4

c3
δjlV

l . (10)The metri is determined by the gravitational Newtonian potential
Φ(x) = −G

∫

ρ

|x − x′|
d3x′ , (11)and by the vetor potential V l,

V l = −G

∫

ρvl

|x − x′|
d3x′ . (12)given by the matter urrent density ρvl of the moving bodies. This last potential gives rise to the gravitomagnetiorretions.From Eqs(1) and (8)-(12), the metri tensor in terms of Newton and gravitomagneti potentials is

ds2 =

(

1 +
2Φ

c2

)

c2dt2 −
8δljV

l

c3
cdtdxj −

(

1 −
2Φ

c2

)

δljdxidxj . (13)From Eq.(13) it is possible to onstrut a variational priniple from whih the geodesi equation follows. Then wean derive the orbital equations. As standard, we have
ẍα + Γα

µν ẋµẋν = 0 , (14)where the dot indiates the di�erentiation with respet to the a�ne parameter. In order to put in evidene the grav-itomagneti ontributions, let us expliitly alulate the Christo�el symbols at lower orders. By some straightforwardalulations, one gets
Γ0

00 = 0
Γ0

0j = 1

c2

∂Φ

∂xj

Γ0
ij = − 2

c3

(

∂V i

∂xj + ∂V j

∂xi

)

Γk
00 = 1

c2

∂Φ

∂xk

Γk
0j = 2

c3

(

∂V k

∂xj − ∂V j

∂xk

)

Γk
ij = − 1

c2

(

∂Φ

∂xj δk
i + ∂Φ

∂xi δ
k
j − ∂Φ

∂xk δij

)

(15)In the approximation whih we are going to onsider, we are retaining terms up to the orders Φ/c2 and V j/c3.It is important to point out that we are disarding terms like (Φ/c4)∂Φ/∂xk, (V j/c5)∂Φ/∂xk, (Φ/c5)∂V k/∂xj ,
(V k/c6)∂V j/∂xi and of higher orders. Our aim is to show that, in several ases like in tight binary stars, it is notorret to disard higher order terms in v/c sine physially interesting e�ets ould ome out.The geodesi equations up to c−3 orretions are then

c2
d2t

dσ2
+

2

c2

∂Φ

∂xj
c

dt

dσ

dxj

dσ
−

2

c3

(

δim

∂V m

∂xj
+ δjm

∂V m

∂xi

)

dxi

dσ

dxj

dσ
= 0 , (16)



5for the time omponent, and
d2xk

dσ2
+

1

c2

∂Φ

∂xj

(

c
dt

dσ

)2

+
1

c2

∂Φ

∂xk
δij

dxi

dσ

dxj

dσ
(17)

−
2

c2

∂Φ

∂xl

dxl

dσ

dxk

dσ
+

4

c3

(

∂V k

∂xj
− δjm

∂V m

∂xk

)

c
dt

dσ

dxi

dσ
= 0 ,for the spatial omponents.In the ase of a null-geodesi, it is ds2 = dσ2 = 0. Eq. (13) gives, up to the order c−3,

cdt =
4V l

c3
dxl +

(

1 −
2Φ

c2

)

dleuclid , (18)where dl2euclid = δijdxidxj is the Eulidean length interval. Squaring Eq.(18) and keeping terms up to order c−3,one �nds
c2dt2 =

(

1 −
4Φ

c2

)

dl2euclid +
8V l

c3
dxldleuclid . (19)Inserting Eq.(19) into Eq.(17), one gets, for the spatial omponents,

d2xk

dσ2
+

2

c2

∂Φ

∂xk

(

dleuclid

dσ

)2

−
2

c2

∂Φ

∂xl

dxl

dσ

dxk

dσ
+

4

c3

(

∂V k

∂xj
− δjm

∂V m

∂xk

)

dleuclid

dσ

dxj

dσ
= 0 . (20)Suh an equation an be seen as a di�erential equation for dxk/dσ whih is the tangent 3-vetor to the trajetory.On the other hand, Eq.(20) an be expressed in terms of leuclid onsidered as a parameter. In fat, for null geodesisand taking into aount the lowest order in v/c, dσ is proportional to dleuclid. From Eq.(16) multiplied for (

1 +
2

c2
Φ

),we have
d

dσ

(

dt

dσ
+

2

c2
Φ

dt

dσ
−

4

c4
δimV m dxi

dσ

)

= 0 , (21)and then
dt

dσ

(

1 +
2

c2
Φ

)

−
4

c4
δimV m dxi

dσ
= 1 , (22)where, as standard, we have de�ned the a�ne parameter so that the integration onstant is equal to 1 [52℄. SubstitutingEq.(18) into Eq.(22), at lowest order in v/c, we �nd

dleuclid

cdσ
= 1 . (23)In the weak �eld regime, the spatial 3-vetor, tangent to a given trajetory, an be expressed as

dxk

dσ
=

cdxk

dleuclid

. (24)By de�ning
ek =

dxk

dleuclid

, (25)Eq.(20) beomes
dek

dleuclid

+
2

c2

∂Φ

∂xk
−

2

c2

∂Φ

∂xl
elek +

4

c3

(

∂V k

∂xj
− δjm

∂V m

∂xk

)

ej = 0 , (26)



6whih an be expressed in a vetor form as
de

dleuclid

= −
2

c2
[∇Φ − e(e · ∇Φ)] +

4

c3
[e ∧ (∇ ∧ V)] . (27)The gravitomagneti term is the seond one in Eq.(27) and it is usually disarded sine onsidered not relevant. Thisis not true if v/c is quite large as in the ases of tight binary systems or point masses approahing to blak holes.Our task is now to ahieve expliitly the trajetories, in partiular the orbits, orreted by suh e�ets.III. THEORY OF ORBITSOrbits with gravitomagneti e�ets an be obtained starting from the lassial Newtonian theory and then orretingit by suessive relativisti terms. Here we give, for the sake of ompleteness, a quik review of lassial and relativistitheory of orbits showing how gravitomagneti e�ets are the further orretions to be taken into aount. A detaileddisussion of lassial and relativisti theory of orbits an be found in [53, 54℄.A. The Newtonian theoryThe motion of a test partile in a spherially symmetri Newtonian gravitational �eld, an be ahieved startingfrom a variational priniple where the Lagrangian is

L =
1

2
v2 +

GM

r
(28)where the partile mass has been assumed unitary. The veloity, in spherial oordinates, is

v2 = ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2 . (29)Here the dot denotes the ordinary derivatives with respet to the time. The Euler-Lagrange equations are easilyderived. For θ- omponent, we have
d

dt

(

r2θ̇
)

= r2 sin θ cos θϕ̇2 , (30)where an obvious solution is θ = π/2; in fat the motion is plane and the variable θ annot be taken in onsiderationany more. The equation
d

dt

(

r2ϕ̇
)

= 0 , (31)gives
r2ϕ̇ = const = H , (32)whih is nothing else but the onservation of the angular momentum. Finally, we have
r̈ = rϕ̇2 −

GM

r2
. (33)It is onvenient to introdue the new variable

u(ϕ) =
1

r
(34)



7Being
u′ =

du

dϕ
, (35)and using Eq.(34) and Eq.(32), it results

ṙ = −
1

u

du

dt
= −r2

du

dϕ

dϕ

dt
= −r2ϕ̇u′ = −Hu′. (36)From this equation, one gets

r̈ = −H
d

dt

(

du

dϕ

)

= −H
dϕ

dt

d

dϕ

(

du

dϕ

)

= −Hϕ̇u′′ = −
H2

r2
u′′ = −H2u2u′′ (37)and then Eq.(33) is

u′′ + u =
GM

H2
(38)where the trivial solution u = 0 (r = ∞) is disarded. The solution of Eq.(38) is

u =
GM

H2
+ B cos(ϕ − ϕ0), (39)and then, imposing ϕ0 = 0, one gets the orbits in polar oordinates

r(ϕ) =
k

1 + e cosϕ
. (40)Here k =

GM

H2
and e is the elliptiity whose value an give ellipti, hyperboli and paraboli orbits [55℄. Summarizingthe solution for θ gives the planar motion, the solution for ϕ gives the angular momentum onservation, while thesolution for r gives the orbits. B. The relativisti theoryThe relativisti ase an be seen as a orretion to the Newtonian theory of orbits. As before, we an start from aLagrangian whih an be dedued from the Shwarzshild line element, that is

L = eν
(

ẋ0
)2

− eλ (ṙ)
2
− r2

(

θ̇2 + sin2 θϕ̇2

)

. (41)The Euler-Lagrange equation for θ is
d

ds

(

r2θ̇
)

= r2 sin θ cos θϕ̇2. (42)In analogy with Eq. (30) (the two equations di�er for ds in plae of dt), the solution of this equation is θ = π/2;again, as in the lassial ase, the motion is plane and θ disappears as dynamial variable. The equations for x0 = ctand x3 = ϕ admit two �rst integrals of motion sine the Lagrangian does not depend on x0 and on x3 but only ontheir derivatives. We have
(

1 −
Rs

r

)

ẋ0 = l, r2ϕ̇ = h, (43)



8orresponding to the �rst integrals of energy and angular momentum. Rs is the Shwarzshild radius. For
x1 = r we an use the de�nition L = gµν ẋµẋν = 1 instead of the orresponding seond order equation. Being
eν = e−λ =

(

1 −
Rs

r

), we have
L =

(

1 −
Rs

r

)

(

ẋ0
)2

−
(ṙ)

2

(

1 − Rs

r

) − r2

(

θ̇2 + sin2 θϕ̇2

)

= 1. (44)Replaing Eq. (43) and onsidering θ = π/2, we have
l2 − ṙ2 −

h2

r2

(

1 −
Rs

r

)

=

(

1 −
Rs

r

)

. (45)As in the Newtonian ase, using the variable given by Eq.(34) and using the seond of Eqs.(43), it is
ṙ = −hu′ . (46)Inserting Eq.(46) and Eq.(34) in Eq.(45), we get

l2 − h2u′ − h2u2 (1 − Rsu) = (1 − Rsu) . (47)This equation gives, by a quadrature, the solution u = u(ϕ) with the periastron preession but, in order to omparethe result with the Newtonian ase, we an derive Eq.(47) onsidering that r̈ = −hu2u′′. One obtains
u′′ + u =

RS

2h2
+

3

2
RSu2 (48)This equation an be easily ompared with the orresponding Newtonian ase (38) sine

h ≃ r2
1

c
ϕ̇ =

H

c
. (49)Being RS =

2GM

c2
, it follows that

RS

2h2
≃

(

GM

c2

) (

c2

H2

)

=

(

GM

c2

)

. (50)This means that the relativisti orretion to the test partile motion is due to the seond member of (48). Suh aterm is small is small if ompared to the other. In fat, using (49) we have
3

2
RSu2

RS

2h2

= 3h2u2 ≃
3H2

r2c2
= 3

(v

c

)2

, (51)so we an use a perturbation approah to deal with it. As said, suh a relativisti orretion is responsible for theperihelion preession. However, in strong �eld and high relative veloity regime, suh term has relevant e�ets.C. Relativisti orretions due to gravitomagneti e�etsStarting from the above onsiderations, we an see how gravitomagneti orretions a�et the problem or orbits.Essentially, they at as a further v/c orretion leading to take into aount terms up to c−3, as shown in Se.II.Let us start from the line element (13) whih an be written in spherial oordinates. Here we assume the motionof point-like bodies and then we an work in the simpli�ed hypothesis Φ = −
GM

r
and V l = Φvl. It is



9
ds2 =

(

1 +
2Φ

c2

)

cdt2 −

(

1 −
2Φ

c2

)

[

dr2 + r2dθ2 + r2 sin2 θdϕ2
]

−
8Φ

c3
cdt {[cos θ + sin θ (cosϕ + sin ϕ)] dr

+ [cos θ (cosϕ + sinϕ) − sin θ] rdθ + [sin θ (cosϕ − sin ϕ)] rdϕ} .As in the Newtonian and relativisti ases, from the line element (52), we an onstrut the Lagrangian
L =

(

1 +
2Φ

c2

)

ṫ2 −

(

1 −
2Φ

c2

)

[

ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

]

−
8Φṫ

c3
{[cos θ + sin θ (cosϕ + sin ϕ)] ṙ

+ [cos θ (cosϕ + sin ϕ) − sin θ] rθ̇ + [sin θ (cosϕ − sin ϕ)] rϕ̇
}

. (52)Using the relations (43) and being, as above, L = 1, one an multiply both members for (

1 +
2Φ

c2

). In the planarmotion ondition θ = π/2 , we obtain
l2 −

(

1 +
2Φ

c2

) (

1 −
2Φ

c2

) (

ṙ2 +
h2

r2

)

−
8Φl

c3
[(cosϕ + sinϕ) ṙ − (cosϕ − sin ϕ) ϕ̇] =

(

1 +
2Φ

c2

)

, (53)and then, being 2Φ

c2
= −

Rs

r
and u =

1

r
it is

l2 − h2
(

1 − R2

su
2
) (

u′2 + u2
)

+
4RSul

c

[

(cosϕ + sin ϕ)u′ + (cosϕ − sin ϕ) u2
]

= (1 − RSu) . (54)By deriving suh an equation, it is easy to show that, if the relativisti and gravitomagneti terms are disarded, theNewtonian theory is reovered, being
u′′ + u =

Rs

2h2
. (55)This result probes the self-onsisteny of the problem. However, it is nothing else but a partiular ase sine we haveassumed the planar motion. This planarity ondition does not hold in general if gravitomagneti orretions are takeninto aount. IV. ORBITS WITH GRAVITOMAGNETIC EFFECTSFrom the above Lagrangian (52), it is straightforward to derive the equations of motion

r̈ =
1

cr (rc2 + 2GM)

[

c
(

rc2 + GM
)

(

θ̇2 + sin2 θφ̇2

)

r2 (56)
−4GMṫ

(

(cos θ(cos φ + sin φ) − sin θ)θ̇ + sin θ(cosφ − sin φ)φ̇
)

r + cGMṙ2 − cGMṫ2
]

,

φ̈ = −
2

(

c cot θ
(

rc2 + 2GM
)

θ̇φ̇r2 + ṙ
(

2GM csc θ(sin φ − cosφ)ṫ + cr
(

rc2 + GM
)

φ̇
))

r2 (rc3 + 2GMc)
, (57)

θ̈ =
c cos θr2

(

rc2 + 2GM
)

sin θφ̇2 + ṙ
(

4GM(cos θ(cos φ + sin φ) − sin θ)ṫ − 2cr
(

rc2 + GM
)

θ̇
)

r2 (rc3 + 2GMc)
, (58)orresponding to the spatial omponents of the geodesi Eq. (20). Due to the numerial alulations whih we aregoing to perform below, we onsider the expliit form of the equations of motion. We have not onsidered the timeomponent ẗ sine it is not neessary for the disussion of orbital motion.



10As remarked above, from L = 1 the �rst integral ṙ is ahieved. It is:
ṙ =

1

r2c6 + 4G2M2
(

−c2 + 4 sin 2θ(cosφ + sinφ) + 4 sin2 θ sin 2φ + 4
) ±

[

r
(

64G4M4r

(

(2 cos 2θ(cosφ + sin φ) + sin 2θ sin 2φ)θ̇ +
(

2 cos 2φ sin2 θ + sin 2θ(cosφ − sin φ)
)

φ̇
)2

+

−
(

r2c6 + 4G2M2
(

− c2 + 4 sin 2θ(cosφ + sin φ) + 4 sin2 θ sin 2φ + 4
)

)(

r3
(

θ̇2 + sin2 θφ̇2
)

c6 − 4GMc4 +

−r
(

(

E
2 − 2)c6 + 4G2M2

(

(

c2 + 4 sin 2θ(cosφ + sin φ) − 4 cos2 θ sin 2φ − 4
)

θ̇2 − 8 sin θ(cos φ − sin φ)
(

cos θ(cos φ + sin φ − sin θ)φ̇θ̇ + sin2 θ
(

c2 + 4 sin 2φ − 4
)

φ̇2)
)

))

− 8G2M2r
(

(2 cos 2θ(cosφ + sin φ) +

sin 2θ sin 2φ)θ̇ +
(

2 cos 2φ sin2 θ + sin 2θ(cosφ − sin φ)
)

φ̇
)

]
1

2

, (59)whih is the natural onstrain equation related to the energy. The double sign omes out from the quadrati form ofthe Lagrangian. For our purpose, the positive sign an be retained.In the following alulations, we adopt geometrized units. Our aim is to study how gravitomagneti e�ets modifythe orbital shapes and what are the parameters determining the stability of the problem. As we will see, the energyand the mass, essentially, determine the stability. Beside the standard periastron preession of General Relativity, anutation e�et is genuinely indued by gravitomagnetism and stability greatly depends on it. A fundamental issuefor this study is to ahieve the orbital phase spae portrait.V. NUMERICAL RESULTSThe solution of the above system of di�erential equations presents some di�ulties sine the equations are sti� andtheir numerial solutions an diverge in several test points. Some numerial algorithms allow to hange dynamiallythe meshing in order to derease the mesh size near the ritial points.For our purposes, we have found solutions by using the so alled Sti�ness Swithing Method to provide an automatitool of swithing between a non-sti� and a sti� solver oupled with a more onventional expliit Runge-Kutta methodfor the non-sti� part of our di�erential equations.We have used for the omputation the 6th version of Wolfram Software Mathematia pakage [56℄. The sti�ness ofthe di�erential equations is evident from Fig. 1, where the �rst and seond derivative of r, plotted with respet to t,show steep peaks orresponding to the points where the radial veloity hanges its sign abruptly. We show the timeseries of both ṙ(t) and r(t) together with the phase portrait ṙ = f(r) and r̈(t), assuming given initial values for theangular preession and nutation veloities (see also Fig. 5. In Fig.1, the results for a given value of nutation angularveloity with a time span of 10000 steps is shown. It is interesting to see that, by inreasing the initial nutationangular veloity, being �xed all the other initial onditions, we get urves with dereasing frequenies for ṙ(t) and
r̈(t). This fat is relevant to have an insight on the orbital motion stability (see Fig.4). We have taken into aountthe e�et of gravitomagneti terms, in Fig. 2, showing the basi orbits (left) and the orbit with the assoiated veloity�eld in false olors (right). From a rapid inspetion of the right panel, it is lear the sudden hanges of veloitydiretion indued by the gravitomagneti e�ets.To show the orbital veloity �eld, we have performed a rotation and a projetion of the orbits along the axes ofmaximal energy. In other words, by a Singular Value Deomposition of the de-trended positions and veloities, wehave seleted only the eigenvetors orresponding to the largest eigenvalues and, of ourse, those representing thehighest energy omponents (see Fig 2).The above di�erential equations for the parametri orbital motion are non-linear and with time-varying oe�ients.In order to have a well-posed Cauhy problem, we have to de�ne:

• the initial and �nal boundary ondition problems;
• the stability and the dynamial equilibrium of solutions.We an start by solving the Cauhy problem, as in the lassial ase, for the initial ondition putting ṙ = 0 , φ̇ = 0,

θ̇ = 0 and θ = π
2
and the result we get is that the orbit is not planar being θ̈ 6= 0. In this ase, we are ompelled tosolve numerially the system of seond order di�erential equations and to treat arefully the initial onditions, taking



11into aount the high non-linearity of the system. A similar disussion, but for di�erent problems, an be found in[57, 58℄.A series of numerial trials on the orbital parameters an be done in order to get an empirial insight on the orbitstability. The parameters involved in this analysis are the mass, the energy, the orbital radius, the initial values of
r, φ, θ and the angular preession and nutation veloities φ̇ and θ̇ respetively. We have empirially assumed initialonditions on ṙ, φ̇ and θ̇.The trials we have performed an be organized in two series, i.e. onstant mass and energy variation and onstantenergy and mass variation.

• In the �rst lass of trials, we assume the mass equal to M = 1MJ and the energy En (in mass units) varyingstep by step. The initial orbital radius r0 an be hanged, aording to the step in energy: this allow to �nd outnumerially the dynamial equilibrium of the orbit. We have also hosen, as varying parameters, the ratios ofthe preession angular veloity φ̇ to the radial angular veloity ṙ and the ratio of the nutation angular veloity
θ̇ and the preession angular veloity φ̇. The initial ondition on φ has been assumed to be φ0 = 0 and theinitial ondition on θ has been θ0 = π

2
. For M = 1 (in Solar masses) , θ̇

φ̇
= 1

2
and φ̇ = − ṙ

10
, we have found outtwo di�erent empirial linear equations, aording to the di�erent values of θ̇, φ̇. We obtain a rough guess ofthe initial distane r0 = r0(En) around whih is possible to �nd a guess on the equilibrium of the initial radius,followed by trials and errors proedure.

• In the seond lass of trials, we have assumed the variation of the initial orbital radius for di�erent values ofmass at a onstant energy value equal to En = 0.95 in mass units. With this onditions, we assume φ̇ =
ṙ

10and assume that θ̇ takes the two values 1/2 and 1/10. We an approah the problem also onsidering themass parameterization, at a given �xed energy, to have an insight of the e�et of mass variation on the initialonditions. The masses have been varied between 0.5 and 20 Solar masses and the distanes have been foundto vary aording to the two 3rd-order polynomial funtions, aording to the di�erent values of θ̇ with respetto the mass.In summary, the numerial alulations, if optimized, allow to put in evidene the spei� ontributions of gravit-omagneti orretions on orbital motion. In partiular, spei� ontributions due to nutation and preession emergewhen higher order terms in v/c are onsidered.VI. DISCUSSIONS AND CONCLUSIONSIn this paper, we have disussed the theory of orbits onsidering gravitomagneti e�ets in the geodesi motion. Inpartiular, we have onsidered the orbital e�ets of higher-order terms in v/c whih is the main di�erene with respetto the standard approah to the gravitomagnetism. Suh terms are often disarded but, as we have shown, they ouldgive rise to interesting phenomena in tight binding systems as binary systems of evolved objets (neutron stars orblak holes). They ould be important for objets falling toward extremely massive blak holes as those seated in thegalati enters [57, 58℄. The leading parameter for suh orretion is the ratio v/c whih, in several physial asesannot be simply disarded. For a detailed disussion see for example [26, 27, 28, 30℄. A part the standard periastronpreession e�ets, suh terms indue nutations and are apable of a�eting the stability basin of the orbital phasespae. As shown, the global struture of suh a basin is extremely sensitive to the initial angular veloities, the initialenergy and mass onditions whih an determine possible transitions to haoti behaviors. Detailed studies on thetransition to haos ould greatly aid in gravitational wave detetions in order to determine the shape, the spetrumand the intensity of the waves (for a disussion see [59, 60℄).In a forthoming paper, we will disuss how gravitomagneti e�ets ould a�et also the gravitational wave pro-dution in extreme gravitational �eld regimes.[1℄ J.C. Maxwell,Phil. Trans., 155, (1865) 492.[2℄ G. Holzmuller, Z. Math. Phys 15, (1870) 69.[3℄ F. Tisserand, Compte Rendu hebdomadaire des séanes de L'Aad'emie des Sienes, 75, (1872) 760; 110, (1890) 313.[4℄ J.D.North, The Measure of the Universe, Dover Publiations, New York, (1989).[5℄ E. Whittaker, A History of the Theories of Aether and Eletriity, Vol. I: The Classial Theories, Harper and Brothers,New York (1960).
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Figure 1: Plots of ṙ(t) and r̈(t) for a test mass M = 1MJ, energy per mass unit En = 0.95 and initial values for the orbitalradius r0 = 20, given in terms of Shwarzshild radius. The initial values of the angular preession veloity φ̇ and the angularnutation veloity θ̇ have been hosen aording to the following riterium: assuming a given value of the initial radial veloity
ṙ, the initial values of the angular preession veloity and of the angular nutation veloity are φ̇ = −
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ṙ and θ̇ = −

1

100
ṙ = 1

10
φ̇.The phase portrait of ṙ = f(r) is shown. The adopted time span is 10000 steps.
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