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Abstract. Precise tracking is an indispensable tool for the study of many
phenomena at new energy frontier accessible with the CERN Large Hadron
Collider (LHC). The tracking detectors of ATLAS and CMS have been designed
to cope with the harsh experimental conditions of the LHC interaction region.
In this paper, we discuss and compare the tracking performance of these two
detectors.
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1. Introduction

The first motivation for experimentation at the TeV scale is the study of electroweak symmetry
breaking. In the framework of the standard model, the breaking of the symmetry is induced by
the Higgs mechanism. However, it is possible that experimentation at the TeV scale will reveal
new phenomena: the known existence of dark matter in the universe and the fact that the standard
model Higgs mass is unstable to radiative corrections strongly indicate that experimentation in
the TeV region will lead to the discovery of new constituents or new symmetries of matter or
new forces.

Precise tracking is an indispensable tool for any collider experiment. Efficient identification
of electrons and muons, based on tracking, is necessary to separate new phenomena from
the overwhelming QCD background. Lepton signatures require muon tracking-based triggers
and precise measurement of the momentum of muons and electrons. Additional neutral gauge
bosons (Z ′) predicted in many new physics scenarios [1] can be identified through their decay
into muons and electrons in events selected by muon or electron based triggers. The forward–
backward asymmetry of leptons in the decay of the Z ′ is measured from the curvature of the
lepton tracks in the magnetic field of the detector. It gives information on parity violating
couplings and helps in distinguishing among different theoretical models. At the Large Hadron
Collider (LHC) Z and W bosons are identified through their leptonic decays and used both to
discover new physics phenomena and to calibrate the detectors.

The capability to reconstruct detached vertices to identify long-lived particles is an
essential tool for the precise study of the top quark, the heaviest and least studied of the
six known quarks. Tagging b-jets is also an essential tool in discovery physics in all cases
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when the new particles have a preferential decay to heavy quarks, like the Higgs bosons of
supersymmetry.

Cross-sections of new and known interesting phenomena at the TeV scale are typically
small: between 1 pb and 1 nb. The study of these processes requires colliders with large
luminosities which are achieved using high bunch-crossing frequency. This poses severe
constraints on the response time of the tracking devices. At LHC the cross-sections for lowpt
phenomena are large, typically 100mb, and many lowpt events are produced at each bunch
crossing. Their tracks are superimposed on those produced in the rare high pt collisions leading
to very complex patterns that can be reconstructed efficiently only by high granularity devices
with good time resolution.

At the TeV scale the pattern recognition has the additional challenge of precisely
reconstructing the tracks of narrow jets produced by highly boosted low mass particles like
highly energetic b-jets. The most challenging task is the efficient reconstruction of the three
tracks originating from the decay of a very energetic tau lepton.

This paper describes and compares the tracking performance of the two general purpose
detectors at LHC: ATLAS [2] and CMS [3]. Both detectors are now in the final installation
phase. Their performance is presently being re-evaluated by the collaborations while the figures
given in this paper reflect the published expected performance. Many of the plots shown here
have been redrawn using the information of the published plots in order to present the figures
on the same scale for an easy comparison.

2. Charged particle tracking in a magnetic field

The trajectory of a charged particle of momentum p and (signed) charge q in a static magnetic
field B(r) is given by the differential equation

d2r
ds2

= q
p
dr
ds
B(r), (2.1)

where ds = vdt is the distance along the trajectory. The vector d2r/ds2 is perpendicular to the
trajectory and its length is 1/R, where R(s) is the curvature radius of the trajectory; the vector
dr/ds is tangent to trajectory and has unit length. The integral

∫
dα =

∫ ds
R

=
∫ ∣∣∣∣

d2r
ds2

∣∣∣∣ ds = q
p

∫ ∣∣∣∣
dr
ds
B(r)

∣∣∣∣ ds, (2.2)

provides the bending angle of a charged particle after passing through a magnetic field. The
integral on the right side of (2.2) is referred to as bending power and is the integral along the
trajectory of the normal component of B. The transverse displacement δ of a particle after a
path length # perpendicular to the magnetic field is δ = #α/2, if # # R.

In high-energy experiments the coordinates along the trajectory are measured with position
sensitive detectors. The data from the detectors are analyzed by a pattern recognition program
that associates coordinate measurements to trajectories (tracks). Equation (2.1) is used together
with the magnetic field map to fit the measurements to a model of the track. The most important
parameters of the track are its momentum vector and point of origin. The reconstructed tracks
are then combined to find the primary and secondary (detached) vertices in the event.

The most popular approach to track finding and fitting is the combinatorial Kalman filter [4]
where the full knowledge of the track parameters at each detector layer is used to find compatible
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measurements in the next detector layer, forming combinatorial trees of track candidates.
Generalizations of the Kalman filter are the Gaussian sum filter [5], which is used to account
for the bremsstrahlung energy loss of electrons, and the adaptative methods [6], which are used
for vertex reconstruction.

In this paper, we will not address the problem of the optimal track fit, for which many
excellent articles exist (see for example [7]). Instead we intend to review the tracking detectors
of ATLAS and CMS and to discuss the ideas behind the designs and how they affect physics
performance. For this purpose, we introduce a simplified formulation of the tracking problem
outlined above by assuming a helicoidal trajectory in a uniform magnetic field.

At large momentum the trajectory can be approximated with a straight line y = a + bz
in the plane containing the magnetic field and with a parabola y = a + bx + (c/2)x2 in the
bending plane perpendicular to the magnetic field. The parameter of the quadratic term is
related to the momentum of the particle in the bending plane pt through the radius of the
circumference c = −R−1. We now consider the track fit in the two planes and discuss the error
on the impact parameter and on the particle momentum and how they are related to the design
of a spectrometer.

2.1. Straight line fit

Let us consider N + 1 position sensitive detectors having a measurement error σ , equally spaced
and placed at positions z0, . . . , zN [8]; the spectrometer length is L = zN − z0 and the distance
of its center from the interaction point is zc = (z0 + zN )/2.

Choosing a reference frame with the origin at the center of the track, the errors on the
track parameters a and b are uncorrelated (σab = 0), and the error on the extrapolation at
the interaction point is given by

σ 2ip = σ 2a + σ 2b z
2
c = σ 2

N + 1
+

σ 2

N + 1
12N
N + 2

z2c
L2

. (2.3)

The above formula shows how the error of the impact parameter depends on the error of the
slope of the track (σb) and on the distance of the center of the spectrometer from the interaction
point (zc). To minimize the error on the impact parameter we have to:

1. use detectors with excellent spatial resolution σ ;
2. make the spectrometer as long as possible to reduce the error on the slope;
3. place the spectrometer as close as possible to the interaction point.

Excellent spatial resolution is obtained with silicon detectors designed to have σ ∼ 10µm or
better. As such detectors are very expensive, the maximum spectrometer length L is limited.
To overcome this limitation, the spectrometers are usually split into an inner vertex detector
and a central tracking detector. The latter can be made long (large L) making the error on the
slope small. Compact pixel vertex detectors provide excellent spatial resolution very near to
the interaction point.

2.2. The quadratic fit and the measurement of the momentum

Let us consider N + 1 measuring detectors equally spaced and placed at positions x0, . . . , xN [9].
The spectrometer length is L = xN − x0. The error on the coefficient of the quadratic term is
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σ 2c = σ 2

L4
AN , AN = 720N 3

(N − 1)(N + 1)(N + 2)(N + 3)
.

Since c = −R−1 the error on the transverse momentum pt is given by
δ pt
pt

= pt
q

σ

BL2
√
AN = ptc

qc
σ

BL2
√
AN = p

σ

0.3BL2
√
AN , (2.4)

where we have used the common units GeV, Tesla and metres. The formula illustrates the basic
features of the momentum measurement with a magnetic spectrometer:

1. the relative transverse momentum resolution is proportional to the transverse momentum;
2. the strong dependence on the spectrometer length L calls for large detectors to achieve
good momentum resolution;

3. the transverse momentum resolution is inversely proportional to the magnetic field;
4. the dependence on the number of measured coordinates is weak; however the number of
coordinates is important for the robustness of the pattern recognition.

An alternative formulation introduces the sagitta h of the track that is the maximum
excursion of a circular segment over the corresponding chord. For L # R, we can approximate

h = L2

8R
= 0.3BL2

8pt
. (2.5)

The extrapolation in the magnetic field affects also the uncertainty of the impact parameter.
Compared to the simple case discussed in equation (2.3) the general formula contains additional
terms that may further degrade the precision and that account for the error in the extrapolation
back to the origin caused by the uncertainty on the curvature of the track [8].

2.3. Multiple scattering

The uncertainty of the track parameters is affected by multiple scattering [8, 9] of the charged
particle by the material of the spectrometer. A particle of momentum p and unit charge
traversing a path length x of material, characterized by a radiation length X0, is deflected by
multiple Coulomb scattering from nuclei. The projection of this deflection angle on any plane
containing the original direction is roughly Gaussian distributed around zero with a root mean
square width given by [10]

θrms =
13.6MeV

βp

√
x
X0

. (2.6)

The random deflection smears the position measurements and introduces a correlation
among position measurements downstream of the material causing the deflection. Assuming
that the position accuracy is dominated by multiple scattering, the momentum resolution for a
spectrometer of length L and N + 1 equally spaced position measurements is given by [8, 9]

δ pt
pt

= 1
0.3B

0.0136
β

√
CN

X0L
, (2.7)
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where CN is an N -dependent coefficient [9] which is equal to 1.3 within 10% accuracy.
When multiple scattering dominates, the relative momentum resolution does not depend on
the momentum and has a weak dependence on the length of the spectrometer.

At colliders, secondary vertices of short lived particles are contained within the beam pipe.
For particles of low momentum the multiple scattering in the material of the beam pipe becomes
a significant source of error. A track measured with infinite precision outside the beam pipe
when extrapolated to the origin misses the primary vertex by a randomly distributed distance d
which has roughly Gaussian distribution with a width drms = Rbpθbp, where Rbp is the radius of
the beam pipe and θbp the rms multiple scattering angle due to the beam pipe material.

3. The LHC pp collider

The main design parameters of the LHC machine are the proton beam energy of 7 TeV and the
peak luminosity of 1034 cm−2 s−1. This luminosity is achieved by crossing very dense bunches
containing about 1011 protons every 25 ns. Multiple inelastic collisions, called pile-up events,
occur at each bunch crossing with an average of about 20 collisions per crossing. Each inelastic
collision produces on an average four charged particles per unit rapidity resulting in some 400
charged particles traversing the sensitive volume of the central tracker every 25 ns.

The average transverse momentum of these pile-up particles is 0.7GeV, more than half of
which cross the entire tracking volume and to reach the electromagnetic calorimeter without
curling in the magnetic field. Given the very small bunch crossing period, most of the particles
produced during one bunch crossing are still inside the detector when the next collisions occur:
in 25 ns a high pt particle goes some 7m away from the interaction point, while a low pt particle
may curl 2–3 times inside the tracker.

The particles of the rare high pt collisions of interest are produced together with the pile-up
particles of the same bunch crossing. They traverse the detector simultaneously and the pattern
recognition algorithm must be able to reconstruct all these tracks in the same event. Once the
tracks from pile-up events are reconstructed they can be identified and discarded because they
come from a different primary vertex. Since the luminous area of LHC has a Gaussian sigma
along the beam direction of∼8 cm, the vertices of the different inelastic collisions are separated
by about 1 cm on average.

The complexity of the pattern recognition increases as a function of the occupancy, which
is defined as the average number of hits per event in one elementary detector element. In low
occupancy environments the probability that two tracks overlap in the same elementary detector
is small and the number of ambiguities is small. High pattern recognition efficiency is obtained
with occupancies smaller than 1%. The track density per bunch crossing of the pile-up events
on a detector layer at a radius r and at η = 0 is about 40× 1/r 2. In order to obtain occupancy
smaller than 1%, the elementary detector element must cover a surface that is smaller than
0.00025× r 2. This figure is equivalent to the surface covered by a 10 cm long strip of a 100µm
pitch silicon detector placed at 20 cm from the beam line. Deviations up to a factor∼3 from this
simple model are caused by the magnetic field which curls low momentum particles at small
radii.

The flux of particles irradiates the tracking detectors and causes radiation damage.
Additional radiation originates from interactions with the detector material like photon
conversions and nuclear interactions. Due to interactions in the calorimeters, the trackers are
penetrated by significant neutron radiation at large radii.
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ATLAS and CMS both use silicon detectors for the innermost part of their tracking systems.
The main radiation damage to silicon comes from bulk defects due to the displacements of
the lattice atoms and the subsequent annealing dynamics. The observed deterioration depends
on the fluence, on the type and energy of the radiation. The radiation fluences are usually
normalized comparing to the damage caused by 1MeV neutrons (neq). For a peak luminosity
of 1034 cm−2 s−1 the expected annual fluence (in units of 1013neq cm−2) varies from 26 in the
innermost tracking layer (∼4 cm radius) to about 0.6 at a radius of 50 cm [11].

The presence of pile-up tracks and the high radiation environment pose severe constraints
on the design of the central trackers, which cover the region up to r ∼ 1m:

1. the response times of the detector elements and their read-out electronics has to be fast
enough to process the event in less than 25 ns to minimize the pile-up to only one bunch
crossing;

2. the granularity of detector elements must be very high to keep the occupancy low;
3. all elements of the detector, including active material, read-out electronics and cables must
be resistant to the high radiation.

These constraints are significantly relaxed for the muon chambers which are installed at
r > 4m and are shielded by the calorimeters. Here the pile-up tracks are not an issue and the
constraint on the response time is relaxed.While these detectors integrate many bunch crossings,
they must be capable of identifying the bunch crossing of each particle that they track.

4. The tracking systems of ATLAS and CMS

The layouts of ATLAS and CMS are shown in figure 1. The most notable difference between
the two detectors is the total volume, which is determined by the strategy to measure muon
momenta. ATLAS has chosen a stand-alone system based on three superconducting toroid
magnets and a set of very large and precise chambers the alignment of which is constantly
monitored with optical devices [12]. CMS identifies and tracks muons in the iron of the yoke
of a 4 T, large bore magnet providing a coarse measurement of the sagitta, which is eventually
refined by the association to the track measurement in the inner detector [13].

4.1. The muon tracking systems

In the ATLAS barrel the magnetic field is produced by a toroidal magnet extending over a length
of 25m, with a bore of 9.4m and an outer diameter of 20.1m. The two end-cap toroids have
a length of 5m with a bore of 1.65m and an outer diameter of 10.7m. Each toroid consists of
eight superconducting coils symmetrically positioned around the beam axis; the coils of the two
end-caps are rotated by 22.5◦ with respect to the barrel toroid to optimize the bending power
in the transition region between the barrel and the end-cap magnets. The magnets provide an
average magnetic field of 0.5 T with peak value up to approximately 2.6 T in the barrel and 4 T
in the end-caps; typical bending powers are 3 Tm in the barrel and 6 Tm in the end-caps.

The CMS 4T magnetic field is produced by a 13m long solenoid with a bore of 6m. The
bending power inside the coil is 12 Tm in the central region (η < 1.5). The flux is closed in
the iron of the yoke, where muons at η = 0 cross about 1.5m of iron saturated with a magnetic
field of 2 T providing a bending power of 3 Tm. The bending in the iron has opposite sign to the
bending in the solenoid.
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Figure 1. Side view of one quadrant of the ATLAS [12] (left) and of the CMS [3]
(right) muon spectrometers. Note the difference of a factor ∼2 between the
horizontal and vertical scales.

In ATLAS the tracks are bent in the r–z-plane while in CMS they are bent in the r–φ-plane.
When reconstructing the muon trajectory, CMS profits from the very narrow beam spot in the
x–y-plane by constraining the track to pass through the beamline. The bending power of CMS
decreases rapidly as a function of η for η > 1.5, and the coverage of CMS is limited to η < 2.4.
The coverage of ATLAS is slightly larger (η < 2.7) with large bending power. A comparison
of the bending powers of ATLAS and CMS as a function of the pseudorapidity is shown in
figure 2.

The CMS muon spectrometer is shielded by the iron of the magnet and is more
robust against the background induced by radiation in the cavern. It suffers however from
electromagnetic background in the chambers due to showering in the iron induced by muon
bremsstrahlung which is relevant for muons above several hundred GeV [10].

ATLAS tracks muons in air. A simple calculation using formula (2.4) with three points,
the average bending power of 3 Tm and a track length of 4.5m shows that a position resolution
of 45µm is needed to achieve a momentum resolution of 10% at 1 TeV. Since the effect of the
multiple scattering is small, the momentum resolution decreases linearly with momentum.

The precision tracking of muons in ATLAS is done using monitored drift tubes (MDT):
tubes with outer diameter of 30mm and featuring an average resolution of 80µm are arranged in
multilayer chambers to improve resolution and to provide redundancy. Each chamber provides
a measurement of the track position with an error of about 40µm and of the track direction with
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Figure 2. Bending power of the ATLAS toroid [12] and the CMS solenoid [14]
fields as function of pseudorapidity [15]. The eight coils of the ATLAS barrel
toroid (|η| < 1.5) are positioned at φ = π/8 + n/4. The eight coils of the ATLAS
end-caps toroid (|η| > 1.5) are positioned at φ = n/4.

an error of about 3× 10−4 rad. In the very forward region (see figure 1), where high counting
rate is expected, the precision measurements in the first layer are provided by cathode strip
chambers (CSC) with a resolution of 80µm.

The momentum resolution of the ATLAS muon spectrometer can only be achieved if the
relative positions of the individual chambers are known with adequate precision. Formula (2.5)
with a bending power of 3 Tm and a track length of 4.5m shows that a track of 1 TeV pt
has a sagitta of ∼ 500µm. Relative alignment of the three chambers at the level of ∼50µm
yields a systematic uncertainty of the momentum equal to the statistical error. Given the large
dimensions of the spectrometer, the position of the chambers must be continuously monitored to
correct the coordinates measured by the chambers. The procedure is discussed in section 5. The
precise measurement of the momentum requires knowledge of the complex map of the magnetic
field (see figure 2) to a few tens of Gauss at each point of the huge volume of the detector, 22m
in diameter and 42m in length.

The tracking in the muon spectrometer of CMS is less demanding. In the barrel muons
are tracked by four super-layers (see figure 1) consisting of several drift tubes (DT) with
maximum drift length of 2 cm and space resolution of about 200µm. Each super-layer provides
a measurement of the track position with an uncertainty of about 100µm and of the track
direction with an uncertainty of about 1× 10−3 rad. CSC are used in the two end-caps to cope
with the large magnetic field and high rate. The center of gravity of the strips provides space
points with a resolution better than 200µm and an angular resolution of 10× 10−3 rad.

In CMS, the material thickness between the interaction point and the first muon chamber
amounts to about 120 radiation lengths, and muons have to cross an additional 100 radiation
lengths in the yoke before reaching the last muon station [13]. The possibility to constrain the
track to the interaction vertex allows CMS to exploit the large bending power of the solenoid.
The angle between the muon track and the radial direction at the exit of the solenoid is half
of the bending angle computed with formula (2.2). A simple calculation using formula (2.6)
shows that multiple scattering limits the measurement of the momentum from the direction of
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Figure 3. Relative momentum resolution as a function of η for two different
values of transverse momentum. (a) ATLAS simulation: the points at pt =
100GeV [16] show the combined performance using also the inner tracker; the
points at pt = 1000GeV [2] show the stand-alone performance of the muon
spectrometer. (b) CMS simulation showing the combined performance of the
muon spectrometer and the inner tracker [3].

the track in the first muon station to about 10% for momenta below a few hundred GeV. The
evaluation of the momentum from the muon trajectory in the muon system alone (i.e. without the
vertex constraint) is less precise. A simple calculation using formula (2.7) gives a momentum
resolution of about 20%.

The momentum resolutions of ATLAS [12] and CMS [3] are derived using a full detector
simulation including material effects, alignment and realistic simulations of the resolution of
the detectors. Figure 3 shows a comparison of the momentum resolution as a function of η
for muons with pt 100GeV and 1TeV. While in CMS the resolution diverges above |η| ∼ 2,
ATLAS features a resolution that is roughly constant up to |η| ∼ 2.5; in the region |η| < 1CMS
has a resolution at 1 TeV that is about a factor of 2 better than the corresponding resolution at
ATLAS. The ATLAS plot shows also the effect of the transition region between the barrel and
end-cap toroids at |η| ∼ 1.5.

The separate contributions of the muon spectrometers and of the inner trackers are shown
in figure 4(a)–(d), where the muon transverse momentum resolution of ATLAS and CMS is
plotted as a function of pt in different angular regions. The figures show that the ATLAS
muon system provides a stand-alone precise measurement for momenta above 100GeV. The
CMS muon system has an almost constant momentum resolution around 10% and the precise
determination of the momentum is provided by the inner tracker alone up to momenta of several
hundred GeV.

4.2. Central tracking systems

The central trackers of ATLAS [18] and CMS [19] are similar in size and features [20]. They
are located in the central part of the detector surrounding the beam pipe and are about 2m in
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Figure 4. Relative momentum resolution as a function of the muon transverse
momentum showing the stand-alone resolution of the muon systems, the stand
alone resolution of the inner tracker and the combined resolution. (a) and (c)
ATLAS [2, 17] for |η| < 1.5 and |η| > 1.5, respectively. (b) and (d) CMS [3] for
0< |η| < 0.2 and 1.8< |η| < 2.0, respectively.

diameter and 6m in length. They cover the angular range |η| < 2.5 and are both immersed in
a solenoidal magnetic field which is 4 and 2 T for CMS and ATLAS respectively. While the
field in CMS is very uniform, the ATLAS field is not since the length of the solenoid is slightly
smaller than that of the tracker.

In both trackers the innermost detector layers are built with silicon pixels (see section 4.3)
and the intermediate layers with silicon strip detectors with high strip density.

The inner silicon strip detectors provide high resolution measurements (∼25µm). The
barrel of ATLAS is located between r = 30 and r = 50 cm and provides eight measurements
(4r–φ and four stereo with 80µm pitch) while that of CMS is located between r = 20 cm and
r = 50 cm and provides six points (4r–φ and two stereo with 80µm pitch). The technology used
for the outer layers is different: CMS uses silicon strip detectors with coarse pitch providing
eight precise measurement points (∼50µm) between r = 60 and r = 110 cm, while ATLAS
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uses a transition radiation detector (TRT) with 4mm diameter gas straw tubes providing 35
points with ∼170µm resolution [21, 22] located between r = 55 and r = 105 cm.

The most stringent design constraints for the trackers are the high granularity and readout
speed needed to cope with the large rate of charged particles (see section 3). The ATLAS silicon
strip tracker has about 6 million channels and the CMS strip tracker has about 10 million
channels. At design luminosity the occupancy in the innermost silicon strip layer is ∼ 1–2%
while the occupancy in the ATLAS TRT varies from 13 to 38% [18, 23].

The trajectories are built starting from the inner part of the trackers (pixel or strip layers)
and are propagated toward the external layers. The number of compatible hits found on the
next layer depends on many factors like the lever arm between the last and the next layer and
the number of hits already assigned to the trajectory and their resolution. Once four or five
silicon hits are assigned to the trajectory the number of spurious hits found on the next layer
is negligible even for high pt jets [3].

In ATLAS tracks formed with hits from silicon detectors are extrapolated to the TRT, where
straws are associated to the tracks if they satisfy tight cuts on the straws residuals and on the
ratio of found to expected straws in order to limit high luminosity occupancy effects [24]. The
collaboration plans to implement a second-stage pattern recognition starting in the TRT using
hits not assigned to tracks and proceed inward to reconstruct conversions and other vertices in
the outer layers [25]. The TRT also provide an electron identification capability, improving the
hadron/jet rejection power of the ATLAS detector [18].

The huge number of front-end electronics channels located on the detectors in the limited
volume requires high power (∼ 60–70 kW) and high cooling power resulting in large material
budget. Figure 5 shows a typical material distribution as a function of the pseudorapidity with
the breakdown in the different parts composing the detector. The total amount of material can
be as high as ∼40% of a radiation length at η = 0, rising above 100% of a radiation length at
critical values of η where the effect of the detector services concentrated at the end of the barrel
and at the end of the end-caps is clearly visible. The material budget of the sensitive part of the
detector is less than 10%.
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The large amount of material spread along the trajectory of electrons affects the
measurement of their energy in the calorimeter. Hadrons are affected as well: ∼20% of them
interact within the volume of the tracker.

Since the trackers are very massive, the momentum resolution at low momentum is
limited by multiple scattering. Formula (2.7) shows that in this regime the dependence of the
momentum resolution on the material budget is weak and that the resolution scales linearly
with the magnetic field. Inserting in formula (2.7) the numerical values of 0.4 radiation lengths
and 4(2) Tm bending power, one obtains a momentum resolution at η = 0 of 0.8% in CMS
and 1.6% in ATLAS.

The momentum resolution of the inner trackers shown in figures 4(a) and (b) can be roughly
parametrized at η = 0 in ATLAS [2] and CMS as:

δ pt
pt

= (1.6⊕ 0.034× pt(GeV))% (4.1)

and
δ pt
pt

= (0.8⊕ 0.015× pt(GeV))% (4.2)

for pt < 500GeV, respectively. Comparison of these parametrizations with formula (2.4) shows
that this momentum resolution is obtained with an average spatial resolution on silicon of
∼30µm. Since the two trackers have similar dimensions, resolutions and material budget,
the two parametrizations scale roughly linearly with the magnetic field. In both detectors the
multiple scattering is the main contribution to the momentum resolution for pt < 50GeV at
η = 0.

4.3. Vertex detectors

ATLAS and CMS have built pixel vertex detectors [19, 26] providing space point measurements
which allow an efficient and robust pattern recognition. ATLAS optimizes the position
resolution in the plane perpendicular to the magnetic field (along the z-axis) using a rectangular
pixel of 400× 50µm2, while CMS optimizes the resolution in both coordinates simultaneously
with a pixel of 150× 100µm2.

The minimum pixel size is determined by the surface occupied by a front-end electronics
cell on a custom integrated circuit connected to the sensor using bump bonding [27] done
either with indium or Pb/Sn. Both experiments have similar geometries: barrel layers closed
by end-cap disks. The main parameters of the two layouts are summarized in table 1. Using the
track density parametrization 40/r 2 tracks per unit surface (see section 3) the occupancy of the
innermost layer is ∼ 3.1× 10−4, almost identical for the two designs.

ATLAS and CMS [28, 29] have built the detectors using a double sided process: n silicon
as bulk material is used, on which n+ pixels are implanted, while a p implant on the back-side
forms the pn junction. The choice of a n+ on n sensor requires pixels insulation, implemented
using the p-spray technique [30].

The spatial resolution is mainly determined by the pixel cell size and by the degree of
charge sharing between two adjacent pixels. Charge sharing depends (a) on intrinsic sensor
properties (e.g. inter pixel capacitance and pixel to back-plane capacitance, diffusion), (b) on
parameters related to the electronic readout like the threshold, and (c) on operational conditions
like the reverse bias operating voltage that determines the depth of the fully depleted region in
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Table 1. Geometry of the ATLAS and CMS pixel detectors.

ATLAS CMS

Barrel layers 3 3
Barrel layers radii (cm) 5.1, 8.9, 12.3 4.4, 7.3, 10.2
Barrel length (cm) 77 53
Number of disks 2× 3 2× 2
Disks positions along z (cm) ±49.5, ±58, ±65 ±34.5± 46.5
Disks inner/outer radius (cm) 8.9/15.0 6.0/15.0
Pixel size (r−φ × z, µm) 50× 400 100× 150
Sensor thickness (µm) 250 285
Module dimensions (r−φ × z, mm) 16.4× 60.8 16.2× 66.3
Total number of pixels 80× 106 66× 106
Acceptance |η| < 2.5 |η| < 2.5

the detector and the mobility of the electrons. The actual sharing is established by the crossing
angle θ of the charged particle trajectory with the normal to the sensor, and by the Lorentz angle
*L due to the E×B force on the charge carriers inside the detector: they determine the width
of the electron swarm collected on the pixel planeW = D|tan*L − tan θ |, where D is the active
sensor thickness (i.e. the depleted region).

The minimum of the resolution as a function of the track angle is obtained [31, 32] when the
width W of the electron swarm is equal to the pixel pitch: in this condition one has the optimal
sharing of the charge between only 2 adjacent pixels and a charge interpolating algorithm gives
the best accuracy. ATLAS and CMS claim resolutions as low as 4µm can be achieved for the
optimal crossing angle [31, 32].

Due to the different magnetic fields, the Lorentz angle in the ATLAS pixel detector is
12◦ [31], while in CMS it is 24◦ [32], both at the nominal polarization potential Vd = 150V at
the beginning of LHC operation. To compensate for radiation damage, the voltage will rise up to
∼ 600V at the end of sensors lifetime with reduction of the mobility and reduced (and possibly
not uniform within the sensor) Lorentz angles of 4◦ for ATLAS and 8◦ for CMS.

ATLAS has chosen a barrel layout such that the normal to the sensor makes an angle of
∼ 20◦ with respect to a radius crossing the center of the module: the angle formed by a stiff
track originating from the interaction point with the normal to a sensor of the innermost layer is
approximately θ = 20◦ ± 9◦.

CMS has chosen to mount the barrel modules perpendicular to the radius and in their
case the range of the track crossing angle is θ = ±10◦. For not irradiated sensors the above
figures correspond to a range of electron swarm widths W = 42± 42µm for ATLAS and
W = 125± 50µm for CMS; in both cases the average width matches adequately the pixel
pitch and both collaborations quote an average resolution ∼10µm in r–φ. In the r–z view
the expected resolutions are ∼100µm in ATLAS and ∼20µm in CMS.

During operation at LHC the radiation damage modifies the working conditions of the
detector. The effective p doping increases, eventually leading to a type inversion, after which
the junction moves from the back-side to the pixels. The depletion voltage also increases and
can become so high that one has to consider the operation of the detector as not fully depleted.
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Figure 6. Impact parameter resolution of the ATLAS [2, 33] and CMS [3]
detector as a function of η for different values of the transverse momentum. The
middle curves are at pt = 5GeV for ATLAS and pt = 10GeV for CMS.

The mechanical structure has to provide good position stability that matches the spatial
resolution with the minimum amount of material; it must also provide adequate cooling to
remove the heat (several watt per module) produced by the front-end electronics and the sensor
leakage current and eventually keep the detector at low temperature to reduce reverse annealing
(−6 ◦C for ATLAS and −10 ◦C for CMS). The total material budget in the barrel for normal
incidence is around 8% X0.

At low momenta the precision of the impact parameter depends mainly on the material
between the interaction point and the first layer (the beam-pipe), and on the material of the first
layer itself. The multiple scattering caused by the two material layers modifies the angle of the
trajectory and causes an uncertainty of the impact parameter when the track is extrapolated back
at the origin. Assuming beam pipe and first layer at a radii rb and r1, causing a random scattering
θb and θ1 respectively, the contribution to the impact parameter uncertainty is σip = rbθb ⊕ r1θ1.
The beryllium beam pipe of 0.45%X0 at a radius of 32mm contributes an error of approximately
30µm at 1GeV. The first layer has an equivalent thickness of about 2.5% X0 and contributes
110µm for ATLAS (r1 = 5.1 cm) and 95µm for CMS (r1 = 4.4 cm). This is the dominant
contribution at low momenta.

At large momenta the resolution on the impact parameter is dominated by the position
resolution of the first plane of the tracker and its distance from the interaction point. The
measurement can be modeled [8] as the extrapolation to the origin of a track of known
momentum and direction (measured by the N outermost planes) and constrained by the position
measured by the first plane placed at r ∼ 4–5 cm from the primary vertex.

The momentum resolution of ATLAS and CMS trackers is δp/p2 ∼ O(10−4)GeV−1 which
corresponds to δR/R2 ∼ O(10−4)m−1: the effect on extrapolation over distances of the order
of 5 cm is negligible. The error σb on the slope varies from 0.06 to 0.1mrad going from 50GeV
to 1 TeV and when extrapolated over 5 cm contributes an error from 3 to 5µm to be compared
with the resolution of the first plane ∼10µm. The impact parameter resolution for different
momenta as a function of the pseudorapidity is shown in figure 6.
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Figure 7. Left: effect of two different misalignment scenarios [3] achievable in
CMS with an integrated luminosity smaller than 1 fb−1 and larger 1, . . . , 5 fb−1

on the transverse momentum resolution as a function of the pseudorapidity η.
The ideal resolution is shown as reference. Right: ATLAS barrel toroid,
displacement in mm of the upper coil versus time on 18 and 19 November
2006. The time origin starts at 00:00 of 18 November. Two peaks can be seen,
corresponding to two different ramp ups. The end of the second peak corresponds
to a fast quench of the toroid system.

5. Alignment

The intrinsic resolution of the tracking detectors is usually better than the precision of the
detector assembly. Moreover, the position of the detectors may change with time due to
magnetic field and environmental effects like change of temperature. Alignment procedures
are used to measure and monitor the position of the detectors over time to recover the intrinsic
resolution of the measurements of the particle trajectories. These procedures combine the use
of dedicated optical alignment systems based on beams of laser or LED light and the fit of the
corrections from the nominal to the real positions using a (large) set of reconstructed trajectories
of particles [34].

The alignment with optical systems is based on a network of online measurements of the
relative positions between light sensitive detectors which are precisely mounted on the particle
detectors. The number of measurements largely exceeds the degrees of freedom of the overall
system and the position of the particle detectors are computed as free parameters in a fit to the
whole set of measurements. The accuracy of the single measurement is typically a few microns
and systematic effects dominate the alignment precision.

The track-based alignment computes the corrections from the nominal to real position of
detectors with a linear least square fit. This fit minimizes the residual between the predicted
and measured positions of hits belonging to a large set of tracks as a function of correction
parameters. The systematic errors of this method are usually small, however large sets of tracks
are needed to achieve the required precision. The method is not robust against fast movements
of the detectors, where fast refers to the time needed to collect the relevant integrated luminosity.

The ATLAS and CMS collaborations have estimated misalignment scenarios [2, 3] for
the first data taking. As an example, the impact of the misalignment can be seen in figure 7
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on the left where the transverse momentum resolution obtained in CMS for two misalignment
scenarios is compared with the resolution obtained with ideal alignment.

The track-based alignment is faster when the extrapolation of the measured trajectory on
the detector layer has an intrinsically small statistical error. This is the case for the inner tracking
detectors where there are many measurement layers separated by small extrapolation distance
and with limited material in between layers, resulting in small multiple scattering errors. The
muon systems instead have less measurement points with large extrapolation distance and in
some cases large multiple scattering in between layers. Precise knowledge of the magnetic field
map is needed for the track extrapolation. This induces systematic errors in the track-based
alignment which are usually smaller for the inner detectors where the magnetic field is constant
and larger for the muon systems where the magnetic field varies along the trajectory of the
particle.

Optical alignment methods require free line of sight between optical detectors, which is a
limitation especially important for the inner trackers, where the particle detectors are densely
packed in nearby layers and many services have to be routed. Therefore, the inner trackers
are aligned using track-based procedures while optical systems are used to monitor a limited
number of degrees of freedom, providing valuable information on the stability of the detectors.

The track-based alignment uses mainly tracks originating from the interaction point which
are not able to constrain all parameters. A number of correlated displacements of the detector
layers [35] do not produce at first-order a variation of the chi-square of the fit like, for example,
a correlated shift along z as function of r . These correlated movements are constrained using
different data samples like cosmic rays and muons from the beam halo and also applying
constraints like common vertex in multi-track events and mass constraints on the decay products
of known resonances.

The large muon systems are prone to temperature effects and to movements induced by
ramping the magnets up and down. In ATLAS and CMS the muon chambers move by several
millimetres when the magnets are being turned on, with a reproducibility of about 1mm, larger
than the intrinsic resolution of the detectors. Figure 7 on the right shows the displacement of
one of the coils of ATLAS during the test of their magnet as measured by the muon alignment
system.

The muon systems of ATLAS and CMS are aligned mainly with optical systems. The
specifications are somewhat more relaxed in CMS, which tracks in iron, requiring an alignment
precision of the order of 100µm, compared to ATLAS which tracks in air and requires
better than 50µm alignment accuracy. ATLAS uses a sophisticated optical system [36]–[38]
to monitor the relative position of the components of the chambers to a precision of ∼10µm
and the relative position of the chambers to a precision of ∼30µm.

The impact of the alignment errors on the momentum resolution of the ATLAS muon
spectrometer can be seen in figure 8, where the separate contributions of the chambers
resolution, chambers alignment, multiple scattering and energy loss fluctuations are also
shown. Here the multiple scattering contribution is evaluated as the quadratic difference of the
calculations performed with and without the material of the spectrometer.

Depending on the number of independent detectors to be aligned, the simultaneous fit of
a large number of parameters can be computationally challenging. In some cases the alignment
problem can be factorized into a number of smaller and weakly correlated problems. This is the
case in the ATLAS end-cap alignment which comprises about 10 000 fitted parameters in total
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Figure 8.Breakdown of the contribution of the different effects to the momentum
resolution as a function of the muon transverse momentum for the ATLAS muon
spectrometer [12]; left: barrel (|η| < 1.5); right: end-caps (|η| > 1.5).

and can be factorized in 864 partial fits of 9 or 12 parameters each, and two global fits of 384
parameters each, reducing the computational time by several orders of magnitude.

This factorization cannot be applied to inner trackers where the number of strongly
correlated detectors is large. The most complex case is the CMS inner silicon tracker which
has more than 15 000 modules resulting in about 100 000 parameters to be simultaneously fitted
in the track-based alignment. Using conventional methods involving matrix inversion becomes
extremely difficult because of computing time and numerical precision. Novel alignment
algorithms have been developed replacing the matrix inversion by a fast numerical solver [39],
or using the Kalman filter approach where the alignment is updated iteratively and the matrix
inversion is performed only on a much smaller matrix size [40].

6. The muon trigger systems

The muon spectrometers also provide fast triggers with a pt cut. Typical thresholds are in the
region of 20GeV and the momentum resolution defines the sharpness of the threshold.

ATLAS uses dedicated detectors for the trigger: resistive plate chambers (RPCs) in the
barrel and thin gap chambers in the end-caps (see figure 1). The trigger is provided constructing
a search road centered around the trajectory of an infinite momentum track originating from the
nominal interaction vertex and passing through the hits measured on a preferential plane used
as pivot. The width of the search road is determined by the muon momentum used as threshold
and the trigger uses predefined coincidence patterns stored in a coincidence matrix. In the barrel
the distance between the pivot plane (middle plane) and the uppermost plane is of the order of
2.5m, which corresponds to approximately half the overall bending power

∫
Bd# ∼ 1.8 Tm.

Formula (2.2) yields that a 20GeV muon is deflected by an angle θ ∼ 0.013 rad, which
corresponds to a transverse displacement of ∼3.2 cm over 2.5m. This displacement can be
compared with the 1 cm resolution of the RPCs. In the end-caps there are regions in which the
bending power can be as low as∼2 Tm (see figure 2) and the lever arm is also smaller (∼ 0.5m)
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experiment [41] for |η| < 2.1.

because the chambers are placed outside the magnet cryostat. The corresponding transverse
displacement is ∼ 0.8 cm: to obtain a sharp efficiency curve the chambers in the end-caps must
have better resolution than those of the barrel.

In CMS the trigger information is provided by the DT in the barrel and by the CSC in
the end-caps, complemented by RPCs both in the barrel and in the end-caps (see figure 1).
The trigger system of CMS combines the information of the three detectors and their quality
estimators to provide the best compromise between efficiency and background rejection. The
electronics measurement of the DT provides the track position with an error of about 1.5 mm
and the track direction with an error of about 6× 10−2 rad. The CSC measure the track position
at trigger level with an accuracy of 1–2mm. The segmentation of the RPCs varies between
10mm at large η and low radii to about 40mm at the outer radius. In the DT and CSC the
trigger is provided by finding muon segments in each chamber which are later joined together.
The transverse momentum is measured using the difference between the φ coordinates of the
two innermost layers and assuming the nominal interaction vertex. The trigger in the RPC is
based on the spatial and time coincidence of hits in four RPC muon stations, assuming the
nominal interaction vertex.

The multiple scattering angle of a 20GeV muon crossing the 120 radiation length the first
super-layers of the CMS barrel is 7mrad (see formula (2.6)) while the angular resolution of the
muon track candidate is about 10mrad. The momentum resolution at trigger level at 20GeV is
less than factor of 2 worse than the resolution shown in figure 4(b) .

The correct calculation of the efficiency curves can be performed only with a full detector
simulation which properly takes into account the correct resolution of the detectors and
other effects like field inhomogeneities, multiple scattering, energy loss fluctuations in the
calorimeters, size of the interaction region that all contribute to smear the edge of the efficiency
curve.

Figure 9 shows the muon level 1 trigger efficiency as a function of the muon momentum.
The curves also include the effect of the geometrical acceptance which are especially important
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Figure 10. (a) Histogram of the µ+µ− invariant mass for 1 TeV Z ′ plus back-
ground (open histogram) and for background only (shaded histogram) for events
selected assuming the first data alignment scenario of CMS (see section 5).
The number of events per bin is normalized to an integrated luminosity of
100 pb−1 [42]. (b) ATLAS b-tagging: light jet rejection as function of b tagging
efficiency in semileptonic tt events for different tagging algorithms [43].

in the open air toroidal magnet, which requires a complex support structure that affects the
geometrical acceptance of the ATLAS muon system: depending on the number of hits required,
the acceptance varies from ∼89 to ∼100%. The transverse momentum spectra of muons fall
very rapidly and the trigger rate depends strongly on the steepness of the efficiency curve near
the threshold. The curves shown in figure 9 are similar and the experiments quote a level 1
trigger rate of ∼4–5KHz at 20GeV and at the LHC design luminosity 1× 1034 cm−2 s−1.

7. Conclusions

The tracking systems of ATLAS and CMS are designed to cope with the harsh conditions of
the LHC interaction region. The momentum of muons can be precisely measured up to a few
TeV and the precision of the vertex systems is well matched to identify long lived particles
assuring efficient b-tagging. We conclude this review with two examples showing how tracking
performance is important for discovery of new physics and for studies of standard model
physics.

7.1. Discovery of a Z ′ of 1 TeV at LHC through its decay into µ+µ−

For µ+µ− invariant masses of 1 TeV the fraction of Drell–Yan events with both muons in
the acceptance (η < 2.5) is about 80% and the trigger efficiency is also large, in excess of
90%. Typical selection efficiencies for this simple signature are also large [42]. The discovery
potential for a new Z ′ resonance decaying into µ+µ− depends on muon momentum resolution,
the main background being the irreducible Drell–Yan process. Figure 10(a) shows an example of
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a CMS start-up analysis with a not yet fully aligned detector (see section 5). With the resulting
momentum resolution, 30 pb−1 of data are sufficient for a 5 sigma signal.

7.2. Selection of very pure samples of top

At LHC top quarks are copiously produced in pairs via gluon fusion and can be selected at
trigger level through the semi-leptonic decay of one of them. Topology based analysis can select
samples with purity larger than 10 and efficiency in excess of 25% [44, 45]. Those events have
four jets: three of them originating from the hadronically decaying top while one is the b-jet
from the leptonically decaying top. b-tagging can be used to assign flavor to the jets.

Since lifetime distributions are peaked at zero, b-tagging based selections are not efficient
but can be used to select very pure samples. Typical tagging efficiency versus light jet rejection
is shown in figure 10(b). The purity of the sample is traded against efficiency and can be tuned
selecting the appropriate b-tag cut: for example purities in excess of 60 can be achieved for
precise measurement of the top mass [45]. b-tagging also plays a central role in the search for
any non standard model interaction with top quarks in the final state [46].
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