
Statistical Combination of Several Important Standard1

Model Higgs Boson Search Channels2

Abstract3

In this note we describe statistical procedures for combination of results from4

independent searches for the Higgs boson. Here only the Standard Model5

Higgs is considered, although the methods can easily be extended to non-6

standard Higgs models as well as to other searches. The methods are ap-7

plied to Monte Carlo studies of four important search channels: H → τ+τ−,8

H →W+W− → eνµν , H → γγ and H → ZZ(∗) → 4 leptons. The statistical9

treatment relies on a large sample approximation that is expected to be valid10

for an integrated luminosity of at least 2 fb−1. Results are presented for the11

expected statistical significance of discovery and expected exclusion limits.12

1 Introduction13

Higgs searches will exploit a number of statistically independent decay channels. One wishes to combine14

all of the information from them to provide a single measure of the significance of a discovery or limits15

on Higgs production. The approach taken in this paper is based on frequentist statistical methods, where16

effects of systematic uncertainties are incorporated by use of the profile likelihood ratio.17

The statistical procedures used for establishing discovery and setting limits are described in Section 2.18

These methods are very general and can be applied to the combination of results of essentially any search19

that will be carried out at the LHC. Section 3 summarizes the four search channels for the Standard Model20

Higgs boson considered in this note: H → τ+τ−, H →W+W− → eνµν , H → γγ and H → ZZ(∗) →21

4 leptons.22

The statistical treatment requires knowledge of the distribution of a test statistic based on the profile23

likelihood ratio. To determine these distributions by Monte Carlo so as to establish discovery at a high24

level of significance would require an enormous amount of simulated data, which is not practical at25

present. Therefore the distributions have been estimated using the functional form expected to hold in26

the large sample limit. Investigations shown in Section 3 indicate that this approximation should be27

reliable for an integrated luminosity above 2 fb−1.28

In Section 4 we show the result of the combination. For different values of the integrated luminosity29

and hypothesized Higgs mass, we present the signal significance expected assuming the Standard Model30

Higgs production rate, as well as expected upper limits on the Higgs production cross section, under the31

hypothesis of no Higgs signal.32

The channels considered here focus on the search for a Higgs boson in the low-mass range. It is33

planned to include other channels in the future, e.g., further final states from the W+W− and ZZ modes.34

This will improve sensitivity especially at higher Higgs mass values.35

2 Statistical methods36

In this section we describe the general statistical model and likelihood function, first for a single channel37

and then generalized to multiple channels. In Section 2.2 we give the procedure used to establish discov-38

ery based on a frequentist significance test, where the effects of systematic uncertainties are incorporated39

by use of the profile likelihood ratio. Section 2.3 covers the corresponding methods for setting limits. For40

both discovery and exclusion one requires the sampling distribution of the statistic used in the test; this41
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is described in Section 2.4. Section 2.5 discusses a series of approximations used to determine expected1

values of the discovery significance and exclusion limits.2

The approach taken in this note is to carry out tests for discovery and exclusion for fixed values of3

the Higgs mass mH . In principle the entire procedure is then repeated for all masses, resulting in limits4

on or a measurement of mH . In practice, an interpolation is made between finite steps in mH .5

2.1 The statistical model and likelihood function6

First we consider the case of a single search channel. The measurement results in a set of numbers7

of events found in kinematic regions where signal could be present. These typically correspond to a8

histogram of a variable such as the mass of the reconstructed Higgs candidate, with the numbers of9

entries denoted by n= (n1, . . . ,nN). In some cases one may consider a histogram with only one bin, i.e.,10

the measured outcome is simply a number of candidate events found. The number of entries in bin i, n i,11

is modeled as a Poisson variable with mean value12

E[ni] = µLεiσiB +bi ≡ µsi+bi , (1)
where L is the integrated luminosity, εi, σi and B are the signal efficiency, Higgs cross section, and13

branching ratio, and bi is the expected number of background events. Here µ is a signal strength parame-14

ter defined such that µ = 0 corresponds to the absence of a signal; µ = 1 gives the signal rate s i expected15

from the Standard Model. If we consider a fixed Higgs mass mH , the only parameter of interest is µ . All16

other adjustable parameters needed to specify the model are called nuisance parameters.17

In principle the expected background values bi can be predicted using Monte Carlo models for Stan-18

dard Model processes. In the measurements considered here, however, the systematic uncertainty in the19

Standard Model prediction is in many cases quite large, and this would severely limit the sensitivity of20

the search. Therefore data regions where one expects only a very small amount of signal (control regions)21

are used to constrain the background in the signal region (see also below).22

For the ith bin of a histogram of a discriminating variable x, the expected signal and background can23

be written24

si = stot
∫

bin i
fs(x;θ s)dx , (2)

bi = btot
∫

bin i
fb(x;θ b)dx , (3)

where stot and btot are the total expected numbers of events in the histograms, fs(x;θ s) and fb(x;θ b) are25

the probability density functions (pdfs) of x for signal and background, and θ s and θb represent sets of26

shape parameters.27

The parametric forms of the pdfs fs(x;θ s) and fb(x;θ b) are determined from Monte Carlo simula-28

tions or data control samples. In the following we will use θ = (θ s,θ b,btot) to refer to all of the nuisance29

parameters. The signal normalization stot here is not an adjustable parameter, but rather is fixed equal to30

the Standard Model prediction.31

In addition to the measured histogram n, some search channels also make use of a set of subsidiary32

measurementsm= (m1, . . . ,mM) in control regions where one expects mainly background events. These33

can be modeled as being Poisson distributed with mean values34

E[mi] = ui(θ) , (4)
where the ui are calculable quantities depending on a set of parameters, at least some of which are the35

same as those entering into the predictions for si and bi above. In practice the subsidiary measurements36

2

HIGGS – STATISTICAL COMBINATION OF SEVERAL IMPORTANT STANDARD MODEL HIGGS . . .

287

1475



are constructed so as to provide information on the background normalization b tot and sometimes also1

on its shape.2

If the measurement is based on counting events in a given kinematic region, i.e., without using the3

shape of a distribution, in the formalism above the histograms have a single bin. The value s = s tot is4

then the Standard Model prediction for the signal and b = btot is the (unknown) expected background.5

There are then no shape parameters, and b itself plays the role of θ as the single nuisance parameter. In6

this case the subsidiary measurement m is made in a control region where signal is absent (or can to good7

approximation be neglected), and has an expectation value8

E[m] = u= τb , (5)

where τ is a scaling constant whose value can be estimated from a Monte Carlo simulation.9

The likelihood function is the product of Poisson probabilities for all bins:10

L(µ,θ ) =
N

∏
j=1

(µs j +b j)n j
n j!

e−(µs j+b j)
M

∏
k=1

umkk
mk!

e−uk . (6)

Equivalently the log-likelihood is11

lnL(µ,θ ) =
N

∑
j=1

(n j ln(µs j +b j)− (µs j +b j)) +
M

∑
k=1

(mk lnuk−uk)+C , (7)

whereC represents terms that do not depend on the parameters and thus can be dropped. Here and in (6)12

the parameters θ enter through Eqs. (2), (3), and (4).13

In the case where the presence of signal in the histogram n gives a peak sitting on a smooth back-14

ground, one does not need a subsidiary measurement m. Rather, as long as the number of parameters in15

the models for the signal and background distributions is smaller than the total number of bins measured,16

one can determine the strength parameter µ from the histogram n alone. Here the regions away from17

the peak (the sidebands) play the role of the subsidiary measurement by providing information on the18

background level. Of course if an additional subsidiary measurement is available, this will improve the19

accuracy of the background determination, which will increase the sensitivity of the analysis.20

In the case of several independent search channels, the method described above is generalized in a21

straightforward manner. For each channel i there is a likelihood function L i(µ,θ i). Its general form is22

given by Eq. (6), except that all quantities carry an additional index i to label the channel except the23

global strength parameter µ , which is assumed to be the same for all channels. Since the channels are24

statistically independent, the full likelihood function is given by the product25

L(µ,θ) =∏
i
Li(µ,θ i) , (8)

where θ here represents all of the nuisance parameters.26

Systematic uncertainties are effectively included in the analysis through the nuisance parameters27

θ . The model must be sufficiently flexible, i.e., it must contain enough parameters, so that for at least28

some point in its parameter space it can be regarded as representing the truth. One must exercise some29

restraint in achieving this, however, as an increasing number of nuisance parameters leads to a decrease in30

sensitivity to the parameters of interest. Some of the components of θ may be common among different31

channels, e.g., parameters relating to uncertainty in the integrated luminosity. These then represent a32

common (correlated) systematic uncertainty.33

As an example, consider the signal efficiency ε that enters in the relation between the cross section34

and expected number of signal events. Suppose the efficiency has been estimated to have a value ε̂ and35

systematic uncertainty σε̂ . To incorporate this uncertainty into the model, we can regard the measured36

3
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value ε̂ as a random variable whose true value ε is treated as a nuisance parameter. For the pdf fε(ε̂ ;ε ,σε̂)1

one could use, e.g., a Gaussian distribution centred about ε , or for a quantity such as the efficiency which2

must lie in the range 0≤ ε ≤ 1 one could use a pdf that automatically satisfies this constraint (e.g., a beta3

distribution). For whatever choice is deemed appropriate, the likelihood (6) is multiplied by f ε(ε̂;ε ,σε̂),4

evaluated with the best estimate ε̂ , and the parameter ε is included in the set of nuisance parameters θ .5

To test a hypothesized value of µ we construct the profile likelihood ratio,6

λ (µ) =
L(µ, ˆ̂θ)

L(µ̂, θ̂)
. (9)

Here ˆ̂θ in the numerator denotes the value of θ that maximizes L for the specified µ , i.e., it is the7

conditional maximum-likelihood estimator (MLE) of θ (and thus is a function of µ). The denominator8

is the maximized (full) likelihood function, i.e., µ̂ and θ̂ are the MLEs. The presence of the nuisance9

parameters broadens the profile likelihood ratio as a function of µ relative to what one would have if10

their values were fixed. This reflects the loss of information about µ due to the systematic uncertainties.11

The likelihood ratio (9) and procedures for incorporating systematic uncertainties applied here differ12

somewhat from those used for the searches carried out at LEP. Some of these differences are discussed13

further in Appendix A.14

From the definition of the profile likelihood ratio one can see that 0≤ λ ≤ 1, with λ (µ) = 1 implying15

good agreement between the data and the hypothesized value of µ . Equivalently it is convenient to work16

with the quantity17

qµ =−2lnλ (µ) , (10)

so that high values of qµ correspond to poor agreement between the data and the hypothesized µ . The18

statistic qµ will have a sampling distribution f (qµ |µ ′). Here µ refers to the strength parameter used19

to define the statistic qµ , entering in the numerator of the likelihood ratio, and µ ′ is the value used to20

define the data generated to obtain the distribution (i.e., the ‘true’ value). For the special case µ ′ = µ and21

for a sufficiently large data sample, the pdf f (qµ |µ) approaches a limiting form related to the chi-square22

distribution, discussed further in Section 2.4. For µ ′ %= µ , the distribution of qµ is shifted to higher values,23

reflecting the decreased agreement between the data generated with µ ′ and the hypothesis tested by qµ ,24

as indicated in Fig. 1. The two cases of particular interest are µ = 0, the background-only hypothesis,25

and µ = 1, the hypothesis of background plus signal present at the Standard Model rate.26

The level of compatibility between data that give an observed value qµ ,obs for qµ and a hypothesized27

value of µ is quantified by giving the p-value28

pµ =
∫ ∞

qµ ,obs
f (qµ |µ)dqµ . (11)

This is the probability, under the assumption of µ , of seeing data with equal or greater incompatibility,29

as measured by qµ , relative to the data actually obtained. This is illustrated in Fig. 1, where the shaded30

area indicates the p-value of the hypothesized µ . The figure also indicates the median value of qµ under31

the assumption of a different value of the strength parameter µ ′ used to generate the data. For µ and µ ′32

values that are increasingly different, the median med[qµ |µ ′] moves further to the right. An observed33

value of qµ at this median would give a correspondingly small p-value for µ .34

2.2 Establishing discovery35

To establish discovery we try to reject the µ = 0 (background-only) hypothesis, i.e., that there is no36

Higgs signal present. To do this we use the statistic q0 = −2lnλ (0). One expects to find a low value37

4
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Figure 1: Illustration of the determination of
the p-value of a hypothesized value of µ . The
left-hand curve indicates the pdf of qµ for data
generated with the same value of µ as was used
to define the statistic qµ ; this is used to deter-
mine the p-value of µ , shown as the shaded re-
gion. The right-hand curve indicates the pdf of
qµ for data generated with a different value of
the strength parameter, µ ′.

of λ (0) (high q0) if the data include signal. Here even though one is testing the hypothesis that the1

Higgs does not exist, the definition of q0 depends on the hypothesized Higgs mass mH . It enters through2

the denominator of the likelihood ratio (9), which contains the maximum-likelihood estimator µ̂ for the3

strength of a Higgs signal at the mass mH . By defining the test statistic in this way one maximizes the4

probability of rejecting the µ = 0 hypothesis if the Higgs boson exists at the specified mass. This search5

procedure is then carried out for all values ofmH (in practice an interpolation is carried out between finite6

steps in mH).7

A given data set will result in an observed value q0,obs of q0. The level of compatibility between the8

data and the no-Higgs hypothesis is quantified by giving the p-value9

p0 =
∫ ∞

q0,obs
f (q0|0)dq0 . (12)

This is the probability, under the assumption of µ = 0 (background only), of seeing data as signal-like10

or more so relative to the data actually obtained. A small value is interpreted as evidence against µ = 0,11

i.e., a discovery of the signal.12

One can define the significance corresponding to a given p-value as the number of standard deviations13

Z at which a Gaussian random variable of zero mean would give a one-sided tail area equal to p. That is,14

the significance Z is related to the p-value by15

p=
∫ ∞

Z

1√
2π

e−x
2/2 dx= 1−Φ(Z) , (13)

whereΦ is the cumulative distribution for the standard (zero mean, unit variance) Gaussian. Equivalently16

one has17

Z =Φ−1(1− p) , (14)
where Φ−1 is the quantile of the standard Gaussian (inverse of the cumulative distribution). In (13) and18

(14) the subscript 0 was dropped as these relations hold for all p-values, not only those of the µ = 019

hypothesis. The relation between Z and p is illustrated in Fig. 2.20

A significance of Z = 5 corresponds to p = 2.87× 10−7. For a sufficiently large data sample, one21

would obtain a p-value of 0.5 for data in perfect agreement with the expected background. With the22

definition of Z given above, this gives Z = 0. If the data fluctuate below the expected background, Z23

becomes negative.24

Note that according to the definition (14), a p-value of 0.05 corresponds to Z = 1.64. This should not25

be confused with a 1.96σ fluctuation of a Gaussian variable that gives 0.05 for the two-sided tail area.26

The significance of a discovery Z depends on the data obtained. To quantify our ability to discover a27

hypothesized signal in advance of seeing the data, we report the median significance under the assump-28

tion that the signal is present at the Standard Model rate, µ = 1. Since Z is a monotonic function of p0,29

and p0 is also a monotonic function of q0, we have for the median significance,30

5
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Figure 2: Illustration of the corre-
spondence between the significance Z
and a p-value.

Zmed =Φ−1(1− p0med) =Φ−1(1− p0(q0med)) . (15)

This can be obtained from the median value of q0 found using data generated under the assumption of1

µ = 1.2

A complete evaluation of the median significance is computationally difficult, as it requires a large3

number of repeated simulations of the full set of experimental outputs and determination of Z(q0) from4

the combination of all channels. Therefore in this note we have used the approximate methods described5

in Section 2.5, which allow one to estimate quickly the median significance.6

2.3 Setting limits7

In addition to establishing discovery by rejecting the µ = 0 hypothesis, we can consider the alternative8

hypothesis of some non-zero µ and try to reject it. A p-value is computed for each µ , and the set of µ9

values for which the p-value is greater than or equal to a fixed value 1−CL form a confidence interval10

for µ , where typically one takes a confidence level CL= 95% . The upper end of this interval µup is the11

upper limit (i.e., µ ≤ µup at 95% CL).12

To compute the p-value for a hypothesized µ we first consider again the test statistic qµ =−2lnλ (µ)13

as initially defined in (9) and (10). For purposes of computing limits, we introduce a modification to this14

definition as described below.15

If the data are incompatible with the hypothesized µ , one expects a large value of −2lnλ (µ), i.e.,16

λ (µ) close to zero. If a data set generated according to the hypothesis µ gives a large value of−2lnλ (µ),17

this can be the result of either an upward or downward fluctuation in µ̂ relative to µ . This is illustrated18

in the scatterplot of µ̂ versus −2lnλ (µ) shown in Fig. 3(a), which is from a toy Monte Carlo study with19

µ = 0.8. The projection of the points on the µ̂ axis is shown in Fig. 3(b). Note that µ̂ ≥ 0 is imposed;20

the reasons for and consequences of this requirement are discussed in Section 2.4.21

For purposes of setting an upper limit, however, we want to determine the smallest µ such that there22

is a fixed small probability (one minus the confidence level) to find data as compatible with that value of23

µ or less, relative to the degree of compatibility found with the real data. Therefore the data with upward24

fluctuations in µ̂ are not counted when computing the p-value, because they would be compatible with25

some larger µ . Therefore for purposes of computing limits we redefine qµ to be126

qµ =

{

−2lnλ (µ) µ̂ ≤ µ ,

0 otherwise.
(16)

The distribution of the new qµ thus corresponds to the lower branch only of the U-shaped scatterplot27

shown in Fig. 3(a).28

1Equivalently, one could retain the definition qµ = −2ln(L(µ, ˆ̂θ)/L(µ̂, θ̂ )) by placing an upper bound on µ̂ equal to µ , i.e.,
by imposing 0≤ µ̂ ≤ µ . In this way, when µ̂ = µ then one has qµ = 0 just as in the case of discovery when testing µ = 0.

6
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Figure 3: (a) Scatterplot of µ̂ versus−2lnλ (µ); (b) the distribution of µ̂ (see text).

Using the new definition (16), the p-value is given by the integral of f (qµ |µ) from the observed1

value qµ ,obs to infinity as in Eq. (11) and as illustrated in Fig. 1. The p-value is computed in this manner2

for all values of µ , and the upper limit µup at 95% confidence level is the largest value of µ for which the3

p-value is at least 0.05.4

The result can be summarized by giving the upper limit on µ as a function of the Higgs mass mH .5

Specifically, if we can reject the hypothesis µ = 1 at a certain confidence level, then the corresponding6

value of mH is regarded as excluded for a Standard Model Higgs. The lowest mass value not excluded is7

the lower limit mlo.8

One is also interested in the median limit under the assumption that there is no Higgs. As in the case9

of the discovery significance, a full calculation of the median limit is difficult as it requires a large number10

of repeated simulations based on the full profile likelihood ratio. For purposes of this note, therefore, we11

use the approximation techniques described in Section 2.5.12

2.4 Sampling distribution of the likelihood ratio13

To determine the p-values required for both discovery and exclusion we need the sampling distribution,14

assuming data generated according to a given value of µ , of the statistic qµ , i.e., f (qµ |µ). For the case of15

discovery significance we use q0 =−2lnλ (0), and for setting limits we use qµ =−2lnλ (µ) for µ̂ ≤ µ16

and qµ = 0, otherwise.17

To claim discovery we require p-values for µ = 0 down to around 10−7, and therefore to do this with18

a Monte Carlo simulation requires an extremely large number of simulated measurements. In practice19

this is only carried out for simple test cases. Even for setting limits at 95% confidence level, it is often20

not practical to use Monte Carlo.21

Under a set of regularity conditions and for a sufficiently large data sample, Wilks’ theorem says that22

for a hypothesized value of µ , the pdf of the statistic −2lnλ (µ) approaches the chi-square pdf for one23

degree of freedom [2]. More generally, if there are n parameters of interest, i.e., those parameters that do24

not get a double hat in the numerator of the likelihood ratio (9), then −2lnλ (µ) asymptotically follows25

a chi-square distribution for n degrees of freedom. A proof and details of the regularity conditions can26

be found in standard texts such as [3].27

In the searches considered here, the data samples are generally large enough to ensure the validity of28

the asymptotic formulae for the likelihood-ratio distributions. In our case, however, the distributions are29

modified because of constraints imposed on the expected number of events.30

Usually when searching for a new type of particle reaction one regards the mean number of events31

contributed to any bin from any source, signal or background, to be greater than or equal to zero. In32

7
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some analyses it could be meaningful to consider a new effect that suppresses the expected number1

of events, e.g., the presence of a new decay channel could mean that the number of decays to known2

channels is reduced. Here, however, we will regard any contribution to an expected number of events as3

non-negative.4

Assuming only non-negative event rates, the maximum-likelihood estimators for the parameters are5

constrained, e.g., µ̂ ≥ 0. As a consequence, if the observed number of events is below the level predicted6

by the background alone, then the maximum of the likelihood occurs for µ = 0, i.e., negative µ is not7

allowed. We can consider the effect of having µ̂ = 0 on the distribution of qµ for two cases: µ = 0 and8

µ > 0.9

For µ = 0, i.e., when computing the discovery significance, if µ̂ = 0 one has (see (9)),10

λ (0) =
L(0, ˆ̂θ )

L(µ̂, θ̂)
=
L(0, ˆ̂θ )

L(0, θ̂ )
= 1 , (17)

since µ̂ = 0 and therefore ˆ̂θ = θ̂ . The statistic q0 = −2lnλ (0) is therefore equal to zero. This can be11

seen in the scatterplot of q0 versus µ̂ in Fig. 4(a). Figure 4(b) shows the corresponding q0 distribution12

with the peak visible at q0 = 0. The superimposed curve is a chi-square distribution multiplied by one13

half, corresponding to the half of the events with µ̂ > 0.14
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Figure 4: (a) Scatterplot of µ̂ versus qµ from a Monte Carlo study with µ = 0; (b) the distribution of q0 (see text).

From Fig. 4(b) one can see that except for the spike at q0 = 0 (when µ̂ = 0), the pdf of q0 can be well15

approximated by the chi-square pdf. Assuming a fraction w for the cases with µ̂ > 0 one has the pdf16

f (q0|0) = w fχ21 (q0)+(1−w)δ (q0) . (18)

In the usual case where upward and downward fluctuations of µ̂ are equally likely we have w= 1/2. The17

p-value of the background-only hypothesis given an observation q0,obs greater than zero is therefore18

p=
∫ ∞

q0,obs
w fχ21 (q0)dq0 = w(1−Fχ21 (q0,obs)) , (19)

where Fχ21 is the cumulative chi-square distribution for one degree of freedom.19

The second case to consider is µ > 0, e.g., when one wants to set an upper limit on µ . Under the20

hypothesis µ , one obtains µ̂ > µ and µ̂ ≤ µ with approximately equal probability. Figure 5 shows the21

distributions of qµ for both cases µ̂ > µ and µ̂ ≤ µ obtained from the scatterplot Fig. 3(a), from a Monte22

Carlo study with µ = 0.8.23

8
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Figure 5: Distributions of −2lnλ (µ) for (a) µ̂ > µ and (b) µ̂ ≤ µ . The superimposed curves are chi-square
distributions for one degree of freedom normalized to half the number of entries in the original distribution (see
Fig. 3(a)).

From Fig. 5(a) one can see that for µ̂ > µ , the data follow the chi-square pdf quite accurately. This1

portion of the distribution is ignored, however, when setting upper limits on µ , because of the modified2

definition of qµ (20) used for limits,3

qµ =

{

−2lnλ (µ) µ̂ ≤ µ ,

0 otherwise .
(20)

Suppose now µ̂ ≤ µ with a probability w; in practice this is close to one half. (Note for the case of q0,4

w is the probability of µ̂ > µ . The different definitions of w are used so as to give similar forms for5

f (q0|0) and f (qµ |µ).) Thus for µ̂ > µ one has from (20) qµ = 0, and therefore the distribution has a6

delta function at qµ = 0 with weight 1−w. The pdf of f (qµ |µ) can therefore be written7

f (qµ |µ) = w f (qµ |µ, µ̂ ≤ µ)+(1−w)δ (qµ) . (21)

where f (qµ |µ, µ̂ ≤ µ) is the conditional pdf for qµ given µ̂ ≤ µ .8

For µ̂ ≤ µ , one may sometimes find µ̂ equal to zero, i.e., the lower edge of the allowed range, as can9

be seen in the scatterplot of µ̂ versus qµ shown in Fig. 3(a). Although for the case µ = 0 this gave a peak10

at q0 = 0, here it gives11

λ (µ) =
L(µ, ˆ̂θ)

L(µ̂, θ̂)
=
L(µ, ˆ̂θ)

L(0, θ̂ )
, (22)

which in contrast to (17) is not equal to unity. The effect of having µ̂ = 0 on the distribution of qµ is12

therefore more complicated than was the case for q0.13

In general for µ̂ ≤ µ , the distribution of qµ falls off more steeply than the chi-square distribution.14

This is seen in Fig. 5(b). Therefore a p-value based on the chi-square formula will be larger than the15

true p-value, and the corresponding significance Z will be smaller. The upper limits obtained for µ are16

therefore larger, i.e., a smaller set of µ values is excluded.17

If µ is sufficiently large, then µ̂ is very rarely pushed to zero and f (qµ |µ, µ̂ ≤ µ) approaches a18

chi-square distribution for one degree of freedom. For purposes of the present study, the chi-square19

approximation is adequate, but gives somewhat conservative limits. That is, we take the distribution of20

qµ to be21

f (qµ |µ) = w fχ21 (qµ)+(1−w)δ (qµ) (23)

9
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and use w= 0.5. One has therefore the same pdf for qµ using the modified definition (20) as was found1

in (18) for q0 based on the original definition, q0 =−2lnλ (0).2

To summarize the result above, the pdf of qµ can be approximated by a mixture of a chi-square pdf3

for one degree of freedom with weight w and a delta function at zero with weight 1−w. This holds both4

for discovery (µ = 0) and setting limits (µ > 0).5

Consider now the variable6

u=
√qµ =

√

−2lnλ (µ) , (24)

which has the pdf7

f (u) =Θ(u)w
√

2
π
e−u

2/2+(1−w)δ (u) , (25)

where Θ(u) = 1 for u ≥ 0 and is zero otherwise. The second term in (25) follows from the fact that the8

values q0 = 0 and u = 0 occur with equal probability, 1−w. Furthermore if a variable x follows the9

standard Gaussian distribution, then one can show x2 follows a chi-square distribution for one degree of10

freedom. Therefore if x2 follows a χ2 distribution, then
√
x2 follows a Gaussian scaled up by a factor of11

two for x> 0 so as to have a total area of unity.12

The p-value of the hypothesis µ for a non-zero observation qµ ,obs is therefore13

p= P(qµ ≥ qµ ,obs) = P(u≥√qµ ,obs) = 2w
∫ ∞

√qµ ,obs

1√
2π

e−u
2/2 du= 2w(1−Φ(

√qµ ,obs)) . (26)

Combining this with Eq. (14) for the significance Z gives14

Z =Φ−1(1−2w(1−Φ(
√qµ ,obs))) . (27)

In the usual case where the weights of the chi-square and delta-function terms are equal, i.e., w = 1/2,15

Eq. (27) reduces to to the simple formula16

Z =
√qµ ,obs . (28)

2.5 Approximate methods17

To determine the discovery significance or to set limits using a given data set, one must carry out the18

global fit described above. For this one needs first to combine the likelihood functions for the individual19

channels into the full likelihood function containing a single strength parameter µ , and use this to find20

the profile likelihood ratio. It is possible, however, to find approximate values for the median discovery21

significance and limits in a way that only requires as input the separate profile likelihood ratio values22

from each of the channels. This is very useful especially in the planning phase of a search that combines23

multiple channels.24

The procedure relies on two separate approximations. First, we estimate the median value of the pro-25

file likelihood ratio λ (µ) by evaluating the likelihood function with a single, artificial data set in which26

all statistical fluctuations are suppressed, as described in Section 2.5.1. Second, to determine the signif-27

icance values from the likelihood ratios, we use the asymptotic form of the distribution of −2lnλ (µ)28

valid for sufficiently large data samples. This is described in Section 2.5.2, and its validity is checked29

for the individual channels in Section 3. Here the limitations of the approximation are investigated and30

for one case where it is found to be insufficiently accurate (the discovery significance for the channel31

H→W+W− plus no jets), an alternate procedure is followed.32

10
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2.5.1 Approximation for the median likelihood ratio1

To find the median discovery significance and limits, the median likelihood ratios λ i(µ) are first found2

for each channel separately, and then combined to give the full median likelihood ratio. One can estimate3

the median λi(µ) by the value of the likelihood ratio evaluated with a single artificially constructed data4

set, in which all statistical fluctuations are suppressed and the data values n and m are replaced by their5

expectation values for a given integrated luminosity and a hypothesized strength parameter µA. We refer6

to this as an ‘Asimov’ data set.2 It replaces having to simulate a large number of experiments from which7

one would determine the median.8

As before, µA = 0 is the background only hypothesis and µA = 1 corresponds to background plus9

signal present at the Standard Model rate. The median referred to thus pertains to what one would obtain10

with a large number of experiments generated under the assumption of µA. The approximation is in fact11

more accurate if one uses noninteger values for numbers of events in the log-likelihood (the factorial12

terms are in any case absent) so that the Asimov likelihood LA is found by substituting13

n j = µAs j +b j (29)

mk = uk , (30)

into the likelihood function (6) for each channel. Here for s j, b j and uk, one needs in principle the14

expectation values, i.e., these quantities should have no statistical errors. In practice they are estimated15

using a Monte Carlo sample corresponding to an integrated luminosity substantially larger than what is16

considered for the data. The numbers of signal and background events are then scaled to the desired17

luminosity. The other nuisance parameters such as shape parameters are estimated as would be done18

with any other data set; we refer below to the resulting values as θ A. Because the Asimov data set has19

no statistical fluctuations, the θA are simply the values one would derive from a very large Monte Carlo20

data sample.21

The estimate of the median likelihood ratio used for the ith channel is therefore22

λA,i(µ) =
LA,i(µ, ˆ̂θ)

LA,i(µ̂, θ̂)
≈ LA,i(µ, ˆ̂θ)

LA,i(µA,θA)
, (31)

where LA,i denotes the likelihood function (6) evaluated with the Asimov data values (29) and (30). The23

approximation used for the final step in (31) exploits the fact that ML estimate of µ̂ is very close to the24

input value µA when the likelihood function is constructed using the Asimov data set.25

Note that if the likelihood functions for the individual channels were to be constructed with data26

containing statistical fluctuations rather than with the artificial Asimov data, then the ML estimate of the27

strength parameter, µ̂ , would in general be different for each channel. The full likelihood function (8)28

used for the combination, however, contains a single global µ . We can now exploit the fact that for the29

Asimov data one has µ̂ ≈ µA for all of the channels and thus obtain the median likelihood ratio for the30

combination as the product of the individual λA,i(µ),31

λA(µ) =∏
i
λA,i(µ) . (32)

Monte Carlo studies show that Eq. (32) provides an excellent approximation to the median value one32

would find from data generated with µA as the strength parameter.33

2The name of the Asimov data set is inspired by the short story Franchise, by Isaac Asimov [1]. In it, elections are held by
selecting a single voter to represent the entire electorate.

11
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For purposes of quantifying how likely we are to discover the Higgs if it exists, we report the signif-1

icance obtained from the p-value of µ = 0 with an Asimov data set that corresponds to µA = 1,2

λs+b(0) =∏
i

Ls+b,i(0, ˆ̂θ )

Ls+b,i(1,θA)
. (33)

Here the subscript s+b refers to the Asimov data set; the argument 0 denotes the value of µ being tested.3

That is, Eq. (33) approximates what one would obtain with data generated with signal and background4

for the median value of λ (0), which is used to test the background-only (µ = 0) hypothesis. Equation5

(33) provides the median q0med = −2lnλs+b(0), and from this the p-value and significance Z are found6

using equation (15).7

To determine the limits on µ that we expect to set if the Higgs does not exist (or is beyond our8

reach), we find the p-value of a hypothesized µ using the likelihood ratio λ (µ) based on Asimov data9

for background only (µA = 0),10

λb(µ) =∏
i

Lb,i(µ, ˆ̂θ)

Lb,i(0,θA)
. (34)

That is, λb(µ) approximates the median value of λ (µ) one would obtain from data generated according11

to the background-only hypothesis. The value of λb(µ) is used to determine the median qµmed , which is12

used to find the median p-value, pµmed . This is computed for all µ and the point where pµmed = 0.05 gives13

the 95% CL upper limit.14

Because µ̂ ≈ µA holds for each channel individually when using Asimov data, it is possible to de-15

termine the values of the likelihood ratio entering into (32) separately for each channel, which simplifies16

greatly the task of estimating the median significance that would result from the full combination. It17

should be emphasized, however, that the discovery significance or exclusion limits determined from real18

data require one to construct the full likelihood function containing a single parameter µ , and this must19

be used in a global fit to find the profile likelihood ratio.20

Furthermore, some systematic errors, e.g., the uncertainty in the integrated luminosity, are common21

to all channels and correspond to a common nuisance parameter. When using Asimov data, the values of22

such parameters will be fitted to the same values in all channels. Thus the correlations between common23

systematics are taken into account just as they would be in a global fit of all channels.24

A limitation of the procedure with Asimov data is that it only provides an estimate of the median25

likelihood ratio. To obtain an uncertainty band on the expected (median) discovery and exclusion sensi-26

tivities as a function of mH one would have to simulate a large number of experiments.27

2.5.2 Approximate relation between likelihood ratio and significance28

To compute the p-values we need the distribution f (qµ |µ) of qµ = −2lnλ (µ). For a sufficiently large29

data sample the pdf of qµ takes on a well defined limiting form related to the chi-square distribution, as30

discussed in Section 2.4. Assuming this form, the p-value of the hypothesis µ is found to be31

pµ ≈ 1−Φ(
√qµ) , (35)

and the significance Z is given by the formula32

Z =Φ−1(1− pµ)≈
√

−2lnλ (µ) . (36)

For estimating the median discovery significance we use equations (35) and (36) together with the equa-33

tion (33), the likelihood ratio based on Asimov data containing signal and background. To find the34
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median limit on µ , we use again equations (35) and (36) but with the likelihood ratio based on Asimov1

background data only, equation (34).2

The validity of this approximation is investigated for each channel by generating distributions of3

qµ for µ = 0,1 using a fast Monte Carlo simulation and comparing the resulting histograms with the4

expected asymptotic form. These comparisons are shown in Section 3.5

2.6 Consequences of testing many Higgs mass values6

The statistical significance of a potential discovery is quantified by giving the p-value of the no-Higgs7

hypothesis, i.e., the probability, under the assumption of background only, that that one would see data8

with equal or less compatibility with this hypothesis relative to the data obtained. Finding this proba-9

bility below a specified threshold (e.g., the 5σ threshold, or p < 2.87× 10−7) corresponds to claiming10

discovery of a Higgs boson.11

The approach taken in this analysis is to compute the p-value of the no-Higgs hypothesis separately12

as a function of the Higgs mass. The threshold p-value is thus the false discovery rate for Higgs boson13

of a given mass. Further one should also estimate the probability, under the assumption of background14

only, that this p-value will fall below the discovery threshold for any mass within the range considered.15

By searching for the Higgs within a broad range of hypothetical masses, one increases the probability of16

observing what appears to be a signal at some mass, and so the effective significance of the discovery is17

reduced. In HEP this is sometimes referred to as the “look-elsewhere effect”.18

To first approximation the effective increase in the false-discovery rate is given by the number of19

statistically separate mass ranges explored. If a certain data set would give a p-value of mH below the20

discovery threshold, then the same data would in general also indicate discovery for other masses very21

close by. Roughly speaking, the mass range in which a given data set would indicate discovery is set by22

the mass resolution for the Higgs candidate. So the factor by which the p-value is inflated is given by the23

mass range explored divided by the average mass resolution. Monte Carlo studies can be used to validate24

and refine this approximation; this approach is planned for future analyses.25

An alternative to considering fixed Higgs masses is to treat both the strength parameter µ and the26

Higgs mass mH as free parameters in the likelihood ratio. For example, to establish discovery one com-27

putes the p-value of the no-Higgs hypothesis. As before, this is the probability, under the assumption of28

no Higgs, of finding data with equal or lesser compatibility with µ = 0 relative to the data obtained. In29

contrast to the fixed-mass case, however, “less compatible” here means having a lower likelihood ratio30

for any allowed value of the Higgs mass; the lowest value comes when the denominator contains the31

fitted maximum-likelihood estimator m̂H. In practice the fitted value of the Higgs mass is restricted to32

lie within a stated range. This has been done for the Higgs searches using the γγ [4] and W+W− [5]33

channels, with the aim of extending this method to a combination of all channels.34

3 Combination of Higgs search channels35

In this section a brief description of each of the four search channels is given. For each channel, the36

method used to obtain the likelihood ratio is described, and values of the test variable qµ as defined37

by Eq. (10) for discovery and by Eq. (16) for limits are tabulated for several values of the integrated38

luminosity L and Higgs mass mH. For the discovery sensitivity where one tests µ = 0, the median value39

of q0 is given under the assumption of µ = 1; for exclusion sensitivity, the median of q1 is given under40

the assumption of µ = 0.41

In addition, for each channel we show distributions of qµ under the assumption of µ for the two42

cases µ = 0 and µ = 1. For the approximations used in this note to be valid, these should be close to the43

asymptotic form described in Section 2.4. This limiting form for the distribution f (qµ |µ) is a mixture of44
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a delta function at qµ = 0 and a chi-square distribution for one degree of freedom, where each component1

has equal weight. We refer to this as a 12χ21 distribution. For the case of µ = 0 we compare directly the2

Monte Carlo distribution of q0 with the 12χ21 distribution and the delta-function term at q0 = 0 is clearly3

visible. For µ = 1 we show the equivalent comparison but for reasons of convenience only the events4

with µ̂ ≤ µ are shown, i.e., the events with µ̂ > µ that contribute to the delta function at q1 = 0 are left5

off. That is, for exclusion it is the conditional pdf f (q1|µ = 1, µ̂ ≤ 1) that is compared to a chi-square6

distribution for one degree of freedom; there is no delta function term.7

All channels use data driven background estimation methods. This way, the uncertainties in the back-8

ground shape and normalization are treated within the framework of the profile likelihood as nuisance9

parameters. Using control samples the effect of many uncertainties like energy scales and fake rates on10

the background estimate can be constrained by the control samples. Uncertainties on the signal efficiency11

do not affect the discovery sensitivity which is testing the presence or absence of a signal; however, this12

is not the case for exclusion sensitivity. As one would expect, uncertainty in the signal efficiency does13

reduce the exclusion sensitivity. This uncertainty was incorporated into the profile likelihood calculation14

by adding an extra term to the likelihood function for every channel as described in Section 2.1: a Gaus-15

sian relating the nominal efficiency estimated in an auxiliary measurement, the true efficiency, and the16

uncertainty of that auxiliary measurement.17

3.1 H → γγ18

Details on the H → γγ channel are given in Ref. [4]. We perform an unbinned maximum-likelihood
fit to extract the signal and background event yields by using the diphoton invariant mass, mγγ , as a
discriminating variable. The H → γγ distribution of mγγ forms a Gaussian peak with tails to lower
values from photon energy losses before the calorimeter. It is well modelled by a Crystal Ball function.
The signal probability density function, pH(mγγ), is given by

pH(mγγ) = N ·
{

exp
(

−t2/2
)

, for t >−α ,

(n/|α|)n · exp
(

−|α|2/2
)

· (n/|α|− |α|− t)−n , otherwise ,
(37)

where t = (mγγ −mH − δmH)/σ(mγγ), N is a normalisation parameter, mH is the Higgs boson mass,19

δmH is an offset and σ represents the diphoton invariant mass resolution. The non-Gaussian tail is20

parametrised by n and α . We include an additional, broader Gaussian term in Eq. 37 to improve the21

description of the tails of the distribution. Within a sufficiently narrow mass window, the background of22

mγγ is modeled by an exponential distribution with a single slope parameter ξ .23

The resulting median profile likelihood ratios for discovery, λ (µ = 0) (using toy s+b Monte Carlo24

experiments and taking the median of the λ (µ = 0) distribution ) are given in Table 1 for a few Higgs25

masses at some given luminosities.26

The distribution of the test statistic q0 under the null background only hypothesis, formH = 120 GeV27

with an integrated luminosity of 2 and 10 fb−1, is shown in Fig. 6. A 12χ21 distribution is superimposed,28

showing the validity of the asymptotic approximation.29

The median profile likelihood ratio for exclusion, −2lnλ (µ) (using toy background-only Monte30

Carlo experiments and taking the median of the λ (µ) distribution) is given in Table 2 for a few Higgs31

masses at several integrated luminosities and for a signal strength µ = 1, corresponding to a Standard32

Model Higgs Boson.33

The distribution of the test statistic q1 for µ̂ ≤ 1 under the s+b hypotheses for mH = 150 GeV with34

an integrated luminosity of 2 and 10 fb−1 is shown in Figures 7. A χ21 distribution is superimposed,35

showing the validity of the asymptotic approximation.36
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Table 1: Median values of −2lnλ (µ) (evaluated at µ = 0) obtained from fits to simulated data generated with
H → γγ signal plus background (µ = 1) for several values of the Higgs mass and integrated luminosity.

L mH (GeV)
(fb−1) 115 120 130 140
1 0.35 0.55 0.75 0.67
2 0.75 1.07 1.45 0.95
5 1.95 2.95 3.65 2.55
10 3.95 5.86 7.35 5.05
30 11.85 17.72 21.99 15.05
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Figure 6: The distribution of the test statistic q0 (for H → γγ), under the null background only hypothesis, for
mH = 120 GeV with an integrated luminosity of 2 (a) and 10 (b) fb−1. A 12χ21 distribution is superimposed.

Table 2: Median values of −2lnλ (µ) (evaluated at µ = 1) obtained from H → γγ background-only (µ = 0)
simulated data for several values of the Higgs mass and integrated luminosities.

L mH (GeV)
(fb−1) 115 120 130 140
1 0.72 0.73 0.91 0.67
2 0.97 1.21 1.39 0.97
5 2.11 2.59 3.13 2.23
10 3.55 4.87 5.71 4.04
30 8.47 10.50 11.63 9.00
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Figure 7: The distribution of the test statistic q1 for µ̂ ≤ 1 under the s+b hypothesis (for H→ γγ), for mH = 120
GeV with an integrated luminosity of (a) 2 fb−1 and (b) 10 fb−1. A χ21 distribution is superimposed.

3.2 H →W+W−
1

The H→W+W− search is divided into two topologies, production of a Higgs with no jets (H+0 j) and2

with two additional jets (H+ 2 j), using in both cases the decay mode H→WW → eνµν . The present3

study does not yet consider the final states eνeν or µνµν , nor those with hadronic W decays. Future4

inclusion of these channels is expected to improve the search sensitivity particularly for the high Higgs5

mass region. The search is described in detail in Ref. [5].6

3.2.1 H+0 j7

The analysis of the H + 0 j channel uses a two dimensional maximum-likelihood fit of the transverse8

mass and the transverse momentum of the WW system in two bins of the dilepton opening angle in the9

transverse plane. The fit includes control samples to measure the backgrounds from tt and Z→ ττ .10

The QCD WW background requires particular attention. Its distributions of Higgs-candidate trans-11

verse mass and pT are described with functions containing several adjustable (nuisance) parameters, and12

several others whose values are determined from a full Monte Carlo simulation and thereafter treated as13

fixed. The distribution of the test statistic q0 under the background-only (µ = 0) hypothesis is shown in14

Fig. 8(a) for mH = 150 GeV for an integrated luminosity of 10 fb−1. The same fixed QCD WW shape15

parameters are used both to generate the data and for calculating the likelihood ratio. A 12χ21 distribution16

is superimposed, showing the level of agreement of the asymptotic approximation.17

For this channel, further investigation of the systematic uncertainties was carried out. For the fixed18

shape parameters related to pT and transverse mass distributions for the QCD WW background, the val-19

ues used to generate the data were varied relative to what was used when determining the likelihood ratio.20

This was done in a manner that minimized the sensitivity of the resulting q0 distribution to variations in21

other fixed parameters such as the QCD Q2 scale. The resulting distributions of q0 are thus no longer22

expected to follow the 12χ21 form, as can be seen in Fig. 8(b).23

Because the chi-square approximation is not valid in this case, the p-values are calculated using the24

q0 distribution obtained directly from the Monte Carlo. An exponential is fitted to the tail region in25

order to extrapolate to large q0 values, and the median value of q0 under the hypothesis of signal plus26

background is determined using the same variation of the background parameters. It was found that the27

median p-value of the background-only hypothesis, with the median computed under assumption of the28

s+b hypothesis, is very similar to the original case where the QCD shape parameters are not varied and29

the 12χ21 distribution is used.30
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Figure 8: The distribution of the test statistic q0 for H+0 j→WW +0 j, under the background-only hypothesis,
with the same fixed QCD WW shape parameters used at both the generator and the fit level, for mH = 150 GeV
and for an integrated luminosity of 10 fb−1 (a) with the same shape parameters for event generation and fitting; (b)
with altered shape parameters. A 12χ21 distribution is superimposed.

For the combination of results for discovery (i.e., testing µ = 0), we have used the p-values as1

described above for the case of the H + 0 j channel. The same variation of QCD WW parameters was2

also investigated for the case of exclusion (i.e., testing µ > 0, and in particular µ = 1), and it was done3

as well for the H + 2 j channel. In those studies, however, the distributions, under the assumption of4

µ , of the test statistic qµ were found to agree quite well with the expected 12χ21 distribution, even after5

the parameter variation. Therefore for these cases we have based the combination of results on the6

asymptotic approximations for the qµ distributions (as done in this paper for the other Higgs channels).7

To simplify the comparison with the other channels, the median p-values of the background-only8

(µ = 0) hypothesis for the H + 0 j channel were converted into effective values of the variable q0 =9

−2lnλ (0) according to q0 = Z2 =
(

Φ−1(1− p)
)2. These are given in Table 3 for several Higgs masses10

and integrated luminosities.11

Table 3: Median values of −2lnλ (µ = 0) obtained from H+ 0 j fits using data simulated under the assumption
of signal plus background (µ = 1) for several values of the Higgs mass and integrated luminosity.

L mH (GeV)
(fb−1) 130 140 150 160 170 180 190
1 1.64 4.30 9.56 16.52 15.39 7.37 3.17
2 2.87 8.60 19.36 34.67 30.58 13.73 5.63
5 6.55 20.15 42.77 74.39 63.58 31.54 13.54
10 11.52 33.27 70.67 113.33 103.44 51.06 22.78

The median profile likelihood ratio for exclusion, λ (µ) (using background-only MC experiments and12

taking the median of the λ (µ) distribution), is given in Table 4 for several Higgs masses and integrated13

luminosities for the signal strength µ = 1.0, corresponding to a SM Higgs Boson.14

The distribution of the statistic q1 for µ̂ ≤ 1 under the s+b hypothesis is shown in Fig. 9 formH = 15015

GeV and for an integrated luminosity of 2 and 10 fb−1. A χ21 distribution is superimposed, showing the16

validity of the asymptotic approximation.17
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Table 4: Median values of −2lnλ (µ = 1) obtained from H+ 0 j fits using simulated background-only (µ = 0)
data for several values of the Higgs mass and integrated luminosity.

L mH (GeV)
(fb−1) 130 140 150 160 170 180 190
1 1.37 3.93 8.69 14.83 14.23 7.26 3.26
2 2.57 7.47 15.59 25.20 23.65 12.91 5.84
5 5.85 15.26 30.05 45.60 41.13 25.41 12.02
10 10.01 24.69 45.24 62.13 57.69 37.42 20.03
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Figure 9: The distribution of the test statistic q1 for µ̂ ≤ 1 under the s+b hypothesis for H+0 j→WW +0 j, for
mH = 150 GeV with an integrated luminosity of (a) 2fb−1 and (b) 10fb−1. A χ21 distribution is superimposed.
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3.2.2 H+2 j1

The H+2 j analysis uses a two-dimensional fit based on the transverse mass and the output of a Neural2

Network, which takes as input several kinematic variables related to the jet activity in the event. The fit is3

performed simultaneously in signal-enriched and background-enriched regions distinguished by lepton4

angular variables, which are nearly uncorrelated to the jet variables used in the Neural Network.5

The median profile likelihood ratios for discovery, −2lnλ (µ = 0) (using toy s+bMC experiments6

and taking the median of the λ (µ = 0) distribution), are given in Table 5 for several Higgs masses and7

integrated luminosities.8

Table 5: Median values of −2lnλ (µ) for µ = 0 obtained from H + 2 j fits to simulated data with signal plus
background (µ = 1) for several values of the Higgs mass and integrated luminosity.

L mH (GeV)
(fb−1) 130 140 150 160 170 180 190
1 0.39 0.89 1.61 2.73 2.89 1.85 1.23
2 0.70 1.75 3.22 5.34 5.67 3.66 2.07
5 2.01 5.29 8.87 14.20 14.58 9.22 5.71
10 3.82 9.14 16.56 26.35 26.05 16.68 9.93

The distribution of the statistic q0 under the background-only hypothesis is shown in Fig. 10 for9

mH = 150 GeV and for an integrated luminosity of 2 and 10 fb−1. A 12χ21 distribution is superimposed,10

showing the validity of the asymptotic approximation.11
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Figure 10: The distribution of the test statistic q0 (for H + 2 j →WW + 2 j), under the null background only
hypothesis, for mH = 150 GeV and for an integrated luminosity of 2 (a) and 10 (b) f b−1. A 12χ21 distribution is
superimposed.

The median profile likelihood ratio for exclusion, −2lnλ (µ) with µ = 1, where the median is com-12

puted using background-only MC data, is given in Table 6 for several Higgs masses and integrated13

luminosities.14

The distribution of the test statistic q1 for µ̂ ≤ 1 under the s+ b hypothesis is shown in Figures 1115

for mH = 150 GeV with an integrated luminosity of 2 and 10fb−1. A χ21 distribution is superimposed,16

showing the validity of the asymptotic approximation.17
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Table 6: Median values of −2lnλ (µ) for µ = 1 obtained from H+2 j fits to simulated background-only (µ = 0)
data for several values of the Higgs mass and integrated luminosity.

L mH (GeV)
(fb−1) 130 140 150 160 170 180 190
1 0.37 0.75 1.31 2.29 2.44 1.99 0.95
2 0.87 2.49 5.06 8.18 7.74 3.85 1.90
5 1.40 3.13 5.86 9.58 9.90 7.89 4.59
10 2.80 6.56 10.72 16.14 16.62 13.94 8.74
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Figure 11: The distribution of the test statistic q1 for µ̂ ≤ 1 under the s+ b (µ = 1) hypothesis (for H+ 2 j→
WW + 2 j), for mH = 150 GeV with an integrated luminosity of (a) 2fb−1 and (b) 10fb−1. A χ21 distribution is
superimposed.
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3.3 H → τ+τ−1

The sensitivity of the ATLAS detector to a Higgs boson produced via Vector Boson Fusion and decaying2

to tau leptons has been investigated [6].3

Two tau decay channels are considered: ll and lh. Although there are several neutrinos in the event,4

it is possible to reconstruct the τ+τ− invariant mass, mττ , by making the collinear approximation, in5

which the decay products of the τ are assumed to be collinear with the τ direction in the laboratory6

frame. After other event selection criteria are imposed, the spectrum of mττ is used to extract the signal.7

Particular care has been given to the incorporation of uncertainty in both the rate and shape for the signal8

and backgrounds.9

A data-driven background estimation technique has been established for the major backgrounds.10

Each technique has been developed to address the aspects of the background estimation which are most11

relevant for the analysis: the shape of the mττ tail from the irreducible Z→ ττ , the fake tau contribution12

in the lh-channel, and the normalization of the QCD backgrounds.13

In addition to the mττ spectrum from the Z → ττ and QCD control samples, a track multiplicity14

distribution is used to constrain the fraction of QCD events in the lh-channel. This likelihood term is15

denoted Ltrack(rQCD,rtau), where rtau (rQCD) denotes the fraction of real taus (fakes from jets) in the16

sample. The track multiplicity distribution for the QCD jets is modelled from samples of QCD di-jets17

that produce tau candidates.18

The shape of the mττ distribution for signal and Z→ ττ events is dictated by the resolution of /E T and19

the kinematics of the collinear approximation. The parameterization of mττ for the signal and Z→ ττ20

background are based on the kinematics of the collinear approximation and reproduces an asymmetric21

distribution with non-Gaussian tails. This distribution is dependent on the overall width width, σH/Z , and22

a mean, mH/Z .23

A Z→ ττ control sample is used to constrain the mean, mZ , and the overall width of the distribution,24

σZ , which are the only free parameters in the Z→ ττ background model. The error bars in the control25

sample were scaled to 10% to account for the 10% shape uncertainty in the µ → τ rescaling method.26

The shapes for W+jets and tt̄ are very similar and are modelled with a single distribution. A con-27

servative 50% error is applied to each bin in the combined QCD (i.e., t t̄ andW+jets) control sample to28

reflect uncertainty in how this shape changes as the remainder of the analysis cuts are applied.29

The shape of the QCD background was parametrized with the following equation:

LQCD(mττ |a1,a2,a3) = N

(

1
mττ +a1

)a2
ma3
ττ . (38)

The form is motivated by a competition between the parton distribution functions and the matrix element.30

In the lh-channel, the normalization of the backgrounds with fake taus can be constrained by using the31

track multiplicity method described above. We apply a conservative 50% systematic on this fraction.32

By fitting the mττ spectrum to a model that accurately describes the signal and various backgrounds
it is possible to directly incorporate uncertainty in the background shape and take advantage of the shape
of the signal within the mass window. We utilize the profile likelihood ratio as our test statistic. The
likelihood function corresponding to the simultaneous fit is simply a product of the likelihoods from the
individual measurements:

L(data|µ,mH ,ν) = Ltrack(track multiplicity|rQCD)×LZ(Z+ jets control|mZ,σZ)

× LQCD(QCD control|a1,a2,a3)
× Ls+b(signal candidates|µ,mH ,σH ,mZ ,σZ,rQCD,a1,a2,a3), (39)

where the ai are the parameters used to parametrize the QCD background and ν represents all nuisance33

parameters of the model: σH ,mZ,σZ,rQCD,a1,a2,a3.34
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The data-driven background estimation methods described above have been developed so that un-1

certainty in the background shape and normalization are included directly into the significance calcu-2

lation. Because the discovery criterion is simply testing the presence or absence of the signal, it is not3

sensitive to some of the sources of systematic uncertainty. In contrast, measurement and exclusion of4

σ(pp→ qqH)×BR(H → ττ) are sensitive to the uncertainty on the signal selection efficiency. Both5

experimental and theoretical sources of uncertainty on the signal efficiency have been evaluated. The jet6

energy scale uncertainty dominates in this channel, and a signal efficiency uncertainty of 18% was used7

when estimating the exclusion sensitivity.8

The median profile likelihood ratios for discovery, λ (µ = 0) (using the Asimov data sets with µA =9

1), are given in Table 7 for a few Higgs masses at some given luminosities. The distribution of the test10

statistic q0 under the null background only hypothesis, for mH = 130 GeV with an integrated luminosity11

of 2 and 10fb−1, is shown in Figure 12. A 12χ21 distribution is superimposed, showing the validity of the12

asymptotic approximation.13

Table 7: Median values of −2lnλ (µ = 0) obtained from H → τ+τ− simulated data generated with signal plus
background (µ = 1) for several values of the Higgs mass and integrated luminosity.

L mH (GeV)
(fb−1) 110 120 130 140
1 0.59 0.88 0.72 0.46
2 1.18 1.74 1.40 0.89
5 2.91 4.43 3.34 2.08
10 5.81 8.23 6.37 3.91
30 17.2 23.6 17.6 10.6

The resulting median profile likelihood ratio for exclusion, λ (µ) (using the Asimov data sets, µA =14

0), is given in Table 8 for a few Higgs masses at some given luminosities and signal strength µ = 1.015

corresponding to a Standard Model Higgs Boson.16

The distribution of the test statistic q1 for µ̂ ≤ 1 under the s+b hypotheses for mH = 130GeV with17

an integrated luminosity of 2 and 10 fb−1 is shown in Figures 13. A χ21 distribution is superimposed,18

showing the validity of the asymptotic approximation.19

Table 8: Median values of−2lnλ (µ = 1) obtained from H → τ+τ− background-only (µ = 0) simulated data for
several values of the Higgs mass and integrated luminosities.

L mH (GeV)
(fb−1) 110 120 130 140
1 0.64 0.71 0.52 0.32
2 1.31 1.41 1.03 0.64
5 3.30 3.42 2.52 1.56
10 6.93 7.79 7.18 3.48
30 15.3 16.6 12.8 8.48
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Figure 12: The distribution of the test statistic q0 for H → τ+τ− under the null background-only hypothesis,
for mH = 130GeV with an integrated luminosity of 2 (a) and 10 (b) fb−1. A 12χ21 distribution is superimposed.
Figures (c) and (d) show 1−F(q0) where F(q0) is the corresponding cumulative distribution. The small excess
of events at high q0 is statistically compatible with the expected curves, as can be seen by comparison with the
dotted histograms that show the 68.3% central confidence intervals for p = 1−F(q0|0). The lower dotted line at
2.87×10−7 shows the 5σ discovery threshold.
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Figure 13: The distribution of the test statistic q1 for µ̂ ≤ 1 under the s+ b hypothesis for H → τ+τ−, for
mH = 130GeV with an integrated luminosity of (a) 2 fb−1 (b) and 10 fb−1. A χ21 distribution is superimposed.
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3.4 H → ZZ(∗) → 4l1

Details of the H → ZZ(∗) → 4l channel can be found in Ref. [7]. The main challenge of this channel2

for what concerns statistical analysis is its relevance over a very wide mass range (from mH around3

120GeV up to 700GeV), over which the shapes and cross sections of both signal and background show4

considerable variations.5

While in principle it would be possible to divide the mass range in different regions and use sepa-6

rate models for each of them, using a unique background model for the whole phase space is a better7

approach, since it allows to estimate discovery and exclusion significance at any mass, without having8

to worry about boundaries between different models. This will be needed of course when the analysis is9

performed using real data, where mH is unknown.10

The main background after event filtering in this channel is the irreducible ZZ → 4l process. Re-11

ducible backgrounds such as Zbb̄→ 4l+X or tt̄ give a negligible contribution to the overall shape, with12

the only exception of the mH = 120GeV case, where Zbb̄→ 4l+X modifies the background shape in13

the low mass region, and it must therefore be taken into account.14

The irreducible background has been modelled using a combination of Fermi functions which are suit-15

able to describe both the plateau in the low mass region and the broad peak corresponding to the second16

Z coming on shell. The chosen model is described by the following function:17

p0

(1+ e
p6−MZZ

p7 )(1+ e
MZZ−p8

p9 )
+

p1

(1+ e
p2−MZZ

p3 )(1+ e
p4−MZZ

p5 )
. (40)

The first plateau, in the region where only one of the two Z bosons is on shell, is modelled by the18

first term, and its suppression, needed for a correct description at higher masses, is controlled by the p819

and p9 parameters. The second term in the above formula accounts for the shape of the broad peak and20

the tail at high masses. This function can describe with a negligible bias the ZZ background shape with21

good accuracy over the full mass range.22

As already mentioned, the Zbb̄ contribution is relevant only when searching for very light Higgs23

bosons (in this study, only mH = 120GeV). In this case, an additional term is added to the ZZ continuum,24

with a functional form similar to the second part of equation 40. For what concerns signal modelling, a25

simple Gaussian shape has been used for mH ≤ 300GeV, while a relativistic Breit-Wigner formula was26

needed to properly describe the big tails arising at higher values of the Higgs mass.27

In the fits to determine the profile likelihood ratio, mH is fixed to the hypothesized value, while σH28

is allowed to float in a±20% range around the value obtained from the signal Monte Carlo distributions.29

All the parameters describing the background shape are floating within sensible ranges. Given the com-30

plexity of the model involved, the fit can from time to time get trapped into local minima. While there is31

no easy way to avoid this problem, the fake measurements obtained in this case are easy to distinguish32

from the correct ones, and a repetition of the fit from a different starting point is enough to solve the33

problem.34

The resulting median profile likelihood ratios for discovery, −2lnλ (µ = 0), with the median com-35

puted using toy s+bMC data (i.e., with µ = 1), are given in Table 9 for several values of the Higgs mass36

and integrated luminosity.37

The distribution of the test statistic q0 under the null background-only hypothesis, formH = 200 GeV38

with an integrated luminosity of 2 and 10fb−1, is shown in Fig. 14. A 12χ21 distribution is superimposed,39

showing the validity of the asymptotic approximation.40

The resulting median profile likelihood ratio for exclusion, λ (µ) (using toy background-only MC41

experiments and taking the median of the λ (µ) distribution), is given in Table 10 for several Higgs42

masses and luminosities using a signal strength µ = 1.0 corresponding to a Standard Model Higgs boson.43

The distribution of the test statistic q1 for µ̂ ≤ 1 under the s+b hypothesis for mH = 200 GeV with44
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Table 9: Median values of −2lnλ (µ = 0) obtained from H → ZZ(∗) → 4l simulated data generated with signal
plus background (µ = 1) for several values of the Higgs mass and integrated luminosity.

L mH (GeV)
(fb−1) 120 130 140 150 160 165 180 200 300 400 500 600
1 0.22 1.20 3.98 5.35 1.65 0.49 0.86 6.86 5.20 3.55 0.88 0.31
2 0.44 2.40 7.96 10.7 3.30 0.98 1.71 13.7 10.4 7.68 1.74 0.62
5 1.05 5.97 19.9 26.7 8.26 2.46 4.27 34.3 25.8 17.8 4.34 1.54
10 2.18 12.0 39.8 53.5 16.5 4.9 8.55 68.7 51.6 35.5 8.47 3.11
30 6.56 35.8 120 160 48.9 14.8 25.6 206 162 108 27.9 10.9
60 13.1 71.6 239 321 99.1 29.5 51.3 407 310 213 52.6 18.6
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Figure 14: The distribution of the test statistic q0 (for H → 4l), under the null background only hypothesis,
for mH = 200 GeV with an integrated luminosity of 2 (a) and 10 (b) fb−1. A 12χ21 distribution is superimposed.
Figures (c) and (d) show 1−F(q0) where F(q0) is the corresponding cumulative distribution. The small excess
of events at high q0 is statistically compatible with the expected curves, as can be seen by comparison with the
dotted histograms showing the 68.3% central confidence intervals for p = 1−F(q0|0). The lower dotted line at
2.87×10−7 shows the 5σ discovery threshold.
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Table 10: Median values of −2lnλ (µ = 1) obtained from H → ZZ(∗) → 4l simulated data generated with back-
ground only (µ = 0) for several values of the Higgs mass and integrated luminosity.

L mH (GeV)
(fb−1) 120 130 140 150 160 165 180 200 300 400 500 600
1 0.16 0.93 2.25 3.12 1.23 0.39 0.51 4.86 2.86 2.36 0.87 0.28
2 0.33 1.85 4.50 6.22 2.4 0.75 1.90 9.64 5.68 4.69 1.74 0.56
5 0.83 4.60 11.2 15.4 6.09 2.28 4.74 23.5 14.0 11.6 4.32 1.39
10 1.60 9.14 22.0 30.3 12.1 3.86 5.05 45.2 27.3 22.7 8.57 2.77
30 4.78 26.8 63.0 85.3 35.1 11.4 14.7 105 74.1 63.0 24.9 8.22
60 8.90 51.7 117 155 66.9 22.3 28.0 174 129 113 47.6 16.1

an integrated luminosity of 2 and 10fb−1 is shown in Figures 15. A χ21 distribution is superimposed,1

showing the validity of the asymptotic approximation.2
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Figure 15: The distribution of the test statistic q1 for µ̂ ≤ 1 under the s+b hypothesis (forH→ 4l), formH = 200
GeV with an integrated luminosity of (a) 2fb−1 and (b) 10fb−1. A χ21 distribution is superimposed.

3.5 Limitations of the approximations used3

The distributions shown in Sections 3.1 through 3.4 show varying levels of agreement between the4

asymptotic chi-square form and the results of Monte Carlo simulations. For the WW (0 jet) channel5

(Fig. 8), the discrepancy in the distribution of q0 is very large, and this is understood to arise from the6

special manner in which the systematic uncertainties for this channel were treated. The distribution of q07

for theWW (0 jet) channel therefore does not use the asymptotic formula. This is the only channel for8

which the approximation was not applied.9

For other cases such as the distribution of q1 for theH→ γγ channel shown in Fig. 7, the Monte Carlo10

distribution falls off significantly faster than the chi-square curve. This means that the significance with11

which one excludes the tested hypothesis will be less when estimated from the chi-square curve, leading12

to conservative limits. As the integrated luminosity increases, one expects to the asymptotic formula to13

become more accurate.14

In some of the distributions such as that of q0 for the H→ ZZ(∗)→ 4l channel shown in Fig. 14, the15

Monte Carlo simulation indicates a slight excess over the chi-square curve in the tail region. The level of16

the excess is not statistically significant in the part of the distribution that can be meaningfully assessed17
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given the amount of Monte Carlo data available (out to q0 between around 9 to 16, i.e., to the level of a1

3 to 4σ discovery). At present it is not practical to verify directly that the chi-square formula remains2

valid to the 5σ level (i.e., out to q0 = 25). Thus the results on discovery significance presented here rest3

on the assumption that the asymptotic distribution is a valid approximation to at least the 5σ level.4

The validation exercises carried here out indicate that the methods used should be valid, or in some5

cases conservative, for an integrated luminosity of at least 2 fb−1. At earlier stages of the data taking,6

one will be interested primarily in exclusion limits at the 95% confidence level. For this the distributions7

of the test statistic qµ at different values of µ can be determined with a manageably small number of8

events. It is therefore anticipated that we will rely on Monte Carlo methods for the initial phase of the9

experiment.10

4 Results of the combination11

4.1 Combined discovery sensitivity12

The full discovery likelihood ratio for all channels combined, λs+b(0), is calculated using Eq. 33. This13

uses the median likelihood ratio of each channel, λs+b,i(0), found either by generating toy experiments14

under the s+b hypothesis and calculating the median of the λs+b,i distribution or by approximating the15

median likelihood ratio using the Asimov data sets with µA,i = 1. Both approaches were validated to16

agree with each other. The discovery significance is calculated using Eq. 36, i.e., Z ≈
√

−2lnλ (0),17

where λ (0) is the combined median likelihood ratio.18

The resulting significances per channel and the combined one are shown in Fig. 16 for an integrated19

luminosity of 10 fb−1.20
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Figure 16: The median discovery significance for the various channels and the combination with an integrated
luminosity of 10 fb−1 for (a) the lower mass range (b) for masses up to 600 GeV.

Themedian discovery significance as a function of the integrated luminosity and Higgs mass is shown21

colour coded in Fig. 17. The full line indicates the 5σ contour. Note that the approximations used do22

not hold for very low luminosities (where the expected number of events is low) and therefore the results23

below about 2fb−1 should be taken as indications only. In most cases, however, the approximations tend24

to underestimate the true median significance.25

4.2 Combined exclusion sensitivity26

The full likelihood ratio of all channels used for exclusion for a signal strength µ , λb(µ), is calculated27

using Eq. 34 with the median likelihood ratios of each channel, λb,i(µ), calculated, either by generating28

27

HIGGS – STATISTICAL COMBINATION OF SEVERAL IMPORTANT STANDARD MODEL HIGGS . . .

312

1500



mH [GeV]

Lu
m

in
os

ity
 [f

b−
1 ]

significance

 

 

ATLAS
H → γγ
H → ZZ* → 4l
H → ττ
H → WW → eνµν

120 140 160 180 200 220 240 260 280 300
0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 17: Significance contours for different Standard Model Higgs masses and integrated luminosities. The
thick curve represents the 5σ discovery contour. The median significance is shown with a colour according to the
legend. The hatched area below 2 fb−1 indicates the region where the approximations used in the combination are
not accurate, although they are expected to be conservative.

toy experiments under the b-only hypothesis and calculating the median of the λb,i distribution or ap-1

proximating the median likelihood ratio using the Asimov data sets with µA,i = 0. Both approaches were2

checked to agree with each other. A signal strength µ = 1 corresponds to the Standard Model Higgs3

boson.4

Any exclusion of µ(mH) smaller than 1 corresponds to an exclusion of a Standard Model Higgs5

boson with a mass mH . To probe the median sensitivity for excluding a Standard Model Higgs boson we6

follow Eq. 35 and calculate the corresponding p-value for µ = 1, p1 for a given luminosity at a given7

Higgs mass. A p-value of 0.05 corresponds to a significance (Eq. 36) of 1.64. The resulting p1 for the8

various channels as well as for the combination, for a luminosity of 2fb−1, are shown in Fig. 18. Note9

that any p-value below 0.05 indicates an exclusion. We therefore conclude that with a luminosity of 210

fb−1 ATLAS has the median sensitivity to exclude a Standard Model Higgs boson heavier than 115 GeV11

at the 95% Confidence Level. This can also be seen from Fig. 19, which shows the luminosity required12

to exclude a Higgs boson with a mass mH at a given confidence level from the combination of the four13

channels explored in this note.14

The sharp increase in the required luminosity for lower mH seen in Fig. 17 reflects the decrease in15

sensitivity to the Higgs when using only the set of channels considered here. Further developments will16

increase the sensitivity in this region. For example, improved analysis methods for the H→ γγ channel17

are described in Ref. [4], including a separation of the events into those with zero or two accompanying18

jets. Additional final states such as ttH with H → bb will help somewhat, although the contribution to19

the sensitivity will be small because of the large uncertainties in the background.20

For the WW channel, the present study includes only the eνµν decay mode, but it is planned to21

include eνeν , µνµν and qqlν as well. The ZZ (∗) channel here only includes Z decays to ee and µµ , but22

in future analyses qqνν will be included. The additionalWW and ZZ (∗) modes have been found to have23

sensitivity for a high-mass Higgs. Finally, combination with the results from ATLAS with those of CMS24

will of course result in an overall increase in sensitivity.25
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Figure 18: The median p-value obtained for excluding a Standard Model Higgs Boson for the various channels
as well as the combination for (a) the lower mass range (b) for masses up to 600 GeV.
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29

HIGGS – STATISTICAL COMBINATION OF SEVERAL IMPORTANT STANDARD MODEL HIGGS . . .

314

1502



5 Conclusions1

The procedure for combination of search results based on the profile likelihood ratio has been applied2

to a study of the search for the Standard Model Higgs boson using four search channels: H → τ+τ−,3

H →W+W−→ eνµν , H → γγ and H → ZZ(∗) → 4 leptons. The combination method is very general4

and can be applied to essentially any search that will be carried out at the LHC.5

The study here has not exploited all of the search channels that will be investigated and therefore the6

current estimates of the sensitivity can be regarded as conservative. For example, using further decay7

modes in the ZZ andWW channels will provide additional sensitivity especially for a Higgs boson in the8

higher mass range.9

The studies have exploited a series of useful approximations that allow one to determine the median10

discovery and exclusion sensitivities from a combined fit in a manner that only requires separate input11

ingredients from the individual channels. The determination of the significance for a given (e.g., real)12

data set, however, will require a simultaneous fit of all of the channels.13

It is not practical at present to generate enough Monte Carlo data to verify directly that the tail of14

the profile likelihood distribution is well described to the level required for discovery at the 5σ level,15

corresponding to an upper tail area of 2.87× 10−7. The estimates of discovery significance presented16

here therefore rely on the assumption that the large-sample approximation used remains valid out to this17

level.18

The validation studies shown in Section 3 indicate that the approximations used should be reasonably19

accurate or lead to conservative limits for an integrated luminosity of at least 2 fb−1. For the earlier20

stages of the experiment it is expected that one will need to rely on Monte Carlo methods, which should21

be feasible for exclusion limits at the 95% confidence level.22

The profile likelihood ratio treats systematic errors by associating the uncertainties with adjustable23

(nuisance) parameters. Other methods for treating systematic uncertainties can also be considered. Us-24

ing Bayesian methods, for example, one would associate a prior probability density with the nuisance25

parameters. We plan to develop and use this and other approaches in parallel with the profile likelihood26

method for searches at the LHC.27

The study presented in this paper provides the discovery significance for a Higgs boson of a specific28

mass. That is, the traditional discovery threshold p-value of 2.87× 10−7 corresponding to a 5σ effect29

for a given hypothesized Higgs mass refers to the false discovery rate for a Higgs of that mass. The false30

discovery rate for a Higgs of anymass is higher, and several approaches are being pursued to quantify this31

(the so-called ‘look-elsewhere effect’). The most mature of these methods involves using a simultaneous32

fit of the Higgs mass mH and the strength parameter µ (or equivalently the Higgs production rate), as has33

been discussed in the studies of H→ γγ [4] and H→W+W− [5].34

To summarize, the studies based on the four channels considered in this note confirm the good dis-35

covery and exclusion sensitivities already shown in the ATLAS Technical Design Report (TDR) [10].36

Furthermore the results here are based on better knowledge and a more realistic simulation of the detec-37

tor than what is described in the TDR. Because of the approximations used, the present studies are valid38

only for luminosities above 2fb−1. With a luminosity of 2fb−1 the expected (median) sensitivity is at the39

5σ level or greater for discovery of a Higgs boson in the mass range between 143 and 179 GeV, and the40

expected upper limit at 95% confidence level on the Higgs mass is 115 GeV.41

A Comparison with procedures used at LEP42

In this appendix we compare the procedures described in the present analysis with those used in searches43

carried out at LEP. More details on these methods be found in [8]. The important differences involve44

the definition of the test statistic used and the treatment of systematic uncertainties. In addition, the LEP45
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analyses adopted a special procedure to prevent spurious exclusion due to a downward fluctuation of the1

number of events (the CLs method, see below).2

In the LEP Higgs searches, a hypothesized value of the Higgs mass mH was tested by constructing3

the statistic4

Q=
Ls+b
Lb

=
L(µ = 1)
L(µ = 0) , (41)

where as before b (µ = 0) represents the background-only hypothesis and s+ b (µ = 1) refers to back-5

ground plus signal at the rate predicted by the Standard Model. For convenience the equivalent logarith-6

mic variable q=−2lnQ was used.7

The sampling distribution of Q was determined by Monte Carlo simulation. The Monte Carlo was8

also used to incorporate systematic errors by sampling values of the corresponding nuisance parameters9

from pdfs that reflected their uncertainties. That is, one effectively integrated the product of the likelihood10

and prior pdfs for the nuisance parameters.11

For a give observed value qobs =−2lnQobs, the p-values for the s and s+b hypotheses were deter-12

mined as13

ps+b =
∫ ∞

qobs
f (q|s+b)dq ≡ CLs+b , (42)

pb =
∫ qobs

−∞
f (q|b)dq ≡ 1−CLb . (43)

Having determine the p-values, the LEP analyses then based exclusion of the s+b hypothesis not on the14

p-value of s+b but rather on the ratio CLs, defined as15

CLs =
CLs+b
CLb

=
ps+b
1− pb

. (44)

The signal-plus-background hypothesis was said to be excluded at confidence level CL = 1−α = 0.9516

if one finds17

CLs < α . (45)

Since CLb ≤ 1, one has CLs ≥ CLs+b. Therefore the CLs method will not exclude as large a region of18

parameter space as that based on the signal-plus-background p-value (CLs+b method). As the CLs+b19

method was designed to provide an interval that brackets the true value of the parameter with a proba-20

bility of at least 1−α , the CLs limit must cover the true parameter with a greater probability; it is in21

this sense conservative. The CLs method was devised so as to avoid the problem where a downward22

fluctuation in the number of background events can lead to exclusion of the Higgs mass considered, even23

for hypothesized mass values where one does not expect to be sensitive to Higgs production [9].24

In contrast, in the present analysis we test a hypothesized value of the strength parameter µ using25

qµ =−2ln L(µ, ˆ̂θ)

L(µ̂, θ̂)
, (46)

as described in Section 2. With this definition, the sampling distribution of the test statistic f (qµ |µ)26

approaches a well defined form related to the chi-squared distribution for a sufficiently large data sample.27

The ability to exploit this approximate form is very useful as the relevant p-value for a 5σ discovery28

is 2.87× 10−7, and therefore to determine this from Monte Carlo would require an extremely large29
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number of simulated experiments. At LEP this was not a crucial issue as the statistical treatment focused1

primarily on exclusion limits at 95% CL, not on discovery at the 5σ level.2

Systematic uncertainties here have been incorporated using the profile likelihood, rather than with3

the integrated likelihoods used at LEP. For the uncertainties most relevant to the analyses at the LHC, the4

broadening of the likelihood function obtained by both procedures is similar. It is the profile likelihood5

ratio and not the ratio of integrated likelihoods, however, that approaches the chi-squared form in the6

large sample limit in accordance with Wilks’ theorem.7

The CLs method has not been applied in the present analysis but studies of its application to searches8

in ATLAS are ongoing.9

A final difference with the LEP procedures concerns the definition of significance Z. Here we have10

defined its relation to the p-value as the number of standard deviations of a Gaussian variable that would11

give a one-sided tail area of p, as described in Section 2.1. A significance of Z = 5 corresponds to12

p= 2.87×10−7. The LEP Higgs group defined this relation using a two-sided fluctuation of a Gaussian13

variable, i.e., a 5σ significance corresponded to p= 5.7×10−7.14
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