

Higgs searches have guided the conception, design and technological choices of ATLAS and CMS:

- perhaps the primary LHC goal
- among the most challenging processes

→ have set some of the most stringent performance (hence technical) requirements: lepton identification, lepton energy/momentum resolution, b-tagging, E_T^{miss} measurement, forward-jet tagging, etc.

After 2 years of LHC operation, ATLAS has achieved excellent sensitivity over a large part of the allowed mass range, thanks to:

- \Box outstanding LHC performance \rightarrow > 5 fb⁻¹
- □ high detector operational efficiency and data quality
- excellent detector performance; mature understanding reflected in detailed modeling of several subtle effects included in the simulation
- □ huge numbers of physics results produced with the 2010-2011 data → the main SM processes and many backgrounds to Higgs searches studied in detail (and compared to theory)

→ Work of building solid foundations for (difficult) Higgs searches is well advanced ATLAS: Update of SM Higgs searches, 13/12/2011

Pile-up = number of interactions per crossing Tails up to ~20 → comparable to design luminosity (50 ns operation; several machine parameters pushed beyond design)

LHC figures used over the last 20 years: ~ 2 (20) events/crossing at L=10³³ (10³⁴)

Challenging for trigger, computing resources, reconstruction of physics objects (in particular E_T^{miss} , soft jets, ...) Precise modeling of both in-time and out-of-time pile-up in simulation is essential

Summary of main electroweak and top cross-section measurements

Experimental precision starts to challenge theory for e.g. tt (background to most H searches)

Measuring cross-sections down to few pb (~ 40 fb including leptonic branching ratios)

Summary of main electroweak and top cross-section measurements

SM Higgs production cross-section and decay modes

- \Box Cross-sections computed to NNLO in most cases \rightarrow theory uncertainties reduced to < 20%
- Huge progress also in the theoretical predictions of numerous and complex backgrounds
- → Excellent achievements of the theory community; very fruitful discussions with the experiments (e.g. through LHC Higgs Cross Section WG, LPCC, etc.)

ATLAS: Update of SM Higgs searches, 13/12/2011

Present status (as of this morning ...)

First ATLAS+CMS combination: based on data recorded until end August 2011: up to ~2.3 fb⁻¹ per experiment

Excluded 95% CL : 141-476 GeV Excluded 99% CL : 146-443 GeV (except ~222, 238-248, ~295 GeV) Expected 95% CL : 124-520 GeV \rightarrow max deviation from background-only: ~ 3 σ (m_H~144 GeV)

Over the last months					
Huge efforts to improve understanding of detector performance:					
 □ 2011 data recorded with very different conditions compared to 2010, in particular the latest period with higher pile-up □ several measurements with 2010 data already dominated by systematic uncertainty → need to dismantle systematics 					
→ Improved knowledge (of many subtle effects) propagated to simulation and reconstruction: detailed simulation of in- and out-of-time pile-up including bunch-train structure; new alignment; accurate simulation of absorber plates in the EM calorimeter (→ better agreement data-MC for e/γ showers); modeling varying detector conditions in MC; etc. etc.					
Necessary, high-priority work for the full ATLAS physics programme based on the 2011 data					
Higgs searches: We updated the most sensitive channels in the best motivated (EW fit) and not-yet- excluded low-mass region: $H \rightarrow \gamma\gamma$ (4.9 fb ⁻¹), $H \rightarrow 4I$ (4.8 fb ⁻¹), $H \rightarrow WW \rightarrow IvIv$ (2.1 fb ⁻¹)					

10

Micro-summary of present Higgs searches in ATLAS

Channel	m _H range (GeV)	Int. lumi fb ⁻¹	Main backgrounds	Number of signal events after cuts	S/B after cuts	Expected σ/σ _{sm} sensitivity
Н→ үү	110-150	4.9	yy, yj, jj	~70	~0.02	1.6-2
$H \rightarrow \tau \tau \rightarrow +v$	110-140	1.1	Z→ ττ, top	~0.8	~0.02	30-60
$H \rightarrow \tau \tau \rightarrow I \tau_{had}$	100-150	1.1	Ζ→ тт	~10	~5 10 ⁻³	10-25
W/ZH → bbl(l)	110-130	1.1	W/Z+jets, top	~6	~5 10 ⁻³	15-25
H →WW ^(*) → lvlv	110-300	2.1	WW, top, Z+jet	~20 (130 GeV)	~0.3	0.3-8
$H \rightarrow ZZ^{(*)} \rightarrow 4I$	110-600	4.8	ZZ*, top, Zbb	~2.5 (130 GeV)	~1.5	0.7-10
$H \rightarrow ZZ \rightarrow vv$	200-600	2.1	ZZ, top, Z+jets	~20 (400 GeV)	~0.3	0.8-4
H→ ZZ → II qq	200-600	2.1	Z+jets, top	2-20 (400 GeV)	0.05-0.5	2-6
$H \rightarrow WW \rightarrow I \nu q q$	240-600	1.1	W+jets,top,jets	~45 (400 GeV)	10 ⁻³	5-10

□ Based on (conservative) cut-based selections

□ Large and sometimes not well-known backgrounds estimated mostly with data-driven techniques using signal-free control regions

11

AT

□ Excluded (95% CL): 145 < m_H < 206 GeV (expected: 134-200 GeV) □ Observed limit within 2 σ of expected: max deviation 1.9 σ for m_H ~ 130 GeV

Potentially huge background from γj and j j production with jets fragmenting into a single hard π^0 and the π^0 faking single photon

However: huge uncertainties on σ (γ j, jj) !! \rightarrow not obvious γ j, jj could be suppressed well below irreducible $\gamma\gamma$ until we measured with data

ATLAS: Update of SM Higgs searches, 13/12/2011

After all cuts: 22489 events with 100 < $m_{\gamma\gamma}$ < 160 GeVobserved in the data

Sample composition estimated from data using control samples

yj + jj << yy irreducible (purity ~ 70%)

Photon identification efficiency: ~ 85±5% from MC, cross-checked with data $(Z \rightarrow ee, Z \rightarrow ee\gamma, \mu\mu\gamma)$

Photon identification efficiency: ~ 85±5% from MC, cross-checked with data ($Z \rightarrow ee, Z \rightarrow ee\gamma, \mu\mu\gamma$)

Photon isolation requirement: $E_{T} < 5$ GeV inside a cone $\Delta R < 0.4$ around γ direction. Underlying event and pile-up contribution subtracted using an "ambient energy density" determined event-by-event.

If the subtraction is not perfect, a residual dependence of the corrected isolation energy on the bunch position in the train is observed, due to the impact of pile-up from neighbouring bunches convolved with the LAr calorimeter pulse shape.

After all selections: kinematic cuts, γ identification and isolation

□ 22489 events with 100 < $m_{\gamma\gamma}$ < 160 GeV observed in the data □ expected signal efficiency: ~ 35% for m_H =125 GeV

Main systematic uncertainties

Expected signal yield : ~ 20% $H \rightarrow \gamma\gamma$ mass resolution : ~ 14% $H \rightarrow \gamma\gamma p_T$ modeling : ~ 8% Background modeling : ±0.1-5.6 events

 $m_{\gamma\gamma}$ spectrum fit with exponential function for background plus Crystal Ball + Gaussian for signal \rightarrow background determined directly from data

Systematic uncertainties on signal expectation

Event yield	
Photon reconstruction and identification	$\pm 11\%$
Effect of pileup on photon identification	$\pm 4\%$
Isolation cut efficiency	$\pm 5\%$
Trigger efficiency	$\pm 1\%$
Higgs boson cross section	+15%/-11%
Higgs boson $p_{\rm T}$ modeling	$\pm 1\%$
Luminosity	$\pm 3.9\%$
Mass resolution	
Calorimeter energy resolution	$\pm 12\%$
Photon energy calibration	$\pm 6\%$
Effect of pileup on energy resolution	±3%
Photon angular resolution	$\pm 1\%$
Migration	
Higgs boson $p_{\rm T}$ modeling	$\pm 8\%$
Conversion reconstruction	±4.5%

Excluded (95% CL): 114 $\leq m_H \leq 115$ GeV, 135 $\leq m_H \leq 136$ GeV

$H \rightarrow ZZ^{(*)} \rightarrow 4I$ (4e, 4µ, 2e2µ)

- 🛛 σ~2-5 fb
- □ However:
 - -- mass can be fully reconstructed \rightarrow events would cluster in a (narrow) peak
 - -- pure: S/B ~ 1
- □ 4 leptons: $p_T^{1,2,3,4}$ > 20,20,7,7 GeV; $m_{12} = m_Z \pm 15$ GeV; $m_{34} > 15$ -60 GeV (depending on m_H)

□ Main backgrounds:

- -- ZZ^(*) (irreducible)
- -- $m_H < 2m_Z$: Zbb, Z+jets, tt with two leptons from b/q-jets $\rightarrow I$
- \rightarrow Suppressed with isolation and impact parameter cuts on two softest leptons
- □ Signal acceptance x efficiency: ~ 15 % for m_{H} ~ 125 GeV

Crucial experimental aspects:

- \Box High lepton reconstruction and identification efficiency down to lowest p_T
- Good lepton energy/momentum resolution
- Good control of reducible backgrounds (Zbb, Z+jets, tt) in low-mass region:
 - \rightarrow cannot rely on MC alone (theoretical uncertainties, b/q-jet \rightarrow 1 modeling, ...)
 - → need to compare MC to data in background-enriched control regions (but: low statistics ..)
- \rightarrow Conservative/stringent p_T and m(II) cuts used at this stage

After all selections: kinematic cuts, isolation, impact parameter

In the region $m_H < 141$ GeV (not already excluded at 95% C.L.) 3 events are observed: two 2e2µ events (m=123.6 GeV, m=124.3 GeV) and one 4µ event (m=124.6 GeV)

In the region 117< m ₄₁ <128 GeV (containing ~90% of a m _H =125 GeV signal):	Main systematic uncertainties
 similar contributions expected from signal and background: ~ 1.5 events each S/B ~ 2 (4µ), ~ 1 (2e2µ), ~ 0.3 (4e) Background dominated by ZZ* (4µ and 2e2µ), ZZ* and Z+jets (4e) 	Higgs cross-section : ~ 15% Electron efficiency : ~ 2-8% ZZ* background : ~ 15% Zbb, +jets backgrounds : ~ 40%

 4μ candidate with $m_{4\mu}$ = 124.6 GeV

 $p_T (\mu^-, \mu^+, \mu^+, \mu^-)$ = 61.2, 33.1, 17.8, 11.6 GeV m₁₂= 89.7 GeV, m₃₄= 24.6 GeV

 $2e2\mu$ candidate with $m_{2e2\mu}$ = 124.3 GeV

p_T (e⁺, e⁻, μ⁻, μ⁺)= 41.5, 26.5, 24.7, 18.3 GeV $m (e^+e^-) = 76.8 \text{ GeV}, m(\mu^+\mu^-) = 45.7 \text{ GeV}$

Reducible backgrounds from Zbb, Z+jets, tt giving 2 genuine + 2 fake leptons measured using background-enriched-signal-depleted control regions in data mimicking as much as possible the kinematics of the signal region \rightarrow compromise between statistics and "purity"

Zbb+Z+jets control regions: events with:

- 2 opposite-sign same-flavour leptons, m_{II}=m_Z ±15 GeV
- 2 additional same-flavour leptons passing all cuts but isolation and impact parameter
 - \rightarrow below plots of their invariant mass (m₃₄)

- Data well reproduced by MC (within uncertainties)
- □ Samples of $Z+\mu$ and Z+e then used to compare efficiencies of isolation and impact parameter cuts between data and $MC \rightarrow Good$ agreement
- \rightarrow MC used to estimate background contamination in signal region

	Data	MC
Z+µ	20 <u>+</u> 1%	20.3± 0.4%
Z+e	29.9±0.6%	30.4± 0.4%

From fit of signal and background expectations to 41 mass spectrum

Excluded (95% CL): $135 < m_H < 156$ GeV and $181 < m_H < 415$ GeV (except 234-255 GeV) Expected (95% CL): $137 < m_H < 158$ GeV and $185 < m_H < 400$ GeV

Consistency of the data with the background-only expectation

Maximum deviations from background-only expectations

		m _H (GeV)	Local (global) p ₀	Local significance	Expected from SM Higgs
Excluded at 95% C.L. by ATLAS+CMS combination	>	125 244 500	1.8% (~50%) 1.1% (~50%) 1.4% (~50%)	2.1 σ 2.3 σ 2.2 σ	1.4σ 3.2σ 1.5σ
			LEE estimated over mass range: 110-600	GeV	

Consistency of the data with the background-only expectation

Maximum deviation from background-only expectation observed for $m_H \sim 126 \text{ GeV}$

Local p_0 -value: 1.9 10⁻⁴ \rightarrow local significance of the excess: 3.6 σ $\sim 2.8\sigma H \rightarrow \gamma\gamma$, 2.1 $\sigma H \rightarrow 4I$, 1.4 $\sigma H \rightarrow IvIv$

Expected from SM Higgs: ~2.4 σ local (~1.4 σ per channel)

Global p_0 -value : 0.6% \rightarrow 2.5 σ LEE over 110-146 GeV Global p_0 -value : 1.4% \rightarrow 2.2 σ LEE over 110-600 GeV

The observed excess is slightly larger (2±0.8) than expected in the $H \rightarrow \gamma \gamma$ channel and compatible within 1 σ for the other channels and the combined result

La suite ...

- Improve analysis sensitivities:
- □ update H→ $WW^{(*)}$ → IvIv, W/ZH → bb and H→ $\tau\tau$ to ~5 fb⁻¹
- \Box relax kinematic cuts (e.g. lepton p_T) to increase acceptance at low masses
- □ multivariate techniques, exclusive channels (e.g H \rightarrow YY + 0/1/2 jets), additional discriminating variables beyond mass spectra (p_T, angular distributions, etc.)
- In parallel: improvements of the detector performance and modeling (a never-ending feat ...)

One of the numerous lessons and outstanding achievements of the Tevatron: how much better than expectation experiments can do with data and ingenuity !

Combine with CMS: being discussed ... Not before results from individual experiments are published

MORE DATA → 2012 run: ~ 20 fb⁻¹ more per experiment of delivered luminosity needed for: □ 5σ discovery at m_H~ 125 GeV with ~ 3σ per channel (ATLAS alone) □ 5σ discovery down to ~ 116 GeV (ATLAS+CMS combined) "Contingency": analysis improvements; Js=8 TeV (brings ~ 10% sensitivity gain)

Conclusions

It has been a wonderful year for the LHC and ATLAS \rightarrow THANKS LHC TEAM !

We have looked for a SM Higgs boson

- over the mass region 110-600 GeV
- □ in 11 distinct channels
- □ using up to 4.9 fb⁻¹ of integrated luminosity

We have restricted the most likely mass region (95% CL) to

115.5-131 GeV

We observe an excess of events around m_H~ 126 GeV:

- \Box local significance 3.6 σ , with contributions from the
- $H \rightarrow \gamma \gamma$ (2.8 σ), $H \rightarrow ZZ^* \rightarrow 4I$ (2.1 σ), $H \rightarrow WW^{(*)} \rightarrow I \vee I \vee (1.4 \sigma)$ analyses
- □ SM Higgs expectation: 2.4 σ local \rightarrow observed excess compatible with signal strength within +1 σ

□ the global significance (taking into account Look-Elsewhere-Effect) is ~2.30

It would be a <u>very nice</u> region for the Higgs to be \rightarrow accessible at LHC in $\gamma\gamma$, 41, $|\nu|\nu$, bb, $\tau\tau$

It's too early to draw definite conclusions More studies and more data are needed We have built solid foundations for the (exciting !) months to come

SPARES

ATLAS-CONF-2011-161 (13 December 2011) Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb⁻¹ of ATLAS data at $\int s=7$ TeV

ATLAS-CONF-2011-162 (13 December 2011) Search for the Standard Model Higgs boson in the decay channel $H \rightarrow ZZ^{(*)} \rightarrow 4I$ with 4.8 fb⁻¹ of pp collisions at $\int s=7$ TeV

ATLAS-CONF-2011-163 (13 December 2011) Combination of Higgs Boson searches with up to 4.9 fb⁻¹ of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC

Submitted to PRL (12 December 2011) Search for the Higgs boson in the $H \rightarrow WW^{(*)} \rightarrow IvIv$ decay channel in pp collisions at Js=7 TeV with the ATLAS detector

CONF notes available after the seminar at: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/</u>

ATLAS: Update of SM Higgs searches, 13/12/2011

2011 Physics Proton Trigger Menu (end of run L = $3.3 \ 10^{33} \ \text{cm}^{-2}\text{s}^{-1}$)						
		Trigger Se	election	L1 Rate	EF Rate	
	Offline Selection	L1	EF	at 3e33	at 3e33	
Single leptons	Single muon > 20GeV	11 GeV	18 GeV	8	100	
	Single electron > 25GeV	16 GeV	22 GeV	9	55	
Tura la stara a	2 muons > 17, 12GeV	11GeV	15,10GeV	8	4	
I wo leptons	2 electrons, each > 15GeV	2x10GeV	2x12GeV	2	3	
	2 taus > 45, 30GeV	15,11GeV	29,20GeV	7.5	15	
Two photons	2 photons, each > 25GeV	2x12GeV	20GeV	3.5	5	
Single jet plus MET	Jet pT > 130 GeV & MET > 140 GeV	50 GeV & 35 GeV	75GeV & 55GeV	0.8	18	
MET	MET > 170 GeV	50 GeV	70GeV	0.6	5	
Multi-jets	5 jets, each pT > 55 GeV	5x10GeV	5x30GeV	0.2	9	
TOTAL				<75	~400 (mean)	

 $2\mu 2e$ candidate with $m_{2\mu 2e}$ = 123.6 GeV

 $p_T (\mu^-, \mu^+, e^-, e^+)= 43.9, 43.5, 11.2, 9.9 \text{ GeV}$ m($\mu^+\mu^-$) = 89.3 GeV, m (e^+e^-)= 30 GeV

- □ Larger BR than $H \rightarrow 4I: \rightarrow \sigma \sim 20 \text{ fb}$ Good S/B
 - \rightarrow most sensitive channel for m_H > 300 GeV
- □ Signature is $Z \rightarrow II + Iarge E_T^{miss}$ (both Z's are boosted for large m_H)
- □ Main backgrounds: ZZ (irreducible), top, Z+jets
 - \rightarrow reject with E_T^{miss} cut (> 66-82 GeV), b-jet veto, topology (small $\Delta \phi_{\parallel}$, m_T shape)

 ∆φ between leptons from Z→ II decays
 → exploit to distinguish boosted Z from Higgs decays from Z+jets and other backgrounds

Excluded (95% CL): 310 ≤ m_H ≤ 470 GeV

$H \rightarrow WW \rightarrow I \vee qq (I=e,\mu)$

$240 \le m_H \le 600 \ GeV$

 σ x BR ~ 200 fb
 1 lepton p_T>30 GeV, E_T^{miss} > 30 GeV, 2-3 jets p_T > 25 GeV, no b-tagged jets
 m_{jj} compatible with m_W, constrain m_{Iv}=m_W
 fit m_{Ivjj} mass spectrum with exponential function plus expected signal
 W+jets and multijet background from data (control samples with relaxed lepton identification or low E_T^{miss}), though not needed for limits extraction

Data: 22161 events Expected background: 22630 events Expected signal (m_H=400 GeV): 43±12 events

$H \rightarrow \tau \tau \rightarrow II + neutrinos (I=e,\mu)$

	Events
Observed	46
Expected	47.4±3.9
gg → H(120 GeV)	0.44±0.05
VBF H(120 GeV)	0.38±0.02

 □ σ x BR ~ 150 fb
 □ p_T(l) > 15-10 GeV, E_T^{miss} > 25-30 GeV, p_T(jet) > 40 GeV (enhances S/B), topological cuts
 □ m_{ττ} from collinear approximation: 100-150 GeV
 □ Main backgrounds: Z → ττ, top
 Z → ττ from replacing μ in Z → μμ events with simulated τ

ATLAS: Update of SM Higgs searches, 13/12/2011

Figure 12: The observed and expected local p_0 -value as a function of m_H for three different background models without taking the *look-elsewhere effect* into account. The black solid line is the result described in detail in this note, using single exponential functions in all categories. In the *Hybrid* model the high p_{Tt} categories are fitted with the 2nd order Bernstein polynomials, the other categories with the single exponential. In the model *Bernstein* all categories are fitted with the Bernstein function. The p_0 -values near the minima at 126 GeV are very similar in all cases: $p_0=0.38\%$ using the *Hybrid* model, and $p_0=0.25\%$ using the *Bernstein* function.

ATLAS: Update of SM Higgs searches, 13/12/2011

Table 5: Systematic uncertainty on the background modelling in different categories.

C	ategory	CP1	CP2	CP3	CP4	CP5	CP6	CP7	CP8	CP9
E	vents	±4.3	± 0.2	±3.7	± 0.5	±3.2	± 0.1	± 5.6	± 0.6	± 2.3

Table 3: Expected Higgs boson signal yields in 4.9 fb⁻¹ integrated over a mass range of 100-160 G for various values of m_H in each category and the sum.

$m_H [\text{GeV}]$	110	115	120	125	130	135	140	145	150
CP1: Unconverted Central, low p_{Tt}	8.9	8.9	8.7	8.2	7.5	6.7	5.7	4.6	3.5
CP2: Unconverted Central, high p_{Tt}	2.5	2.6	2.6	2.5	2.3	2.1	1.8	1.5	1.2
CP3: Unconverted Rest, low p_{Tt}	16.3	16.7	16.6	16.0	15.0	13.6	11.9	9.8	7.4
CP4: Unconverted Rest, high p_{Tt}	4.4	4.6	4.6	4.5	4.3	4.0	3.5	2.9	2.2
CP5: Converted Central, low p_{Tt}	5.9	5.9	5.8	5.5	5.1	4.6	4.0	3.3	2.4
CP6: Converted Central, high p_{Tt}	1.6	1.7	1.6	1.6	1.6	1.4	1.3	1.1	0.8
CP7: Converted Rest, low p_{Tt}	17.5	18.1	17.9	17.1	15.8	14.1	12.0	9.7	7.2
CP8: Converted Rest, high p_{Tt}	4.6	4.7	4.7	4.6	4.4	4.1	3.6	2.9	2.2
CP9: Converted Transition	8.2	8.4	8.4	8.1	7.6	6.9	6.0	4.9	3.7
Total	69.9	71.5	70.9	68.3	63.7	57.5	49.8	40.8	30.6

Category	Conversion and η	p_{Tt} cut	Number of data events
CP1	Unconverted Central	$p_{\mathrm{Tt}} \leq 40 \mathrm{~GeV}$	1763
CP2	Unconverted Central	$p_{\mathrm{Tt}} > 40 \mathrm{~GeV}$	235
CP3	Unconverted Rest	$p_{\mathrm{Tt}} \leq 40 \mathrm{~GeV}$	6234
CP4	Unconverted Rest	$p_{\mathrm{Tt}} > 40 \mathrm{~GeV}$	1006
CP5	Converted Central	$p_{\mathrm{Tt}} \leq 40 \mathrm{~GeV}$	1318
CP6	Converted Central	$p_{\mathrm{Tt}} > 40 \mathrm{~GeV}$	184
CP7	Converted Rest	$p_{\mathrm{Tt}} \leq 40 \mathrm{~GeV}$	7311
CP8	Converted Rest	$p_{\mathrm{Tt}} > 40 \mathrm{~GeV}$	1072
CP9	Converted Transition	No cut	3366
Total			22489

Table 2: The number of events found in $4.9 \, \text{fb}^{-1}$ of data for the nine categories.

In the region 212-255.5 GeV, containing ~ 90% of the signal for m_H =244 GeV, 22 events are observed in the data, with a background expectation of 16 events. The signal expectation is 11 events.

After all selections: kinematic cuts, isolation, impact parameter

In the region $m_H < 141$ GeV (not already excluded at 95% C.L.) 3 events are observed: two 2e2µ events (m=123.6 GeV, m=124.3 GeV) and one 4µ event (m=124.6 GeV)

In the region 117< m ₄₁ <128 GeV (containing ~90% of a m _H =125 GeV signal) expect:	Main systematic uncertainties
~1.5 events background: 0.26 4µ + 0.86 2e2µ + 0.64 4e ~1.4 events signal: 0.53 4µ + 0.66 2e2µ + 0.23 4e	Higgs cross-section : ~ 15% Electron efficiency : ~ 2-8%
Background dominated by ZZ* (4µ and 2e2µ), ZZ* and Z+jets (4e)	 Zbb, +jets backgrounds : ~ 40% ZZ* background : ~ 15%

Use longitudinal segmentation of EM calorimeter to measure photon polar angle 9 Crucial at high pile-up: many vertices distributed over σ_Z (LHC beam spot) ~ 5.6 cm \rightarrow difficult to know which one produced the $\gamma\gamma$ pair

