The ATLAS Calorimeters EXPERIMEN

Heavy lons Z->ee candidate

Run Number: 169206 Event Number: 310336 Date: 2010-11-14, 18:20:52 CET Paolo lengo

The ATLAS Calorimeter System

- A complex system
- Before going into details let's look to general and basic concepts of calorimetry

Intoduction: calorimeters in a nutshell

- Calorimeters in HEP experiments are designed to measure energy of incoming particles
 - Particles to be measured must be fully absorbed: disruptive measurement
 - Calorimeters measure energy of charged as well as neutral particles $(n,\gamma,\pi^0...)$
 - They can provide information on the direction of the particle: segmentation
 - They can measure 'missing' energy, i.e. energy carried by not interacting particles like neutrinos: hermiticity
 - Classification of calorimeters:

13/06/11

- Depending on particles measured:
 - Electromagnetic (EM) measure electrons and photons through their electromagnetic interactions
 - Hadronic (HCAL) measure mainly hadrons through their strong and electromagnetic interactions
- According to the construction technique:
 - Sampling consisting of alternating layers of absorbers and active materials
 - Homogeneous consisting of a single type of material

Particle showers

Calorimeters measure energy of charged secondary particles created by the interaction of the incoming particle with a block of material

EM Calorimeter

- EM shower initiated by e⁺, e⁻ or γ
- Shower development based on two
 processes
 - Bremsstrahlung
 - Pair creation
- e⁺, e⁻ and γ are the sole components of the shower

Hadronic Calorimeter

- Hadronic shower initiated by hadrons (p,n,π...)
- Hadronic showers have always an EM component too
- Shower development based on hadronic interacion and on electromagnetic one (for the EM part)
- Large variety of particle components

EM showers – Basic concepts

- Above ~1GeV energy loss by e/γ is dominated by radiative processes → we focus on these
- At lower energy other processes contribute
 - Ionization for electrons
 - Compton scattering and photoelectric effect for photons

- EM showers develop:
 - Longitudinally: direction of primary particle
 - Transversally: in the transverse plane

- Few parameters can discribe the development
 - We won't go to a detailed description

EM showers – Basic concepts

Radiation length

$$\mathbf{X}_0\approx \frac{\mathbf{180A}}{\mathbf{Z}^2}\mathbf{g}\cdot\mathbf{cm}^-\mathbf{2}$$

- Material badget that reduces on average the energy of an electror by a factor e
- In 1 X_0 1 electron loses ~2/3 of its energy by emitting a photon
- In 1 X_0 a photon has a probability of ~7/9 to undergo a pair conversion

X₀ can be (approximately) assumed as generation length: at each generation (step) the number of particles in the shower doubles and the energy of the particles halves

$$\begin{array}{l} \mbox{Critical Energy} & E_c \approx \frac{610 MeV}{Z+1.24} \\ \mbox{Is the energy at which electrons start irradiating photons. At energy below Ec ionization dominates} \\ \mbox{Moliere radius} & R_M = \frac{21 MeV}{E_c} X_0 \propto \frac{A}{Z} \\ \mbox{Measures the transverse shower size: average lateral deflection of electron with E=E_c after 1X_0 \end{array}$$

EM showers

Massive shower in a tungsten cylinder (outlined in green) produced by a single 10 GeV incident electron.

 EM showers are contained (>99%) in 20 X₀ regardless the material (X₀ depends on ρ)

Lateral shower developmen: EM showers contained in 1 RM: ~87% 2 RM: ~96% 5 RM: >99%

Some numbers

KI CAN KR			Density	Ec	X_0	ρ _M	λ_{int}	(dE/dx)mip
T ALBIN T	Material	Z	[g cm	[MeV]	[mm]	[mm]	[mm]	[MeV cm]
A PH HA			3]					1]
A PARA		6	2.27	83	188	48	381	3.95
	Al	13	2.70	43	89	44	390	4.36
6 Ch · · · · · · · · · · · · · · · · · ·	Fe	26	7.87	22	17.6	16.9	168	11.4
e The BRANK	Cu /	29	8.96	20	14.3	15.2	151	12.6
A DARAMAN	Sn Sn	50	7.31	12	12.1	21.6	223	9.24
A CHANNER IN A CHANNER INTEACHANNE IN A CHANNER IN A CHANNE IN A CHANNER IN A CHANNE IN A CHANNER IN A CHANNE IN A CHANNE IN A CHANNE IN A CHANNE IN A CHUNNE IN A CHUNNE IN A CHUNNE IN A CHUNNER IN A CHUNNER IN A CHUNNE IN A CHUNNER IN A CHUNNER IN A CHUNNER IN A CHUNNE IN A CHUNNER IN A CHUNNE IN A CHUNNER IN A CHUNNER IN A CHUNNE IN A CHUNNE IN A CHUNNE IN A CHUNNE INTEACHANNE INTEACHANNE I CHUNNE I CHUNNE IN A CHUNNE INTEACHANNE I CHUNNE IN A CHUNNE IN A CHUNNE I CHUNNE I CHUNNE INTEACHANNE I CHUNNE I CHUNNE I CHUNNE I C	W NOW	74	19.3	8.0	3.5	9.3	96	22.1
	// Pb //	82	11.3	7.4	5.6	16.0	170	12.7
	238U	92	18.95	6.8	3.2	10.0	105	20.5
	Concrete	-	2.5	55	107	41	400	4.28
ON PLAND	Glass	-	2.23	51	127	53	438	3.78
	Marble	-	2.93	56	96	36	362	4.77
	🔨 📋 🖌 Si 🏏	14	2.33	41	93.6	48	455	3.88
NH VE	ジート Ge / /	32	5.32	17	23	29	264	7.29
· · · · ·	Ar (liquid)	18	1.40	37	140	80	837	2.13
	Kr (liquid)	36	2.41	18	47	55	607	3.23
a	Polystyrene	-	1.032	94	424	96	795	2.00
	Plexiglas	-	1.18	86	344	85	708	2.28
	Quartz	-	2.32	51	117	49	428	3.94
	Lead-glass	-	4.06	15	25.1	35	330	5.45
	Air 20°, 1 atm	-	0.0012	87	304 m	74 m	747 m	0.0022
SCIÊNCE	ohotól Water Y.	-	1.00	83	361	92	849	1.99

• 25X₀ = 13/06/11

Lead-glass: 25*25.1 = 627.5 mm \rightarrow homogeneous? Liquid Ar: 25*140 = 3500 mm \rightarrow sampling

Energy resolution

 Measured energy in EM calorimeters is the energy of electrons and positrons interacting with the active detector material

$${
m E_0} \propto {
m N_{tot}}$$

Multiplication process is stocastic Poisson distribution

$$\sigma(\mathbf{E_0}) \propto \sigma(\mathbf{N_{tot}}) \propto \sqrt{\mathbf{N_{tot}}}$$

$$\frac{\sigma(\mathbf{E_0})}{\mathbf{E_0}} \propto \frac{\sigma(\mathbf{N_{tot}})}{\mathbf{N_{tot}}} \propto \frac{\sqrt{\mathbf{N_{tot}}}}{\mathbf{N_{tot}}} \propto \frac{1}{\sqrt{\mathbf{E_0}}}$$

Intrinsic energy resolution improve with E

Energy resolution

Generic parametrization of calorimeter energy resolution:

$$\frac{\sigma(\mathbf{E_0})}{\mathbf{E_0}} = \frac{\mathbf{a}}{\sqrt{\mathbf{E_0}}} \oplus \frac{\mathbf{b}}{\mathbf{E_0}} \oplus \mathbf{c}$$

- a: Stocastic term
 - intrinsic limit due to statistical processes
- b: noise term
 - important at low energy
 - Electronic noise, pileup etc.
- c: constant term
 - Dominates at high energy
 - Due to inhomogeneities in materials, calibration imperfections, leakage

Sampling vs homogeneous

• Homogeneous

Massive shower in a tungsten cylinder (outlined in green) produced by a single 10 GeV incident electron.

Active medium (with high X₀) coincides with absorber Very good energy resolution (small a) No information on longitudinal development of the shower Cost effective

a ~ 1-10 %

Sampling

Massive shower in a tungsten cylinder (outlined in green) produced by a single 10 GeV incident electron.

Alternating layers of active medium (smaller X₀) and absorber (larger X₀: Pb, Cu, Fe)

Energy is sampled: sampling fraction introduces an additional contribution to the stocastic term

Shower shape information

Normally cheaper than homogeneous

a ~ 10-20 %

Hadron shower

- Description of hadron shower development is rather complicated
- It preceeds via strong and EM interactions
- Strong interaction of a single hadron with matter can lead to production of many secondaries
- $\pi^0 \rightarrow \gamma \gamma$ generate EM component of the shower
- Nuclei can breakup leading to spallation of n and p
- Energy threshold is the production of π : E_{th}~2m_{π} =2 80 MeV

Energy deposited by hadron components:

Ionizing particle (p, pi+-, etc)	~60%
Neutron	~10%
Invisible energy (nuclear binding)	~30%

Huge fluctuations \rightarrow poor energy resol. a ~ 20-40%

Hadron shower

 Hadron showers development is parametrized with interaction length

WA78 : 5.4 λ of 10mm U / 5mm Scint + 8 λ of 25mm Fe / 5mm Scint

$$\lambda_{\mathrm{int}} \sim 35 \mathrm{A}^{1/3} \mathrm{g} \cdot \mathrm{cm}^{-2}$$

~10 λ_{int} to contain a shower ~ 1-2 m (heavy absorber) \rightarrow HCAL always sampling

Moreover: response of active layer to HAD and EM shower components is different ($e/h \neq 1$)

 \longrightarrow

3

Concept of calorimeter compensation, not described here.

ATLAS calorimeter is not compensating

• Calorimeters $\begin{bmatrix} ElectroMagnetic \\ Hadronic \\ Homogeneous \\ Sampling \end{bmatrix}$ $\begin{bmatrix} ElectroMagnetic \\ Homogeneous \\ Sower size (containement) ~ Ln(E) \end{bmatrix}$

Calorimeters can be based on different detection techniques

Scintillators, ionization, cerenkov etc.

The ATLAS Calorimeter System

ATLAS LAr Calorimeter

Principle of LAr/Pb calorimeter

- Interactions mainly in lead absorber
- Charged particles ionize Ar atoms
- Elecrons drift in the LAr gap where an electric field is applied
- Signal is induced on the read-out electrodes by the moving electrons
- Induced signals have a caracteristic triangular shape current peak ~ energy lost by particles

ATLAS LAr EM Calorimeter

- Advantages of LAr as active material
 - Detector uniformity (easier calibration)
 - − Linearity of the response (LAr high density
 → no electron amplification needed)
 - Stability with time
 - Radiation hard
 - High granularity possible (shaping)

- Drawbacks
 - Sampling (but longitudinal segmentation possible)
 - − Criogenics → difficult operation, additional dead material
 - 'Slow' charge collection:
 450ns >> 25ns = LHC BC frequency

ATLAS LAr EM calorimeter

Segmentation in (eta, phi) Segmentation in depth, 3 layers: Strips, Middle, Back Strips highly segmented: good rejection π^0/γ 24 X₀ in total Presampler up to |eta| =1.8

Energy resolution:

13/06/11

$$\frac{\sigma(\mathbf{E})}{\mathbf{E}} = \frac{\mathbf{10\%}}{\sqrt{\mathbf{E}}} \oplus \mathbf{0.7\%}$$

EM calo benchmarg: $H \rightarrow gg$

- BR(H \rightarrow gg) \approx 2•10⁻³at m_H=120GeV
- But a very clean channel (and possibly the best one at small masses)

$$= \frac{1}{2} \sqrt{\left(\frac{\sigma_1}{\mathbf{E}_1}\right)^2 + \left(\frac{\sigma_2}{\mathbf{E}_2}\right)^2 + \left(\frac{\sigma_\theta}{\tan(\theta/2)}\right)^2}$$

 $\mathbf{m}_{\alpha\alpha} = 2\mathbf{E}_1\mathbf{E}_2(1-\cos\theta_{\alpha\alpha})$

To achieve a good invariant mass resolution on $m_{\gamma\gamma}$ good energy and angular resolutions are needed

Lar HCAL and FCAL

• Same principle as EM but different geometries and absorbers

ATLAS Tile Calorimeter

Unconventional geometry: absorber plates (steel) and scintillating tiles oriented along the direction

of the incident particles:

- \rightarrow homogeneous sensitivity
- \rightarrow hermiticity in phi
- \rightarrow economic construction

Scintillators (crystals):

- incident charged particles create electron-hole pairs
- photons are emitted when electrons return to the valence band
- the incident electron or photon is completely absorbed
- the produced amount of light, which is reflected through the transparent crystal, is measured by photomultipliers or solid state photon detectors

Conduction band

$$\frac{\sigma(\mathbf{E})}{\mathbf{E}} = \frac{\mathbf{53\%}}{\sqrt{\mathbf{E}}} \oplus \mathbf{6\%}$$

Measured objects

- So far we have discussed about e^+ , e^- , γ , n, p, π ...
- From the point of view of the detected quantities we should rather talk of measured objects

 $Z \rightarrow e^+e^-$

Jets

- Cluster of multiparticles generated by a quark or gluon
- Measured by HAD calo
- Hadrons are formed from quarks or gluons via:

Fragmentation

QCD radiation $q \rightarrow gq$, $g \rightarrow gg$ and $g \rightarrow qq$ Almost collinear

Hadronization

Final step of hardons (colorless) formation Real QCD radiation becomes disfavuored

Hadrons created from single q or g are almost collinear \rightarrow jet Jets are reconstructed as energy deposit in a 'small' cone

2 symmetric jets in Pb-Pb collision

2-jet event in p-p collision

MET (Missing E_T)

- By measuring the 'visible' energy of the event one can reconstruct the energy carried by invisible objects (neutrinos, but also LSP in SUSY etc.)
- In hadron colliders we don't know the initial energy of the interacting partons
- We do know that in transverse plane (to the protons momentum) the initial energy is negligible (on average p_T^{parton} < ~300MeV)
- We can balance the energy of the event in the transverse plane (x-y in ATLAS convention)

$$\mathbf{E_{x(y)}^{miss}} = \mathbf{E_{x(y)}^{missCalo}} + \mathbf{E_{x(y)}^{missMuon}}$$

$$\frac{\mathbf{E}_{\mathbf{T}}^{\mathbf{miss}}}{\mathbf{E}_{\mathbf{T}}^{\mathbf{miss}}} = \sqrt{\mathbf{E}_{\mathbf{x}}^{\mathbf{miss}}}^{2} + (\mathbf{E}_{\mathbf{y}}^{\mathbf{miss}})^{2}$$

$$egin{aligned} \mathbf{E}^{\mathrm{missCalo}}_{\mathbf{x}} &= -\sum_{\mathbf{i}=1}^{\mathbf{N}_{\mathrm{cell}}} \mathbf{E}_{\mathbf{i}} \mathbf{sin} heta_{\mathbf{i}} \mathbf{cos} \phi_{\mathbf{i}} \ &\\ \mathbf{E}^{\mathrm{missCalo}}_{\mathbf{y}} &= -\sum_{\mathbf{i}=1}^{\mathbf{N}_{\mathrm{cell}}} \mathbf{E}_{\mathbf{i}} \mathbf{sin} heta_{\mathbf{i}} \mathbf{sin} \phi_{\mathbf{i}} \end{aligned}$$

 E_x^{miss} and E_y^{miss} are normally distributed E_T^{miss} follows a Rayleigh distribution:

$$\mathbf{f}(\mathbf{r}) = \frac{\mathbf{r}}{\sigma^2} \mathbf{exp}(-\frac{\mathbf{r}^2}{2\sigma^2})$$

30

W→ev

From digit to raw cell energy

- Signal pulse of the ATLAS calormeters are sampled every 25ns (LHC bunch crossing frequency)
- Normally 5 samples around the peak are stored
- Peak is reconstructed from ADC value of the samples \rightarrow Optimal Filtering
- From peak value to current induced in the detector \rightarrow calibration
- From measured current to deposited energy \rightarrow sampling fraction

Trigger

Number of FEBs per 0.25 ns

- Calorimeters provide a fast and precise signal
- Suited to be used for trigger information
- Time resolution of ATLAS LAr calo: O(100ps)

LVL1 Calo trigger based on the energy sum of cells belonging to a trigger tower reconstructed online 1TT = $0.1 \times 0.1 \eta \times \phi$

Calo cell energy distribution

34

•

•

π^0 signal

Jets

Only cells in clusters are used (noise suppression) $_{\rm 13/06/11}$

Missing E_{T}

References

- R. Wingmans «Calorimetry: energy measurement in particle physics», Oxford University Press, 2000
- C. W. Fabjian and F. Giannotti «Calorimetry for particle physics», Reviews of Modern Physics, Vol. 75, Oct. 2003
- ATLAS Calorimeter Performance TDR: http://atlas.web.cern.ch/Atlas/ TDR/caloperf/caloperf.html
- ATLAS LAr TDR: http://atlas.web.cern.ch/Atlas/GROUPS/LIQARGEXT/TDR/ Welcome.html
- ATLAS TILE TDR: http://atlas.web.cern.ch/Atlas/SUB_DETECTORS/TILE/TDR/TDR.html
- M. Diemoz, D. Fournier, R. Wigmans
 - Lectures at EDIT 2001: http://indico.cern.ch/conferenceDisplay.py?confld=124299

