

Study on the Dimuon Trigger Efficiency in the Muon Stream

+ Low-p_T selection: $J/\psi \rightarrow \mu\mu$

+ Bayes Theorem

$$P(B) = \frac{P(A)P(B|A)}{P(A|B)}$$

3

Using the Bayes Theorem we can produce an unbiased measurement of the ε (EF_mu4_Jpsimumu) and ε (EF_2mu4_Jpsimumu) using the data muon stream

+ EF_mu4_Jpsimumu - Overview

Trigger algorithm based on **L2 TrigDiMuon** algorithm

- **L1MU0** search for a muon in wider η and Φ region
- L1 RoI confirmed at L2 (muFast and "possibly also" muComb), then the RoI is extended ($\Delta \eta \times \Delta \phi = 0.75 \times 0.75$)
- Searching for 2 ID tracks in Ex-RoI \rightarrow M > 2.8, opposite sign
- Selected ID tracks extrapolated to MS \rightarrow depending on η and Φ , different formulas parameterizing the expected bending in the magnetic field
- Search for muon hits in MS within the road around extrapolated track
- If sufficient number of muon hits in MS for both tracks \rightarrow 2 Muons
- Finally the tracks are refitted to a common vertex and the following requirements are applied \rightarrow 2.5<M<4.3 , X²_{vtx}<20

We have not the requirement of an EF_mu4 fired

P(EF_mu4|EF_mu4_Jpsimumu)≠1

_P(EF_mu4 | EF_mu4_Jpsimumu) estimated with MC

How to solve this problem?

We retrieve the online L2 and EF tracks and we emulate the effects of the EF_mu4 trigger selection →Re-run the Hypo

P(EF_mu4_emu | EF_mu4_Jpsimumu)

Difference between the conditioned probability obtained with emulated EF_mu4 and EF_mu4

10 79121

2

0<mark>1</mark>

-0.00759181

-0.0159733

-0.0776108

-0 047024

0.015824

0.0451537

0.0155216

-0.0242588

-0.131449

0.0203423

-0.031553

0.049664

0.0273645

-0.0116959

0.2 0.4 0.6 0.8

8908090 0

0 0711770

0.0683213

-0.0575428 -0.0427419-0.0155945 -0.0528432

0.00547521 -0.05286340.000989712 0.00884669

-0.0260906 -0.03402170.00143223 -0.00122227

0.0002465 0.024907 0.0569044 0.00250102

-0.034907 -0.128056 -0.096238

-0.210728 -0.166925 -0.0822984

1 1.2 1.4 1.6 1.8

0.2

0.1

0

-0.1

-0.2

0.0211378

-0.0708967

-0.0167377

-0.0498327

0.00130814

0.0797443

-0.0515076

2 2.2 2.4

-0.0952585

-0.107252

+ MC Turn-On: EF_mu4_Jpsimumu 10 efficiency Major: Muon with higher P_T 0.8 0.6 ATLAS Preliminary MC direct: P_T Major B+E MC emul : P_T Major B+E MC weight: P_T Major B+E 0.4 efficiency 0.2 **Minor: Muon with lower P** 0.8 0₀ 20 2 12 18 2 6 8 10 14 16 p_T (GeV) 0.6 ATLAS Preliminary MC direct: P_T Minor B+E MC emul : P_T Minor B+E MC weight: P_T Minor B+E 0.4 0.2 0 0 18 20 22 8 12 14 16 10 p_ (GeV) direct: N(EF_mu4_Jpsimumu)/N(Reco)

direct: N(EF_mu4_Jpsimumu)/N(Reco) emulated: Bayes Theorem with EF_mu4 Emulated Bayes Theorem with EF_mu4

+ EF_mu4_Jpsimumu: MC Efficiency in η Major: Muon with higher P_T 0.8 0.6

ATLAS Preliminary MC direct: n Major

MC emul : η Major
MC weight: η Major

0.4

0.2

+ EF_mu4_Jpsimumu: MC DeltaR

direct: N(EF_mu4_Jpsimumu)/N(Reco) emulated: Bayes Theorem with EF_mu4 Emulated Bayes Theorem with EF_mu4

MC : Bayes Theorem with EF_mu4 Data: Bayes Theorem with EF_mu4 Emulated

+ Efficiency for EF_2mu4_Jpsimumu

Select 2MU0 at L1

"Topological" Trigger

__ EF_2mu4_Jpsimumu: MC efficiency estimation

__ EF_2mu4_Jpsimumu: MC/DATA Comparison

+ How to use this method in 2011?

The method rely on the measurements of EF_mu4 efficiency (with Tag & Probe method)

The errors on the EF_mu4 efficiency map are the main source of uncertainty. We would like to avoid the risk that such errors completely dominate the measurements itself + How to use this method in 2011?

With 2010 data the errors are O(1%) with > O(5x10⁹) EF_mu4 trigger.

With a minimum request of $O(1x10^9)$ EF_mu4 trigger which is the possible scenario for the allowed bandwidth??

- Fixed but very small O(1Hz)??
- Increase to the maximum Bphys bandwidth at the end of the fill??

- Other possibilities?

EF_mu4 rate from 2011

O(5) Hz

+ Conclusions and outlooks

- We are running the same procedure on the other dimuon trigger items
- **Start to evaluate systematics**
- Discussing with the Bphys group for the trigger strategy for the 2011
- Bphys group asked us a note for the dimuon items