Studio del decadimento del bosone $Z \rightarrow ee$ all'esperimento ATLAS

Candidato: Savarese Claudio N85/003 Relatori:

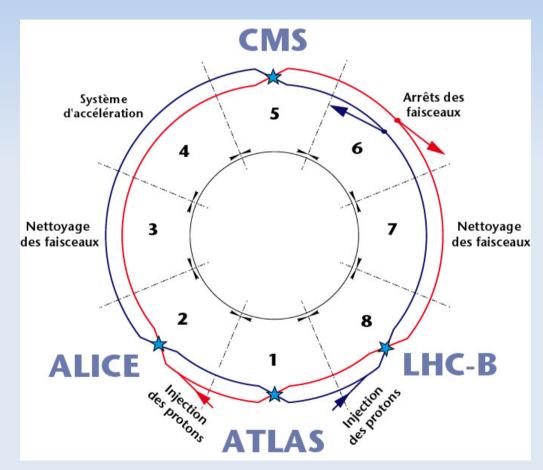
Prof.ssa Alviggi Mariagrazia

Dr. Iengo Paolo

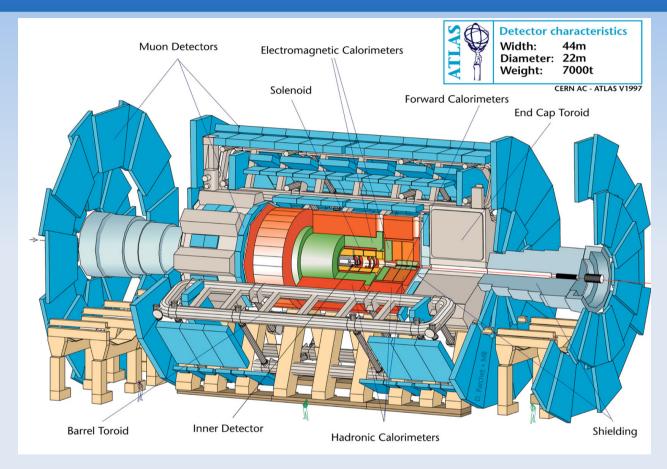
Obiettivi delle analisi:

- •Misura della risoluzione del picco di massa invariante della Z;
- •Misura dell'efficienza di identificazione della carica elettrica degli elettroni;
- •Stima della sezione d'urto del processo pp \rightarrow Z \rightarrow ee a $\sqrt{s}=7TeV$.

LHC

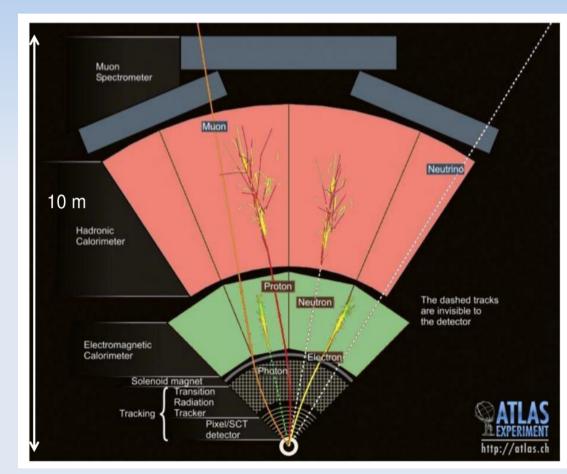

- Collisionatore p-p
- Energia attuale nel centro di massa:

$$\sqrt{s} = 7TeV$$

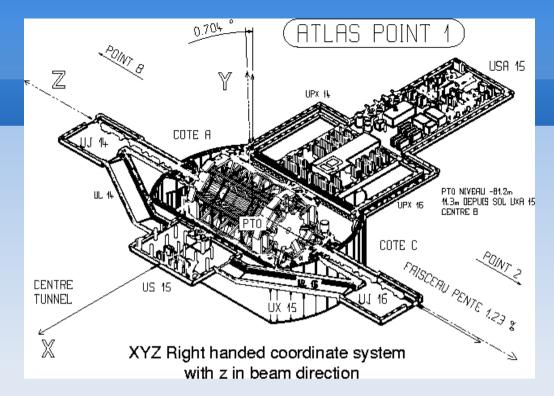

Luminosità di picco raggiunta:

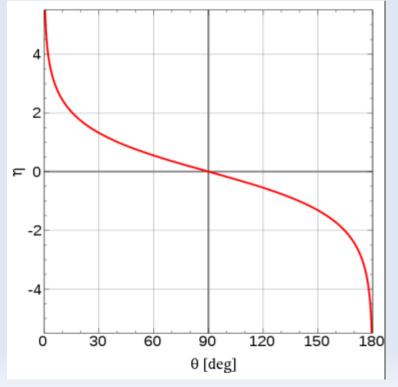
$$L = 3.33 \cdot 10^{33} cm^{-2} s^{-1}$$

- Bunch crossing rate:40MHz
- Esperimenti: ATLAS, CMS, LHCb, ALICE.


ATLAS: scopi dell'esperimento

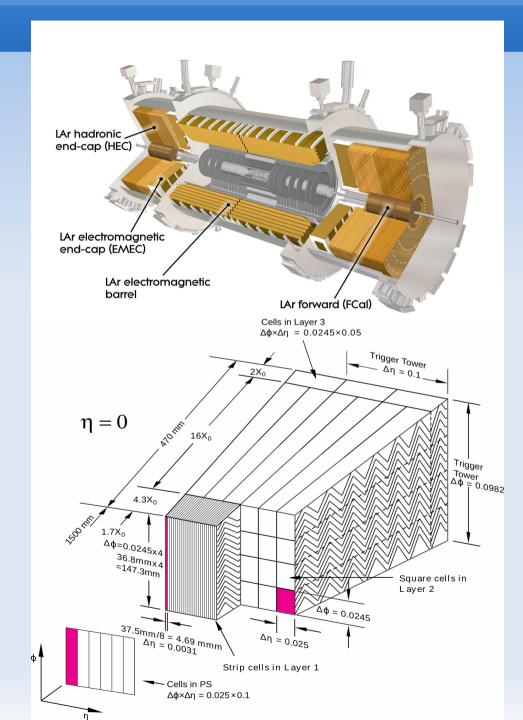
- Misure di precisione dei parametri del Modello Standard
- Ricerca del bosone di Higgs
- Ricerca di particelle supersimmetriche
- Ricerca di decadimenti rari


ATLAS


- Particelle rilevabili: elettroni, muoni, tau, fotoni, jets adronici.
- Ermeticità → momento ed energia mancanti
 → Neutrini, particelle sconosciute.
- Rivelatori: Inner Detector, calorimetro EM, calorimetro adronico, spettrometro a muoni.

Sistema di riferimento

- Terna destrorsa con asse z nella direzione dei fasci, asse y verso l'alto e asse x verso il centro dell'anello.
- Piano Trasverso: piano xy;
- Angolo φ: angolo di rotazione attorno all'asse z con φ=0 sull'asse x e crescente in senso antiorario rispetto a z positivo.
- Angolo θ : angolo di rotazione attorno all'asse x con θ =0 sull'asse z e crescente in senso antiorario rispetto a x positivo.
- Pseudorapidità: $\eta = -ln[\tan\frac{\theta}{2}]$


II bosone Z

- Il bosone Z è uno dei 3 mediatori della forza elettrodebole (insieme a W±) ed ha una massa pari a M=91.18 GeV/c².
- La risonanza della Z, descritta da una Breit-Wigner, ha larghezza $\Gamma = (2.4952 \pm 0.0023) GeV/c^2$ [3].
- I principali canali di decadimento della Z sono i seguenti:
 - 10% coppie di leptoni-antileptoni carichi: e⁺e⁻, μ⁺μ⁻, τ⁺τ⁻ (con uguale probabilità, quindi 3.33% ciascuna coppia);
 - 20% coppie di leptoni-antileptoni neutri: vv;
 - 70% adroni.

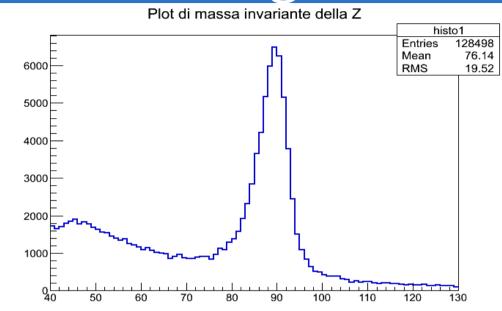
Struttura del calorimetro EM

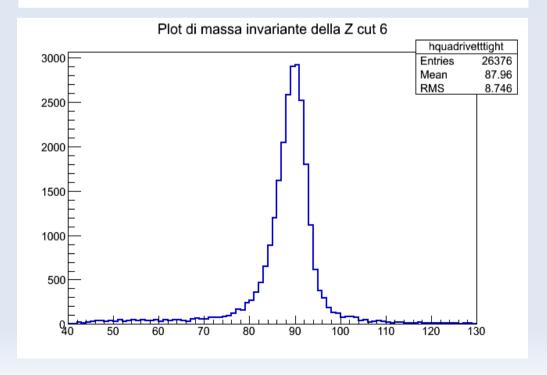
- Calorimetro a campionamento; materiale attivo: Argon liquido (Lar); mezzo assorbitore: Pb;
- 3 sezioni: 1 Barrel ($|\eta| \le 1.475$), EndCap (1.4 $\le |\eta| \le 3.2$);
- elettrodi a fisarmonica per una totale copertura in φ;
- segmentazione in celle in η e ϕ , e in profondità con tre strati: Strips (molto segmentate per l'identificazione di π^0 e γ), Middle, Back.
- Presampler: misura l'energia persa dalle particelle prima che arrivino nel calorimetro.
- Risoluzione del calorimetro EM:

$$\frac{\sigma(E)}{E} = \frac{10\%}{\sqrt{E}} \oplus 0.7\%$$

Classificazione di un elettrone

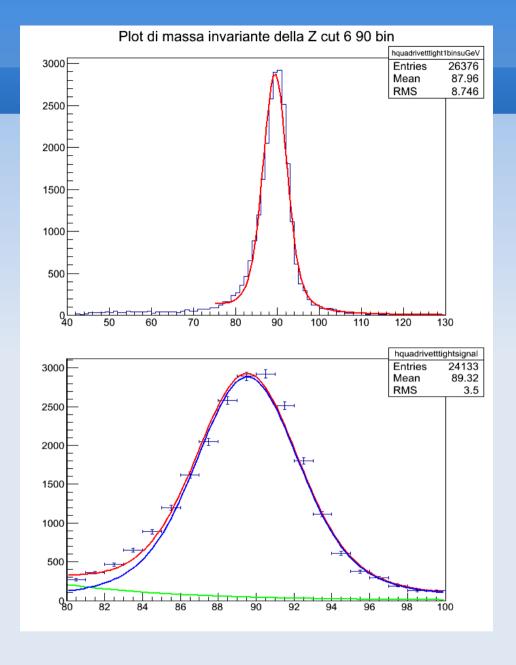
- Alcuni eventi selezionati come elettroni possono essere dei Fake (es. jets adronici)
- I candidati elettroni sono classificati tramite diversi tagli (condizioni su alcune variabili).
- Più i tagli sono stringenti più aumenta il grado di purezza del campione.
- Definiamo 3 categorie di elettroni: loose, medium, tight. Ogni categoria è un sottoinsieme della precedente.
- Isolamento: per definire oggetti "isolati", nella ricostruzione dell'evento si considerano i depositi di energia nelle celle con separazione totale dal candidato elettrone $\Delta R = \sqrt{(\Delta \varphi)^2 + (\Delta \eta)^2} \le 0.2$


Campione: eventi registrati nel periodo che va dal 22 Marzo al 23 Maggio del 2011; energia nel centro di massa: 7TeV, il valore stimato della luminosità integrata è $L=(347\pm14)pb^{-1}$. Gli eventi sono stati selezionati con il trigger di primo livello L1_EM20 e richiedendo almeno 2 elettroni per evento.

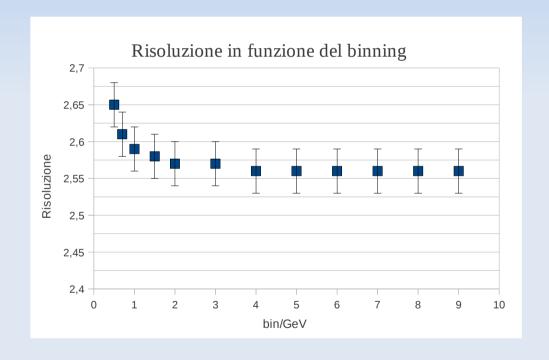

Analisi preliminari 1: tagli

 Per le analisi preliminari è stato selezionato un campione i cui eventi contenessero esclusivamente 2 elettroni.

Allo scopo di migliorare il rapporto segnale/rumore si sono applicati 5 tagli consecutivi:


- Opposite charge;
- Et>20GeV
- Eta: $|\eta| \le 1.37 \&\&$ $1.52 \le |\eta| \le 2.47$
- Detector Quality, Conversione
- TightIso (per massimizzare la purezza del campione)

Analisi preliminari 2: fit


- La risonanza della Z è una curva di Breit-Wigner di larghezza fissata Γ=(2.4952±0.0023) (indipendente dal canale in cui si osserva il decadimento).
- La precisione di ogni misura è limitata dalla risoluzione sperimentale, che, essendo dovuta a fluttuazioni statistiche, ha una distribuzione Gaussiana.
- La curva che meglio approssima l'andamento sperimentale è la convoluzione delle due funzioni.
- Il background può essere fittato da un esponenziale decrescente.

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{k}{(y^2 - M^2)^2 + \Gamma^2 M^2} e^{-\frac{(x-y)^2}{2\sigma}} dy + Ae^{Bx}$$

Analisi preliminari 3: dipendenza dal binning

- In linea di principio i risultati di un fit dipendono dal binning dell'istogramma, e prevedere tale dipendenza non è banale.
- Si è variato il binning della selezione precedente di un intero ordine di grandezza, da 0.5bin/GeV fino a 9bin/GeV, per un totale di 13 punti sperimentali.
- L'andamento della risoluzione in funzione del binning appare non lineare per bassi valori di bin/GeV, quindi si stabilizza ad un valore costante a partire da 4bin/GeV.
- Binning del campione definitivo: 4bin/GeV.

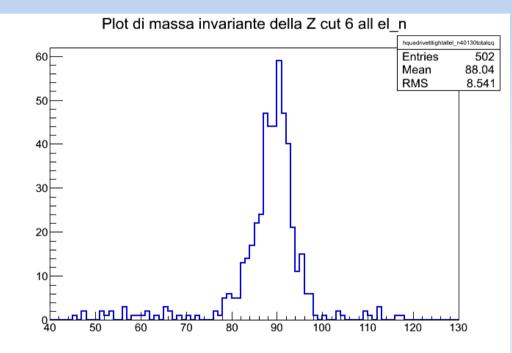
Stima della risoluzione del Calorimetro EM

- Campione definitivo: selezione sul Pt, per trovare i 2 elettroni più energetici in tutti gli eventi.
- Stessi tagli applicati al campione per le analisi preliminari
- Risoluzione:

$$R = (2.24 \pm 0.02) \cdot 10^{-2}$$

- Differenziazione degli eventi registrati da EndCap e Barrel
- Stima delle risoluzioni dei due diversi settori.
- Barrel:

$$R = (2.24 \pm 0.02) \cdot 10^{-2}$$


• EndCap:

$$R = (2.87 \pm 0.07) \cdot 10^{-2}$$

Efficienza di identificazione della carica

Selezionando dal campione elettroni con la medesima carica e andando a ricostruirne la massa invariante, se non ci fossero errori di identificazione della carica, ci si aspetterebbe un segnale piatto. Quello che si trova è invece un picco centrato sulla massa della Z,dovuto a tali errori.

- Numero di eventi SO nell'intervallo 80-100 GeV. Valutazione background SO (exp). Numero di eventi di segnale SO per sottrazione.
- Al medesimo campione si sono applicati i 5 tagli, ma si sono selezionate le coppie con stessa carica (SS). Background della distribuzione SS → Costante. Numero di eventi di segnale SS

- $N_{sign}^{SS} = 2pN_{sign}^{SS+SO} p^2N_{sign}^{SS+SO}$
- Probabilità di errore: $p = (0.40 \pm 0.02) \cdot 10^{-2}$
- Probabilità di errore stimata nell'articolo di riferimento [1]: $p=(0.6\pm0.3)\cdot10^{-2}$

Stima della sezione d'urto del processo σ ·BR(pp \rightarrow Z \rightarrow ee)

• Sezione d'urto:
$$\sigma \cdot BR(Z \to ee) = \frac{N^{sign}}{L \cdot A \cdot \varepsilon}$$

- Si dovrebbero valutare accettanza (A) e efficienza (ε)
 dell'apparato, che dipendono da tanti fattori quali geometria del
 rivelatore, efficienza di rivelazione, efficienza di trigger, tagli
 effettuati.
- Si è deciso di fare riferimento alle stime dell'articolo [1], che sono:

$$A = (0.606 \pm 0.018)$$
 $\varepsilon = (0.44 \pm 0.03)$

 Problema: i tagli effettuati nell'articolo di riferimento [1], per questioni di dimensioni del campione sono meno stringenti, ma il valore di A dipende da essi.

Stima della sezione d'urto del processo σ ·BR(pp \rightarrow Z \rightarrow ee)

• Soluzione: introdurre un ulteriore fattore "accettanza relativa" (A^{rel}) per rinormalizzare il campione preso in esame ai tagli dell'articolo.

$$A^{rel} \simeq \frac{N^{sel}(TT, Iso, 80 - 100)}{N^{sel}(MM, noIso, 66 - 116)}$$
 $A^{rel} = (0.612 \pm 0.003)$

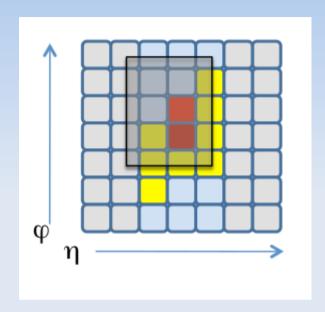
• Sezione d'urto:
$$\sigma \cdot BR(Z \to ee) = \frac{N^{sign}}{L \cdot A \cdot \varepsilon \cdot A^{rel}}$$

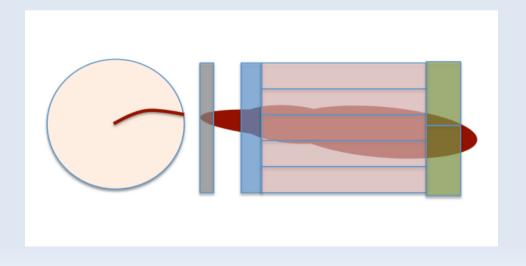
• La luminosità L è nota, mentre N^{sign} è stato precedentemente calcolato per la misura dell'efficienza di identificazione della carica elettrica.

$$L = (347 \pm 14)pb^{-1} \qquad N^{sign} = (51.9 \pm 1.4) \cdot 10^3$$

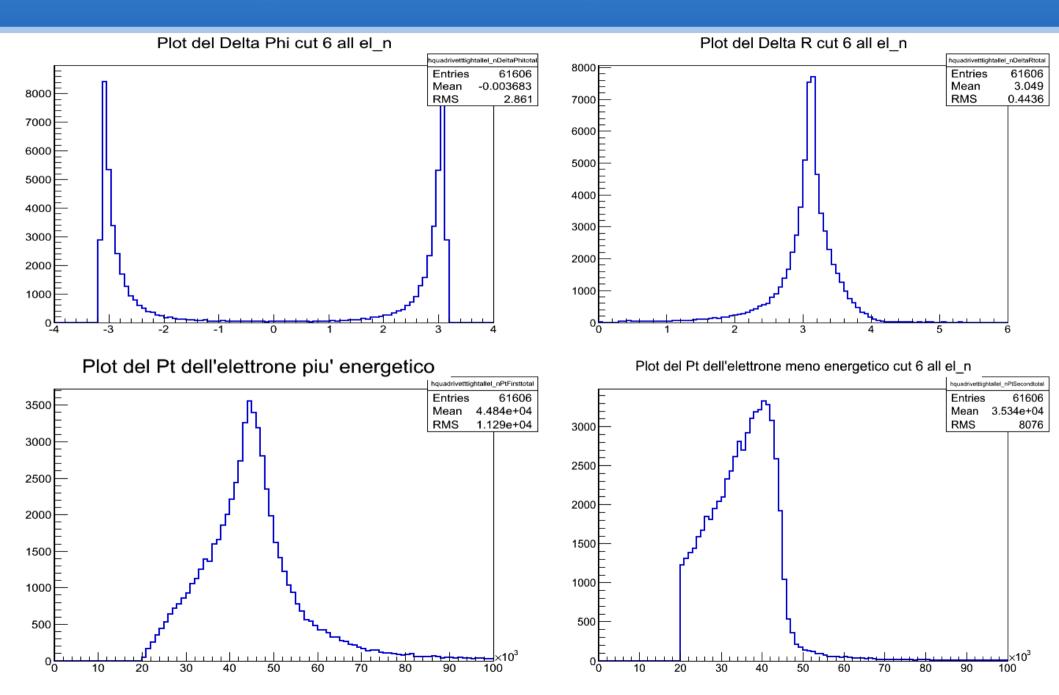
- Trattamento delle incertezze: $\sigma \pm \delta \sigma^{stat} \pm \delta \sigma^{sist} \pm \delta \sigma^{L}$
- Stima finale: $\sigma = (0.92 \pm 0.02 \pm 0.07 \pm 0.04) nb$
- Stima [2]: $\sigma = (0.935 \pm 0.009 \pm 0.009 \pm 0.032 \pm 0.019)nb$

Riferimenti


- [1]: ATLAS NOTE, Measurement of the production cross section of W γ and Z γ at $\sqrt{s}=7TeV$ with the ATLAS Detector , December 13, 2010 .
- [2]: ATLAS Collaboration, Measurement of the inclusive W[±] and Z/γ^* cross sections in the e and μ decay channels in pp collisions at $\sqrt{s}=7TeV$ with the ATLAS detector, September 28, 2011.
- [3] PDG July 2010.


Grazie per la cortese attenzione

Ricostruzione di un elettrone


- Middle layer: creazione di una finestra di 3x5 celle
- Creazione di un pre-cluster
- Selezione dei pre-cluster con Et>2.5 GeV
- Ricerca del baricentro del cluster
- Ricerca di tracce dall'Inner
 Detector → Discriminazione fotoni, elettroni, vertici di conversione
- Ridefinizione della grandezza del cluster in base al tipo di particella
- Correzioni all'energia depositata: prima del calorimetro EM, fuori al cluster, oltre il calorimetro EM
- Risoluzione del calorimetro EM:

$$\frac{\sigma(E)}{E} = \frac{10\%}{\sqrt{E}} \oplus 0.7\%$$

Analisi preliminari: plot di controllo

Preselezione del campione

- Il trigger L1_EM20 seleziona eventi in cui almeno uno degli oggetti elettromagnetici rivelati ha energia trasversa Et≥20 GeV.
- La sigla L1 sta a significare che è un trigger di primo livello, quindi puramente hardware.
- Il sistema di trigger di ATLAS è infatti organizzato in 3 livelli, di cui il più basso è hardware, mentre i 2 superiori sono software dotati di algoritmi di selezione ottimizzati per far fronte all'elevato rate di eventi registrati.

Tagli Loose, Medium, Tight

- In tabella sono elencati tutti i tagli applicati per operare la classificazione.
- Per la classificazione di un elettrone "tight", si usano tutte le possibili variabili caratterizzanti.

Type	Description	Variable name
Loose cuts		
Acceptance of the detector	$ \eta < 2.47$	
Hadronic leakage	Ratio of E_T in the first sampling of the	
	hadronic calorimeter to E_T of the EM cluster	
Second layer	Ratio in η of cell energies in 3 × 7 versus 7 × 7 cells.	R_{η}
of EM calorimeter.	Ratio in ϕ of cell energies in 3 × 3 versus 3 × 7 cells.	R_{ϕ}
	Lateral width of the shower.	
Medium cuts (includes loose cuts)		
First layer	Difference between energy associated with	ΔE_s
of EM calorimeter.	the second largest energy deposit	
	and energy associated with the minimal value	
	between the first and second maxima.	
	Second largest energy deposit	R _{max2}
	normalised to the cluster energy.	
	Total shower width.	w _{stot}
	Shower width for three strips around maximum strip.	w _{s3}
	Fraction of energy outside core of three central strips	F _{side}
	but within seven strips.	
Track quality	Number of hits in the pixel detector (at least one).	
	Number of hits in the pixels and SCT (at least nine).	
	Transverse impact parameter (<1 mm).	
Tight (isol) (includes medium cuts)		
Isolation	Ratio of transverse energy in a cone $\Delta R < 0.2$	
	to the total cluster transverse energy.	
Vertexing-layer	Number of hits in the vertexing-layer (at least one).	
Track matching	$\Delta \eta$ between the cluster and the track (< 0.005).	
	$\Delta \phi$ between the cluster and the track (< 0.02).	
	Ratio of the cluster energy	E/p
	to the track momentum.	
TRT	Total number of hits in the TRT.	
	Ratio of the number of high-threshold	
	hits to the total number of hits in the TRT.	
Tight (TRT) (includes tight (isol) except for isolation)		
TRT	Same as TRT cuts above,	
	but with tighter values corresponding to about 90%	
	efficiency for isolated electrons.	