NOTICE OF CHANGE

NOT MEASUREMENT SENSITIVE

MIL-HDBK-217F NOTICE 1 10 JULY 1992

MILITARY HANDBOOK RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

To all holders of MIL-HDBK-217F

1. The following pages of MIL-HDBK-217F have been revised and supersede the pages listed.

New Page(s)	Date	Superseded Page(s)	Date
vii		vii	2 December 1991
5-3		5-3	2 December 1991
5-4		5-4	2 December 1991
5-7		5-7	2 December 1991
5-8	2 December 1991	5-8	Reprinted without change
5-9		5-9	2 December 1991
5-10	2 December 1991	5-10	Reprinted without change
5-11	2 December 1991	5-11	Reprinted without change
5-12		5-12	2 December 1991
5-13		5-13	2 December 1991
5-14	2 December 1991	5-14	Reprinted without change
5-19		5-19	2 December 1991
5-20	2 December 1991	5-20	Reprinted without change
6-15		6-15	2 December 1991
6-16	2 December 1991	6-16	Reprinted without change
7-1	2 December 1991	7-1	Reprinted without change
7-2		7-2	2 December 1991
12-3		12-3	2 December 1991
12-4	2 December 1991	12-4	Reprinted without change
A-1	2 December 1991	A-1	Reprinted without change
A-2		A-2	2 December 1991
A-3		A-3	2 December 1991
A-4	2 December 1991	A-4	Reprinted without change
A-5		A-5	2 December 1991
A-6		A-6	2 December 1991
A-7		A-7	2 December 1991
A-8		A-8	2 December 1991
A-9		A-9	2 December 1991
A-10	2 December 1991	A-10	Reprinted without change
A-11	2 December 1991	A-11	Reprinted without change
A-12		A-12	2 December 1991
A-13		A-13	2 December 1991
A-14		A-14	2 December 1991
A-15	2 December 1991	A-15	Reprinted without change
A-16		A-16	2 December 1991

AMSC N/A <u>DISTRIBUTION STATEMENT A</u>: Approved for public release; distribution unlimited.

ARE<u>A-REL</u>I

- 2. Retain the pages of this notice and insert before the Table of Contents.
- 3. Holders of MIL-HDBK-217F will verify that page changes and additions indicated have been entered. The notice pages will be retained as a check sheet. The issuance, together with appended pages, is a separate publication. Each notice is to be retained by stocking points until the military handbook is revised or canceled.

Custodians:

Army - CR Navy - EC Air Force - 17 Preparing Activity: Air Force - 17-

Project No. RELI-0068

Review Activities:

Army - MI, AV, ER Navy - SH, AS, OS Air Force - 11, 13, 14, 15, 18, 19, 99

User Activities:

Army - AT, ME, GL Navy - CG, MC, YD, TD Air Force - 85

FOREWORD

MIL-HDBK-217F, Notice 1 is issued to correct minor typographical errors in the basic F Revision. MIL-HDBK-217F (base document) provides the following changes based upon recently completed studies (see Ref. 30 and 32 listed in Appendix C):

- 1. New failure rate prediction models are provided for the following nine major classes of microcircuits:
 - Monolithic Bipolar Digital and Linear Gate/Logic Array Devices
 - Monolithic MOS Digital and Linear Gate/Logic Array Devices
 - Monolithic Bipolar and MOS Digital Microprocessor Devices (Including Controllers)
 - Monolithic Bipolar and MOS Memory Devices
 - Monolithic GaAs Digital Devices
 - Monolithic GaAs MMIC Devices
 - Hybrid Microcircuits
 - Magnetic Bubble Memories
 - Surface Acoustic Wave Devices

This revision provides new prediction models for bipolar and MOS microcircuits with gate counts up to 60,000, linear microcircuits with up to 3000 transistors, bipolar and MOS digital microprocessor and coprocessors up to 32 bits, memory devices with up to 1 million bits, GaAs monolithic microwave integrated circuits (MMICs) with up to 1,000 active elements, and GaAs digital ICs with up to 10,000 transistors. The C₁ factors have been extensively revised to reflect new technology devices with improved reliability, and the activation energies representing the temperature sensitivity of the dice (π_T) have been changed for MOS devices and for memories. The C₂ factor remains unchanged from the previous Handbook version,

but includes pin grid arrays and surface mount packages using the same model as hermetic, solder-sealed dual in-line packages. New values have been included for the quality factor (π_Q), the learning factor (π_L), and the environmental factor (π_E). The model for hybrid microcircuits has been revised to be simpler to

use, to delete the temperature dependence of the seal and interconnect failure rate contributions, and to provide a method of calculating chip junction temperatures.

- 2. A new model for Very High Speed Integrated Circuits (VHSIC/VHSIC Like) and Very Large Scale Integration (VLSI) devices (gate counts above 60,000).
- 3. The reformatting of the entire handbook to make it easier to use.
- 4. A reduction in the number of environmental factors (π_E) from 27 to 14.
- 5. A revised failure rate model for Network Resistors.
- 6. Revised models for TWTs and Klystrons based on data supplied by the Electronic Industries Association Microwave Tube Division.

5.1 MICROCIRCUITS, GATE/LOGIC ARRAYS AND MICROPROCESSORS

DESCRIPTION

- 1. Bipolar Devices, Digital and Linear Gate/Logic Arrays
- 2. MOS Devices, Digital and Linear Gate/Logic Arrays
- 3. Field Programmable Logic Array (PLA) and Programmable Array Logic (PAL)
- 4. Microprocessors

$\lambda_{\rm D} = (C_1 \pi_{\rm T} + C_2 \pi_{\rm E}) \pi_{\rm O} \pi_{\rm L}$ Failures/10⁶ Hours

Bipolar	Digital and Linea	r Gate/Logic Array [Die Complexity Failure	Rate - C1
---------	-------------------	----------------------	------------------------	-----------

Digital			Linear		PLA/PAL	
No. Gates	C ₁	No. Trai	nsistors	С ₁	No. Gates	C ₁
1 to 100 101 to 1,000 1,001 to 3,000 3,001 to 10,000 10,001 to 30,000 30,001 to 60,000	.0025 .0050 .010 .020 .040 .080	1 to 101 to 301 to 1,001 to	100 300 1,000 10,000	.010 .020 .040 .060	Up to 200 201 to 1,000 1,001 to 5,000	.010 .021 .042

MOS Digital and Linear Gate/Logic Array Die Complexity Failure Rate - C1*

Digital		Linear		PLA/PAL	
No. Gates	C ₁	No. Transistors	с ₁	No. Gates	C1
1 to 100 101 to 1,000 1,001 to 3,000 3,001 to 10,000 10,001 to 30,000 30,001 to 60,000	010 .020 .040 .080 .16 .29	1 to 100 101 to 300 301 to 1,000 1,001 to 10,000	.010 .020 .040 .060	Up to 500 501 to 2,000 2,001 to 5,000 5,001 to 20,000	.00085 .0017 .0034 .0068

*NOTE: For CMOS gate counts above 60,000 use the VHSIC/VHSIC-Like model in Section 5.3

Microprocessor Die Complexity Failure Rate - C₁

	Bipolar	MOS
No. Bits	C ₁	с ₁
Up to 8	.060	.14
Up to 16	.12	.28
Up to 32	.24	.56

All Other Model Parameters			
Parameter	Refer to		
π _T	Section 5.8		
C ₂	Section 5.9		
^π Ε ^{, π} Q ^{, π} L	Section 5.10		

5.2 **MICROCIRCUITS, MEMORIES**

DESCRIPTION

- 1. Read Only Memories (ROM)
- 2. Programmable Read Only Memories (PROM)
- 3. Ultraviolet Eraseable PROMs (UVEPROM)
- 4. "Flash," MNOS and Floating Gate Electrically Eraseable PROMs (EEPROM). Includes both floating gate tunnel oxide (FLOTOX) and textured polysilicon type EEPROMs
- 5. Static Random Access Memories (SRAM)
- 6. Dynamic Random Access Memories (DRÁM)

 $\lambda_p = (C_1 \pi_T + C_2 \pi_E + \lambda_{cyc}) \pi_Q \pi_L$ Failures/10⁶ Hours

Die Complexity Failure Rate - 01							
· · · · · · · · · · · · · · · · · · ·		М	DS		Bip	Bipolar	
Memory Size, B (Bits)	ROM	PROM, UVEPROM, EEPROM, EAPROM	DRAM	SRAM (MOS & BiCMOS)	ROM, PROM	SRAM	
Up to 16K 16K < B ≤ 64K 64K < B ≤ 256K 256K < B ≤ 1M	.00065 .0013 .0026 .0052	.00085 .0017 .0034 .0068	.0013 .0025 .0050 .010	.0078 .016 .031 .062	.0094 .019 .038 .075	.0052 .011 .021 .042	

Dia Complexity Failure Rate C

A₁ Factor for λ_{cvc} Calculation

Total No. of Programming Cycles Over EEPROM Life, C	Flotox ¹	Textured- Poly ²
Up to 100 100 < C \leq 200 200 < C \leq 500 500 < C \leq 1K 1K < C \leq 3K 3K < C \leq 7K 7K < C \leq 15K 15K < C \leq 20K 20K < C \leq 30K 30K < C \leq 100K 100K < C \leq 200K 200K < C \leq 400K 400K < C \leq 500K	.00070 .0014 .0034 .0068 .020 .049 .10 .14 .20 .68 1.3 2.7 3.4	.0097 .014 .023 .033 .061 .14 .30 .30 .30 .30 .30 .30 .30 .30 .30

1. $A_1 = 6.817 \times 10^{-6}$ (C)

2. No underlying equation for Textured-Poly.

A₂ Factor for λ_{cvc} Calculation

Total No. of Programming Cycles Over EEPROM Life, C	Textured-Poly A2
Up to 300K	0
300K < C ≤ 400K	1.1
400K < C ≤ 500K	2.3

All	Other	Model	Parameters

.|

Parameter	Refer to		
^π T C ₂	Section 5.8 Section 5.9		
^π Ε ^{, π} Q ^{, π} L	Section 5.10		
λ _{cyc} (EEPROMS only)	Page 5-5		
$\lambda_{\rm CVC} = 0$ For all other devices			

5.3 MICROCIRCUITS, VHSIC/VHSIC-LIKE AND VLSI CMOS

DESCRIPTION

CMOS greater than 60,000 gates

 $\lambda_{p} = \lambda_{BD} \pi_{MFG} \pi_{T} \pi_{CD} + \lambda_{BP} \pi_{E} \pi_{Q} \pi_{PT} + \lambda_{EOS}$ Failures/10⁶ Hours

Die Base Failure Rate - λ_{BD}

	00
Part Type	λ _{BD}
Logic and Custom Gate Array and Memory	0.16 0.24

All Other Model Parameters		
Parameter Refer to		
^π Τ ^π Ε' ^π Q	Section 5.8 Section 5.10	

Manufacturing Process Correction Factor - mMFG

Manufacturing Process	^π MFG
QML or QPL Non QML or Non QPL	.55 2.0

Package Type Correction Factor - π_{PT}

	^π PT	
Package Type	Hermetic	Nonhermetic
DIP Pin Grid Array Chip Carrier (Surface Mount Technology)	1.0 2.2 4.7	1.3 2.9 6.1

Die Complexity Correction Factor - π_{CD}

Feature Size			Die Area (cm ²)		
(Microns)	<u> </u>	.4 < A ≤ .7	.7 < A ≤ 1.0	1.0 < A ≤ 2.0	2.0 < A ≤ 3.0
.80	8.0	14	19	38	58
1.00	5.2	8.9	13	25	37
1.25	3.5	5.8	8.2	16	24
$\pi_{\rm CD} = \left(\left(\frac{A}{.21} \right) \right) \left(\right)$	$\left(\frac{2}{X_{s}}\right)^{2}$ (.64) + .36	A = Total Scrib	ed Chip Die Area in d	cm ² X _s = Featu	re Size (microns)
Die Area Conver	sion: $cm^2 = MIL^2$	÷ 155,000			

Package Base Failure Rate - λ_{BP}

DF		
Number of Pins	λ _{BP}	
24	.0026	
28	.0027	
40	.0029	
44	.0030	
48	.0030	
52	.0031	
64	.0033	
84	.0036	
120	.0043	
124	.0043	
144	.0047	
220	.0060	
$\lambda_{BP} = .0022 + ((1.72 \times 10^{-5}) (NP))$		
NP = Number of Package Pins		

Electrical Overstress Failure Rate - λ_{FOS}

	L03 _
V _{TH} (ESD Susceptibility (Volts))*	λEOS
0 - 1000	.065
> 1000 - 2000	.053
> 2000 - 4000	.044
> 4000 - 16000	.029
> 16000	.0027
λ _{EOS} = (-in (100057 exp(0002 V _T	H)) /.00876

V_{TH} = ESD Susceptibility (volts)

 Voltage ranges which will cause the part to fail. If unknown, use 0 - 1000 volts.

Supersedes page 5-7 of Revision F

5.4 MICROCIRCUITS, GaAs MMIC AND DIGITAL DEVICES

DESCRIPTION

Gallium Arsenide Microwave Monolithic Integrated Circuit (GaAs MMIC) and GaAs Digital Integrated Circuits using MESFET Transistors and Gold Based Metallization

 $\lambda_p = [C_1 \pi_T \pi_A + C_2 \pi_E] \pi_L \pi_Q$ Failures/10⁶ Hours

MMIC: Die Complexity Failure Rates - C1

Complexity (No. of Elements)	C ₁
1 to 100	4.5
101 to 1000	7.2

1. C₁ accounts for the following active elements: transistors, diodes.

Digital: Die Complexity Failure Rates - C1

Complexity (No. of Elements)	с ₁
1 to 1000	25
1,001 to 10,000	51

1. C₁ accounts for the following active elements: transistors, diodes.

Device Application Factor - π_A

Application	^π A
MMIC Devices Low Noise & Low Power (≤ 100 mW) Driver & High Power (> 100 mW) Unknown	1.0 3.0 3.0
Digital Devices All Digital Applications	1.0

All Other Model Parameters

Parameter	Refer to
πŢ	Section 5.8
c ₂	Section 5.9
^π Ε, ^π L, ^π Q	Section 5.10

5.5 MICROCIRCUITS, HYBRIDS

DESCRIPTION Hybrid Microcircuits

 $\lambda_p = [\Sigma N_C \lambda_C] (1 + .2 \pi_E) \pi_F \pi_Q \pi_L$ Failures/10⁶ Hours

N_c = Number of Each Particular Component

 λ_{c} = Failure Rate of Each Particular Component

The general procedure for developing an overall hybrid failure rate is to calculate an individual failure rate for each component type used in the hybrid and then sum them. This summation is then modified to account for the overall hybrid function (π_F), screening level (π_Q), and maturity (π_L). The hybrid package failure rate is a function of the active component failure modified by the environmental factor (i.e., (1 + .2 π_E)). Only the component types listed in the following table are considered to contribute significantly to

the overall failure rate of most hybrids. All other component types (e.g., resistors, inductors, etc.) are considered to contribute insignificantly to the overall hybrid failure rate, and are assumed to have a failure rate of zero. This simplification is valid for most hybrids; however, if the hybrid consists of mostly passive components then a failure rate should be calculated for these devices. If factoring in other component types, assume $\pi_{O} = 1$, $\pi_{E} = 1$ and $T_{A} =$ Hybrid Case Temperature for these calculations.

Determine λ _C for These Component Types	Handbook Section	Make These Assumptions When Determining λ _c
Microcircuits	5	$C_2 = 0, \pi_Q = 1, \pi_L = 1, T_J$ as Determined from Section 5.12, $\lambda_{BP} = 0$ (for VHSIC), $\pi_E = 1$ (for SAW).
Discrete Semiconductors	6	$\pi_Q = 1, T_J$ as Determined from Section 6.14, $\pi_E = 1$.
Capacitors	10	$\pi_Q = 1, T_A = Hybrid Case Temperature, \pi_E = 1.$

type, assume the lowest rating. Power rating used should be based on case temperature

Determination of λ_{c}

Circuit Function Factor - π_{F}

for discrete semiconductors.

Circuit Type	π _F	
Digital	1.0	
Video, 10 MHz < f < 1 GHz	1.2	
Microwave, f > 1 GHz	2.6	
Linear, f < 10 MHz	5.8	
Power	21	

All Other Hybrid Model Parameters

Refer to Section 5.10

Supersedes page 5-9 of Revision F

DESCRIPTION Surface Acoustic Wave Devices

$\lambda_p = 2.1 \pi_Q \pi_E$ Failures/10⁶ Hours

Quality Factor - π_Q				
Screening Level	^π Q			
10 Temperature Cycles (-55°C to +125°C) with end point electrical tests at temperature extremes.	.10			
None beyond best commerical practices.	1.0			

Environmental Factor - π_E			
Environment	π _E		
.G _B	.5		
G _F	2.0		
G _M	4.0		
NS	4.0		
NU	6.0		
A _{IC}	4.0		
A _{IF}	5.0		
AUC	5.0		
A _{UF}	8.0		
A _{RW}	8.0		
s _F	.50		
M _F	5.0		
ML	12		
СL	220		

deserves and all the state

MIL-HDBK-217F

5.7 MICROCIRCUITS, MAGNETIC BUBBLE MEMORIES

The magnetic bubble memory device in its present form is a non-hermetic assembly consisting of the following two major structural segments:

- 1. A basic bubble chip or die consisting of memory or a storage area (e.g., an array of minor loops), and required control and detection elements (e.g., generators, various gates and detectors).
- 2. A magnetic structure to provide controlled magnetic fields consisting of permanent magnets, coils, and a housing.

These two structural segments of the device are interconnected by a mechanical substrate and lead frame. The interconnect substrate in the present technology is normally a printed circuit board. It should be noted that this model does not include external support microelectronic devices required for magnetic bubble memory operation. The model is based on Reference 33. The general form of the failure rate model is:

$$\lambda_{\rm D} = \lambda_1 + \lambda_2$$
 Failures/10⁶ Hours

where:

 λ_1 = Failure Rate of the Control and Detection Structure

 $\lambda_1 = \pi_Q [N_C C_{11} \pi_{T1} \pi_W + (N_C C_{21} + C_2) \pi_E] \pi_D \pi_L$

 λ_2 = Failure Rate of the Memory Storage Area

Chips Per Package - N_C

N_C = Number of Bubble Chips per Packaged Device

Temperature Factor – π_T

$$\begin{aligned} \pi_{T} &= (.1) \exp \left[\frac{-Ea}{8.63 \times 10^{-5}} \left(\frac{1}{T_{J} + 273} - \frac{1}{298} \right) \right] \\ \text{Use:} \\ E_{a} &= .8 \text{ to Calculate } \pi_{T1} \\ E_{a} &= .55 \text{ to Calculate } \pi_{T2} \\ T_{J} &= Junction \text{ Temperature } (^{\circ}\text{C}), \\ &25 \leq T_{J} \leq 175 \\ T_{J} &= T_{CASE} + 10^{\circ}\text{C} \end{aligned}$$

Device Complexity Failure Rates for Control and Detection Structure - C₁₁ and C₂₁

 $C_{11} = .00095(N_1)^{.40}$ $C_{21} = .0001(N_1)^{.226}$ $N_1 = Number of Dissipative Elements on a Chip (gates, detectors, generators, etc.), N_1 \le 1000$

5-11

5.7 MICROCIRCUIT, MAGNETIC BUBBLE MEMORIES

		Wri	te Duty Cycle Factor - π_W
	πW	=	<u>10D</u> (R/W) ^{.3}
	πw	=	1 for $D \le .03$ or $R/W \ge 2154$
	D	=	Avg. Device Data Rate Mfg. Max. Rated Data Rate ≤1
	R/W	=	No. of Reads per Write
gre	NOTI F ater.	E: For s	eed-bubble generators, divide π_W by 4, or use 1, whichever is

Duty Cycle Factor - TD

 $\pi_{\rm D} = .9D + .1$

 $D = \frac{Avg. Device Data Rate}{Mfg. Max. Rated Data Rate} \le 1$

Device Complexity Failure Rates for Memory Storage Structure - C_{12} and C_{22} $C_{12} = .00007(N_2)^{.3}$ $C_{22} = .00001(N_2)^{.3}$ $N_2 = Number of Bits, N_2 \le 9 \times 10^6$

All Other Model Parameters

Parameter	Section
C ₂	5.9
π _E , π _Q , π _L	5.10

	TTL, STTL, ASTTL, CML, HTTL, FTTL, DTL FCI	BICMOS, LSTTL, LTTL, ALSTTI	IIL, ISL	Digital MOS, VHSIC CMOS	Linear (Bipolar & MOS)	Memories (Bipolar & MOS), MNOS	GaAs MMIC	GaAs Digital
Ea(eV) → T (°C)	.4	.5	.6	.35	.65	.6	1.5	1.4
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 155 160 165 170 175	.10 .13 .17 .21 .27 .33 .42 .51 .63 .77 .94 1.1 1.4 1.6 1.9 2.3 2.7 3.2 3.7 4.3 5.8 6.7 7.7 8.8 10 11 13 15 16 18	10 14 19 25 34 45 59 77 1.0 1.3 1.6 2.1 2.6 3.3 4.1 5.0 6.2 7.5 9.2 11 13 16 19 23 27 32 37 43 59 68	.10 .15 .21 .31 .43 .61 .85 1.2 1.6 2.1 2.9 3.8 5.0 6.6 8.5 11 14 18 23 28 35 44 54 67 82 100 120 150 180 210 250	10 13 16 19 24 29 35 42 50 .60 .71 .84 .98 1.1 1.3 1.5 1.8 2.1 2.4 2.7 3.1 3.5 3.9 4.4 5.0 5.6 6.3 7.0 7.8 8.7 9.6	.10 .15 .23 .34 .49 .71 1.0 1.4 2.0 2.8 3.8 5.2 7.0 9.3 12 16 21 28 35 45 58 73 92 120 140 180 220 270 330 400 480	10 15 21 31 43 61 85 1.2 1.6 2.1 2.9 3.8 5.0 6.6 8.5 11 14 18 23 28 35 44 54 67 82 100 120 150 180 210 250	3.20E-09 8.40E-09 2.10E-08 5.20E-08 1.30E-07 6.70E-07 1.50E-06 3.20E-06 6.80E-06 1.40E-05 5.70E-05 5.70E-05 1.10E-04 2.10E-04 4.00E-05 5.70E-05 1.10E-04 4.00E-03 2.40E-03 1.30E-02 2.20E-02 3.70E-02 6.10E-02 1.00E-01 1.60E-01 2.60E-01 4.10E-01 9.90E-01	1.00E-08 2.50E-08 5.90E-08 1.40E-07 3.10E-07 6.80E-07 1.50E-06 6.40E-06 1.30E-05 2.50E-05 9.40E-05 1.70E-04 3.20E-04 3.20E-04 3.20E-04 1.80E-03 3.10E-03 3.10E-03 3.10E-03 3.10E-03 3.10E-03 3.10E-03 3.10E-03 3.10E-02 2.40E-02 3.90E-01 3.90E-01 3.90E-01 3.50E-
$\pi_{T} = .1 \exp\left(\frac{-Ea}{8.617 \times 10^{-5}} \left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$ Silicon Devices $\pi_{T} = .1 \exp\left(\frac{-Ea}{8.617 \times 10^{-5}} \left(\frac{1}{T_{J} + 273} - \frac{1}{423}\right)\right)$ GaAs Devices $E_{a} = \text{Effective Activation Energy (eV) (Shown Above)}$ $T_{J} = \text{Worse Case Junction Temperature (Silicon Devices) or Average Active Device Channel Temperature (GaAs Devices).}$ See Section 5.11 (or Section 5.12 for Hybrids) for T_{J} Determination. NOTES: 1. $T_{J} = T_{C} + P \theta_{JC}$ $T_{C} = \text{Case Temperature (*C)}$ $P = \text{Device Power Dissipation (W)}$ $\theta_{JC} = \text{Junction to Case Thermal Resistance (*C/W)}$ $\theta_{JC} \text{ should be obtained from the device manufacturer, MIL-M-38510, or from the default values shown in Section 5.11 for the closest equivalent device.}$ 2. Use Digital MOS column for HC, HCT, AC, ACT, C and FCT technologies.								
	3. Table entries should be considered valid only up to the rated temperature of the component under consideration.							

Temperature Factor For All Microcircuits - π_T

Supersedes page 5-13 of Revision F

5-13

MIL-HDBK-217F NOTICE 1

5.8

MICROCIRCUITS, π_T TABLE FOR ALL

5.9 MICROCIRCUITS, C2 TABLE FOR ALL

		Packag	e Type	£		
Number of Functional Pins, N _p	Hermetic: DIPs w/Solder or Weld Seal, Pin Grid Array (PGA) ¹ , SMT (Leaded and Nonleaded)	DIPs with Glass Seal ²	Flatpacks with Axial Leads on 50 Mil Centers ³	Cans ⁴	Nonhermetic: DIPs, PGA, SMT (Leaded and Nonleaded) ⁵	
3 4 6 8 10 12 14 16 18 22 24 28 36 40 64 80 128 180 224	Nonleaded) .00092 .0013 .0019 .0026 .0034 .0041 .0044 .00456 .0056 .0064 .0079 .0079 .0010 .0013 .0064 .0079 .0079 .010 .010 .015 .032 .032 .032 .032 .032 .032		.00022 .00037 .00078 .0013 .0020 .0028 .0037 .0047 .0058 .0083 .0098	.00027 .00049 .0011 .0020 .0031 .0044 .0060 .0079	.0012 .0016 .0025 .0034 .0043 .0053 .0062 .0072 .0082 .010 .011 .013 .017 .019 .032 .041 .068 .098 .12	
1. C ₂ =2	$2.8 \times 10^{-4} (N_p)^{1}$.08	2. C ₂ =	9.0 x 10 ⁻⁵ (N _p)	1.51	
3. C ₂ = 3	$3.0 \times 10^{-5} (N_p)^{1.6}$	2	4. C ₂ =	3.0 x 10 ⁻⁵ (N _p) ²	2.01	
5. C ₂ =3	$C_2 = 3.6 \times 10^{-4} (N_p)^{1.08}$					
NOTES:						
1. SMT:	SMT: Surface Mount Technology					
2. DIP:	DIP: Dual In-Line Package					
3. If DIP	If DIP Seal type is unknown, assume glass					
 The package failure rate (C₂) accounts for failures associated only with the package itself. Failures associated with mounting the package to a circuit board are accounted for in Section 16, Interconnection Assemblies. 						

Package Failure Rate for all Microcircuits - C2

5.12 MICROCIRCUITS, T. DETERMINATION, (FOR HYBRIDS)

		nu characteris			
Material	Typical Usage	Typical Thickness, L _i (in.)	Feature From Figure 5-1	Thermal Conductivity, K_i $\left(\frac{W/in^2}{°C/in}\right)$	(¹ / _{Kj})(Li) (in ² °C/W)
Silicon	Chip Device	0.010	А	2.20	.0045
GaAs	Chip Device	0.0070	Α	.76	.0092
Au Eutectic	Chip Attach	0.0001	В	6.9	.000014
Solder	Chip/Substrate Attach	0.0030	B/E	1.3	.0023
Epoxy (Dielectric)	Chip/Substrate Attach	0.0035	B/E	.0060	.58
Epoxy (Conductive)	Chip Attach	0.0035	В	.15	.023
Thick Film Dielectric	Glass Insulating Layer	0.0030	С	.66	.0045
Alumina	Substrate, MHP	0.025	D	.64	.039
Beryllium Oxide	Substrate, PHP	0.025	D	6.6	.0038
Kovar	Case, MHP	0.020	F	.42	.048
Aluminum	Case, MHP	0.020	F	4.6	.0043
Copper	Case, PHP	0.020	F	9.9	.0020

NOTE: MHP: Multichip Hybrid Package, PHP: Power Hybrid Package (Pwr: ≥ 2W, Typically)

$$\theta_{\text{JC}} = \frac{\sum_{i=1}^{n} \left(\frac{1}{K_i}\right) \left(L_i\right)}{A}$$

- Number of Material Layers n
- Thermal Conductivity of ith Material $\left(\frac{W/in^2}{°C/in}\right)$ (User Provided or From Table) K_i =

Thickness of ith Material (in) (User Provided or From Table) Li

Die Area (in²). If Die Area cannot be readily determined, estimate as follows: Α A = [.00278 (No. of Die Active Wire Terminals) + $.0417]^2$

Estimate T₁ as Follows:

$$\mathsf{T}_{\mathsf{J}} = \mathsf{T}_{\mathsf{C}} + (\boldsymbol{\theta}_{\mathsf{J}} \mathsf{C}) \cdot (\mathsf{P}_{\mathsf{D}})$$

 T_C = Hybrid Case Temperature (°C). If unknown, use the T_C Default Table shown in Section 5.11.

 θ_{JC} = Junction-to-Case Thermal Resistance (°C/W) (As determined above)

P_D = Die Power Dissipation (W)

5.13 MICROCIRCUITS, EXAMPLES

Example 1: CMOS Digital Gate Array

Given: A CMOS digital timing chip (4046) in an airborne inhabited cargo application, case temperature 48°C, 75mW power dissipation. The device is procured with normal manufacturer's screening consisting of temperature cycling, constant acceleration, electrical testing, seal test and external visual inspection, in the sequence given. The component manufacturer also performs a B-level burn-in followed by electrical testing. All screens and tests are performed to the applicable MIL-STD-883 screening method. The package is a 24 pin ceramic DIP with a glass seal. The device has been manufactured for several years and has 1000 transistors.

 $\lambda_{\rm D} = (C_1 \pi_{\rm T} + C_2 \pi_{\rm E}) \pi_{\rm Q} \pi_{\rm L} \qquad \text{Section 5.1}$

.020 1000 Transistors ≈ 250 Gates, MOS C₁ Table, Digital Column C₁ .29 Determine T_{.1} from Section 5.11 $T_{.1} = 48^{\circ}C + (28^{\circ}C/W)(.075W) = 50^{\circ}C$ Determine π_T from Section 5.8, Digital MOS Column. C_2 .011 Section 5.9 Section 5.10 4.0 3.1 Section 5.10 π_{O} Group 1 Tests 50 Points Group 3 Tests (B-level) 30 Points TOTAL 80 Points $\pi_{\rm Q} = 2 + \frac{87}{80} = 3.1$ Section 5.10 1 π_{l}

 $\lambda_{\rm D}$ = [(.020)(.29) + (.011) (4)] (3.1)(1) = .15 Failure/10⁶ Hours

Example 2: EEPROM

Given: A 128K Flotox EEPROM that is expected to have a T_J of 80°C and experience 10,000 read/write cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. It is packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application.

$$\pi_{p} = (C_{1} \pi_{T} + C_{2} \pi_{E} + \lambda_{CVC}) \pi_{Q} \pi_{L} \qquad \text{Section 5.2}$$

C ₁	=	.0034	Section 5.2
π _T	=	3.8	Section 5.8
C ₂	=	.014	Section 5.9

5-20

.

6.8 TRANSISTORS, HIGH FREQUENCY, GaAs FET

Matching Network Factor - π_{M}		
Matching	π _M	
Input and Output	1.0	
Input Only	2.0	
None	4.0	

Quality Factor - π_{O}

π _Q
.50
1.0
2.0
5.0

Environment Pactor - π_E				
Environment	π _E			
GB	1.0			
G _F	. 2.0			
G _M	5.0			
- N _S	4.0			
NU	11			
A _{IC}	4.0			
A _{IF}	5.0			
AUC	7.0			
A _{UF}	12			
A _{RW}	16			
S _F	.50			
M _F	9.0			
ML	24			
C	250			

<u>6.</u>9 TRANSISTORS, HIGH FREQUENCY, SI FET

SPECIFICATION MIL-S-19500

DESCRIPTION

Quality

Si FETs (Avg. Power < 300 mW, Freq. > 400 MHz)

 $\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$

6.0

6.4

6.7

7.1

7.5

7.9

8.3 8.7

 $\left(\frac{1}{298}\right)$

Failures/10⁶ Hours

Base Failure Rate - λ _b				
Transistor Type	λ _b			
MOSFET	060			
JFET	.023			

Quality	πQ
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0

Quality Factor - π_Q

Т _Ј (°С)	π _T	T _J (°C)	πŢ
25	1.0	105	3.9
30	1.1	110	4.2
35	1.2	115	4.5
40	1.4	120	4.8
45	1.5	125	5.1
50	1.6	130	5.4
55	1.8	135	5.7

2.0

2.1

2.3

2.5

2.7

3.0

3.2

3.4

3.7

exp (- 1925

Junction Temperature (°C)

140

145

150

155

160

165

170

175

 $(T_{J} + 273)$

Temperature Factor - π_T

Environment Fac	tor - π _E
Lower	5.0
JAN	2.0

	E
Environment	^π Ε
G _B	1.0
G _F	2.0
G _M	5.0
NS	4.0
NU	11
A _{IC}	4.0
A _{JF}	5.0
AUC	7.0
A _{UF}	12
A _{RW}	16
S _F	.50
M _F	9.0
ML	24
C	250

60

65

70

75

80

85

90

95

100

πT

T_J

7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

DESCRIPTION

All Types Except Traveling Wave Tubes and Magnetrons. Includes Receivers, CRT, Thyratron, Crossed Field Amplifier, Pulsed Gridded, Transmitting, Vidicons, Twystron, Pulsed Klystron, CW Klystron

 $\lambda_p = \lambda_b \pi_L \pi_E$ Failures/10⁶ Hours

	Base Failu	ire Rate - λ _b	
	Both Randon	1 and Wearout Failures)	1
	<u>^b</u>		^b
Receiver		Klystron, Low Power,	
Triode, Tetrode, Pentode	5.0	(e.g. Local Oscillator)	30
Power Rectifier	10	_	
CR1	<u>9.6</u>	Klystron, Continuous Wave*	
<u>Thyratron</u>	50	3K3000LQ	9.0
Crossed Field Amplifier		3K50000LF	54
QK681	260	3K210000LQ	150
SFD261	150	3KM300LA	64
Pulsed Gridded		3KM3000LA	19
2041	140	3KM50000PA	110
6952	390	3KM50000PA1	120
7835	140	3KM50000PA2	150
Transmitting	······································	4K3CC	610
Triode, Peak Pwr. ≤ 200 KW, Avg.	75	4K3SK	29
Pwr. ≤ 2KW, Freq. ≤ 200 MHz		4K50000LQ	30
Tetrode & Pentode, Peak Pwr.	100	4KM50LB	28
\leq 200 KW, Avg. Power \leq 2KW,		4KM50LC	15
Freg. ≤ 200 KW		4KM50SJ	38
If any of the above limits exceeded	250	4KM50SK	37
Vidicon	· ·	4KM3000LR	140
Antimony Trisulfide (Sb2S3)		4KM50000LQ	79
Photoconductive Material	51	4KM50000LR	57
Silicon Diode Array Photoconductive	51	4KM170000LA	15
Material	48	8824	130
Twystron		8825	120
VA1AA	950	8826	280
VA145F	450	VA800E	70
VA145H	400	VA853	220
VA913A	490	VA856B	65
Klustran Buland*	230	VA888E	230
AKMP100001 E	40		
4KMF10000LF	43	* If the CW Klustron of interest is no	t listed shave
0000	230	a the CW Riyston of interest is no	t listed above,
13250	00·	use the Alternate CW Klystron λ _b Ta	able on the
	09	following page.	
SAC 42A	93		
VA842	100		
750104	160		
Z0010A 7M2020A	150		
	190		
* If the pulsed Klystron of interest is not use the Alternate Pulsed Klystron λ_b Ta	listed above, ble on		

the following page.

۶

7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

					— F(GHz)				
	P(MW)	.2	.4	.6	.8	1.0	2.0	4.0	6.0	
-	.01 .30 .80 1.0 3.0 5.0 	16 16 17 18 19 21 22 31	16 16 17 20 22 25 28 45	16 17 18 21 25 30 34 60	16 17 18 23 28 35 40 75	16 17 18 25 31 40 45 90	16 18 21 22 34 45 63 75 160	16 20 25 28 51 75 110	16 21 30 34	
	λ _b F P *See p	= 2 = C = P P reviou	.94 (F) peratii eak Oi ≤ 490 s page	(P) + 1 ng Free utput P F ^{-2.95} e for ot	6 quenci lower i i her Kl	y in G⊦ n MW, ystron	lz, 0.2 .01 ≤ I Base I	≤ F ≤ 6 P ≤ 25 Failure	and	
	Rates					•				ļ

Alternate* Base Failure Rate for Pulsed Klystrons - λ_{b}

						•		<u> </u>
P(KW)	300	500	800	F 1000	(MHz) 2000	4000	6000	8000
0.1 1.0 3.0 5.0 8.0 10 30 50 80 100	30 31 32 33 34 35 45 55 70 80	31 32 33 34 35 36 46 56 71 81	33 33 34 35 37 38 48 58 73	34 34 35 36 38 39 49 59	38 39 40 41 42 43	47 48 49 50	57 57 58	66 66
$\lambda_b = 0.5P + .0046F + 29$ $P \simeq \text{Average Output Power in KW, } 0.1 \le P \le 100$ and $P \le 8.0(10)^6 (F)^{-1.7}$ F = Operating Frequency in MHz,								
*See previous page for other Klystron Base Failure Rates.								

Learning Factor - π_{L}					
[·] T (years)	πι				
≤ 1	10				
2	2.3				
≥ 3	1.0				
$\pi_{L} = 10(T)^{-2.1}, 1$ = 10, T \le 1 = 1, T \ge 3	≤T≤3				
T = Number of Y to Field Use	ears since Introduction				

Environment Factor - π_{F}

Environment	π _E
GB	.50
G _F	1.0
GM	14
NS	8.0
NU	24
A _{IC}	5.0
A _{IF}	8.0
Auc	6.0
AUF	12
ARW	40
S _F	.20
M _F	22
ML	57
СL	1000

~ ~ .

12.2 ROTATING DEVICES, SYNCHROS AND RESOLVERS

DESCRIPTION

Rotating Synchros and Resolvers

$$\lambda_p = \lambda_b \pi_S \pi_N \pi_E \text{ Failures/10^6 Hours}$$

NOTE: Synchros and resolvers are predominately used in service requiring only slow and infrequent motion. Mechanical wearout problems are infrequent so that the electrical failure mode dominates, and no mechanical mode failure rate is required in the model above.

Base Failure Rate - λ_{h}

T _F (°C)	λ _Þ	T _F (℃)	λ _b			
.20	0092	95	000			
30	.0083	85	.032			
35	.0088	90	.041			
40	.0095	95	.052			
45	.010	100	.069			
50	.011	105	.094			
55	.013	110	.13			
. 60	.014	115	.19			
65	.016	120	.29			
70	.019	125	.45			
75	.022	130	.74			
80	.027	135	1.3			
(Tr +273) 8.5						
$\lambda_{\rm r} = .00535 \exp\left[\frac{1}{10000000000000000000000000000000000$						
b (334)						

If Frame Temperature is Unknown Assume $T_F = 40 \text{ °C} + \text{Ambient Temperature}$

Size	Factor	-	π_{c}
------	--------	---	-----------

		πs	
DEVICE TYPE	Size 8 or Smaller	Size 10-16	Size 18 or Larger
Synchro	2	1.5	1
Resolver	3	2.25	1.5

Number of Brushes	π _N
2	1.4
3	2.5
4	3.2

Environment Factor - π_{r}

Environment	^π Ε
GB	1.0
G _F	2.0
G _M	12
NS	7.0
NU	18
A _{IC}	4.0
A _{lF}	6.0
AUC	16
A _{UF}	25
A _{RW}	26
S _F	.50
M _F	14
ML	36
CL	680

12.3 ROTATING DEVICES, ELAPSED TIME METERS

DESCRIPTION Elapsed Time Meters

$$\lambda_{p} = \lambda_{b} \pi_{T} \pi_{E}$$
 Failures/10⁶ Hours

.

Base Failure Rate - λ_h

1

	V						
Туре	λ _b						
A.C.	20						
Inverter Driven	30						
Commutator D.C.	80						

Temperature Stress Factor - π_T

Operating T (°C)/Rated T (°C)	π _T
0 to .5	.5
.6	.6
.8	.8
1.0	1.0

Environment Factor - π_E						
Environment	π _E					
G _B	1.0					
G _F	2.0					
G _M	12					
N _S	7.0					
NU	18					
AIC	5.0					
AIF	8.0					
AUC	16					
A _{UF}	25					
A _{RW}	26					
S _F	.50					
M _F	14 (
ML	38					
с _L	N/A 1					

APPENDIX A: PARTS COUNT RELIABILITY PREDICTION

Parts Count Reliability Prediction - This prediction method is applicable during bid proposal and early design phases when insufficient information is available to use the part stress analysis models shown in the main body of this Handbook. The information needed to apply the method is (1) generic part types (including complexity for microcircuits) and quantities, (2) part quality levels, and (3) equipment environment. The equipment failure rate is obtained by looking up a generic failure rate in one of the following tables, multiplying it by a quality factor, and then summing it with failure rates obtained for other components in the equipment. The general mathematical expression for equipment failure rate with this method is:

$$\lambda_{\text{EQUIP}} = \sum_{i=1}^{i=n} N_i (\lambda_g \pi_Q)_i$$

Equation 1

for a given equipment environment where:

^λ EQUIP	=	Total equipment failure rate (Failures/10 ⁶ Hours)
λg	=	Generic failure rate for the i $^{ m th}$ generic part (Failures/10 ⁶ Hours)
πQ	=	Quality factor for the i th generic part
Ni	=	Quantity of i th generic part
'n	=	Number of different generic part categories in the equipment

Equation 1 applies if the entire equipment is being used in one environment. If the equipment comprises several units operating in different environments (such as avionics systems with units in airborne inhabited $(A_{||})$ and uninhabited $(A_{||})$ environments), then Equation 1 should be applied to the portions of the equipment in each environment. These "environment-equipment" failure rates should be added to determine total equipment failure rate. Environmental symbols are defined in Section 3.

The quality factors to be used with each part type are shown with the applicable λ_g tables and are not necessarily the same values that are used in the Part Stress Analysis. Microcircuits have an additional multiplying factor, π_L , which accounts for the maturity of the manufacturing process. For devices in production two years or more, no modification is needed. For those in production less than two years, λ_g should be multiplied by the appropriate π_l factor (See page A-4).

It should be noted that no generic failure rates are shown for hybrid microcircuits. Each hybrid is a fairly unique device. Since none of these devices have been standardized, their complexity cannot be determined from their name or function. Identically or similarly named hybrids can have a wide range of complexity that thwarts categorization for purposes of this prediction method. If hybrids are anticipated for a design, their use and construction should be thoroughly investigated on an individual basis with application of the prediction model in Section 5.

The failure rates shown in this Appendix were calculated by assigning model default values to the failure rate models of Section 5 through 23. The specific default values used for the model parameters are shown with the λ_g Tables for microcircuits. Default parameters for all other part classes are summarized in the tables starting on Page A-12. For parts with characteristics which differ significantly from the assumed defaults, or parts used in large quantities, the underlying models in the main body of this Handbook can be used.

MIL-HDBK-217F NOTICE 1

APPENDIX ≥ υ 'ARTS COUNT

CL

60

1.2

1.9

3.3

12 17

21

1.1 1.4

2.0

3.4

1.2

1.9

3.3

1.2

1.9

3.3

12

17

21

1.1

1.4

2.0

3.4

1.9

2.3

2.3

3.3

3.3

5.6

3.4

5.6

12

12

Ea Sl	hown,	Solder d	or Weld	Seal DIP	s/PGAs	(No. Pins	as Sho	wn Belo	w), π _L =	: 1 (Devi	ce in Pro	oduction	≥ 2 Yr.))	
Envir	on. 🛶	ĞB	ĞF	G _M	NS	N _U	AIC	AIF	AUC	AUF	ARW	SF	MF	мL	
_Tj(°	C} →	50	60	65	60	65	75	75	90	90	75	50	65	75	
(16 Pi	n DiP)	.0036	.012	.024	.024	.035	.025	.030	.032	.049	.047	.0036	.030	.069	
(24 Pi	n DIP)	.0060	.020	.038	.037	.055	.039	.048	.051	.077	.074	.0060	.046	.11	
(40 Pi	n DIP)	.011	.035	.066	.065	.097	.070	.085	.091	.14	.13	.011	.082	.19	
(128 Pi	in PGA) .033	.12	.22	.22	.33	.23	.28	.30	.46	.44	.033	.28	.65	
(180 Pi	in PGA	.052	.17	.33	.33	.48	.34	.42	.45	.68	.65	.052	.41	.95	
(224 Pi	in PGA) .075	.23	.44	.43	.63	.46	.56	.61	.90	.85	.075	.53	1.2	
14.4.55		0.005	004	000			057	062	12	13	076	0005	044	006	
(14 P)		0.0095	.024	.039	.034	.049	.057	.002	.12	24	13	017	072	15	
		1.017	.041	.005	.034	.070	10	10	41	44	22	033	12	.26	
(40 Pi	in DIP)	050	.074	18	15	21	.29	.30	.63	.67	.35	.050	.19	.41	
14011	11 10 11 1														-
(16 Pi	in DIP)	.0061	.016	029	027	.040	032	.037	044	.061	.054	.0061	.034	.076	
(24 Pi	in DIP)	.011	.028	.048	.045	.065	.054	.063	.077	.10	.089	.011	.057	.12	
(40 Pi	in DIP)	.022	.052	.087	.082	.12	.099	.11	.14	.19	.16	.022	.10	.22	_
(16 Pi	in DIP)	0057	015	027	.027	039	.029	.035	.039	.056	.052	.0057	.033	.074	
(24 Pi	in DIP)	.010	.026	.045	.043	062	.049	.057	066	.092	.083	.010	.053	.12	
(40 Pi	in DIP)	.019	.047	.080	.077	.11	.088	.10	.12	,17	.15	.019	.095	.21	
(128 P	in PGA	.) .049	.14	,25	.24	.36	.27	.32	.36	.51	.48	.049	.30	.69	
(180 P	in PGA	.084	.22	.39	.37	.54	.42	.49	.56	.79	.72	.084	.46	1.0	
(224 P	in PGA	.) .13	.31	.53	.51	.73	.59	.69	.82	1.1	.98	.13	.63	1.4	
/14 D		0005	024	020	024	040	057	062	12	13	076	0095	044	.096	
114 F	in DiP) In DiDi	1.0095	.024	065	.034	.049	10	11	22	24	13	017	072	.15	
(24 D		032	074	.005	.034	13	19	19	.41	.44	.22	.033	.12	.26	
(40 P	in DIP)	.05	.12	.18	.15	.21	.29	.30	.63	.67	.35	.05	.19	.41	

Generic Failure Rate, λ_{α} (Failures/10⁶ Hours) for Microcircuits. See Page A-4 for π_{Ω} Values (Defaults: π_T Based on Ea Shown,

Section

#

5.1

5.1

5.1

5.1

5.1

5.1

5.1

5.1

Part Type

Gate/Logic Arrays, Digital (Ea = .4)

Bipolar Technology

1 - 100 Gates

101 - 1000 Gates

1001 to 3000 Gates

1 - 100 Transistors

Up to 200 Gates

1 to 100 Gates

101 to 1000 Gates

1001 to 3000 Gates

1 to 100 Transistors

16K to 64K Gates

64K to 256K Gates

256K to 1M Gates

Up to 8 Bits

Up to 16 Bits

Up to 32 Bits

Up to 8 Bits

Up to 16 Bits

Up to 32 Bits

3001 to 10.000 Gates

10.001 to 30.000 Gates

30,000 to 60,000 Gates

101 to 300 Transistors

301 to 1,000 Transistors

Floating Gate Programmable Logic Array, MOS (Ea =.35) Up to 16K Gates

1001 to 10,000 Transistors

Microprocessors, Bipolar (Ea = .4)

Microprocessors, MOS (Ea = .35)

201 to 1000 Gates

1001 to 5000 Gates MOS Technology

101 - 300 Transistors

301 - 1000 Transistors

1001 - 10,000 Transistors

3001 to 10,000 Gates

10,000 to 30,000 Gates

30,000 to 60,000 Gates

Gate/Logic Arrays, Linear (Ea = .65)

Programmable Logic Arrays (Ea = .4)

Gate/Logic Arrays, Digital (Ea = .35)

Gate/Logic Arrays, Linear (Ea = .65)

(24 Pin DIP)

(28 Pin DIP

(28 Pin DIP)

(40 Pin DIP)

(40 Pin DIP)

(64 Pin PGA)

(128 Pin PGA)

(40 Pin DIP)

(64 Pin PGÁ)

(128 Pin PGA)

.0046

.0056

.0061

.0095

.028

.052

.11

.048

.093

.19

.018

.021

.022

.033

.061

.11

.23

.089

.17

.34

.035

.042

.043

.064

.098

.18

36

.13

.24

.49

.035

.042

.042

.063

.091

.16

.33

.12

.22

.45

.052

.062

.063

.094

.13

.23

.47

.16

.29

.60

..035

.042

.043

.065

.12

.21

.44

.16

.30

.61

.044

.052

.054

.080

.13

.24

.49

.17

.32

.66

..044

.053

.055

.083

.17

.32

.65

.24

.45

.90

.070

.084

.086

.13

.22

.39

.81

.28

.52

1.1

..070

.083

.084

.13

.18

.31

.65

.22

.40

.82

..0046

.0056

.0061

.0095

.028

.052

.11

.048

.093

.19

.044

.052

.053

.079

.11

.20

.42

.15

.27

.54

.10

.12

.13

.19

.24

.41

.86

.28

.50

1.0

Section	Part Type	Environ.→	GB	G _F	GM	NS	Nu	AIC	AIF	Auc	AUF	ARW	SF	MF	ML	CL
#			50	60	65	60	65	75	75	90	90	75	50	65		60
5.2	MOS Technology															
	Memones, HOM (Ea = .6)		0047	010	000	00 E	000	007	0.45	040	074	071	0047	044	4.1	1.0
		(24 Pi/i DiF) (28 Die DID)	.0047	.018	.030	.035	.053	.037	.045	040	000	0071	0047	.044	13	2.9
	10K ID 04K	(28 Pin DIP)	0055	.022	045	042	.065	045	.055	830	.050	.000	0067	055	13	23
	04N 10 200N		011	020	068	066	000	075	.035	11	15	14	011	083	20	3.3
50-	Advantage DDOM 18/EPDOM	(401 11 0 11 7		.000	.000		.030	.010	.000							0.0
3.2	EEDDOM EADDOM (Ea = 6)															
	(NOTE: $\lambda_{max} = 0$ Assumed for EEPROM)															
1	Lin to 16K	(24 Pin DIP)	.0049	018	.036	.036	.053	.037	.046	.049	.075	.072	0048	.045	.11	1.9
	16K to 84K	(28 Pin DIP)	.0061	.022	.044	.043	.064	.046	.056	.062	.093	.087	.0062	.054	.13	2.3
ł	64K to 256K	(28 Pin DIP)	.0072	.024	.046	.045	.067	.051	.061	.073	.10	.092	.0072	.057	.13	2.3
	256K to 1 MB	(40 Pin DIP)	.012	.038	.071	.068	.10	.080	.095	.12	.16	.14	.012	.086	.20	3.3
5.2	Memories, DRAM (Ea = .6)		_				•									
	Up to 16K	(18 Pin DIP)	.0040	.014	.027	.027	.040	.029	.035	.040	.059	.055	.0040	034	.080	1.4
	16K to 64K	(22 Pin DIP)	.0055	.019	.036	.034	.051	.039	.047	.056	.079	.070	.0055	.043	.10	1.7
1	64K to 256K	(24 Pin DIP)	.0074	.023	.043	.040	.060	.049	.058	.076	.10	.084	.0074	.051	.12	1.9
	256K to 1 MB	(28 Pin DIP)	.011	.032	.057	.053	.0 <u>77</u>	.070	.080	.12	.15	.11	.011	<u>.067</u>	.15	2.3
5.2	Memories, SRAM, (MOS & BiMOS)															
	(Ea = .6)												0070		000	
	Up to 16K	(18 Pin DIP)	.0079	.022	.038	.034	.050	.048	.054	.083	.10	.073	.0079	.044	.098	1.4
	16K 10 64K	(22 Pin UIP)	.014	.034	.057	.050	.073	.077	.085	.14	.17	.11	023	.005	10	1.0
	256K to 1 MB	(24 Pin DIP) (29 Pin DIP)	023	.053	14	.071	.10	.12	23	46	.27	26	043	15	30 -	2.3
6.0	Pipelar Technology		.045	.092	.14		.10	.22	.20	.40		20	.040			L.0
3.2	Mamariae DOM DROM (Ep = 6)															
	Up to $16K$	(24 Pin DIP)	.010	.028	.050	.046	.067	.062	.070	.10	.13	.096	.010	.058	.13	1.9
	16K to 64K	(28 Pin DIP)	.017	.043	.071	.063	.091	.095	.11	.18	.21	.14	.017	.081	.18	2.3
	64K to 256K	(28 Pin DIP)	.028	.065	.10	.085	.12	.15	.16	.30	.33	.19	.028	.11	,23	2.3
	256K to 1 MB	(40 Pin DIP)	.053	.12	.18	.15	.21	.27	.29	.56	.61	.33	.053	.19	.39	3.4
5.2	Memories, SRAM (Ea = .6)															
	Up to 16K	(24 Pin DIP)	.0075	.023	.043	.041	.060	.050	.058	.077	.10	.084	.0075	.052	.12	1.9
	16K to 64K	(28 Pin DIP)	.012	1.033	.058	.054	.079	.072	.083	.12	.15	.11	.012	.069	.15	2.3
	64K to 256K	(28 Pin DIP)	.018	.045	.074	.065	.095	.10	.11	.19	.22	.14	.018	.084	.18	2.3
	256K to 1 MB	(40 Pin DIP)	.033	.079	.13	.11	.16	.18	.20	.35	.39	.24	.033	.14		3.4
5.3	VHSIC Microcircuits, CMOS		· · · · ·	Refer to S	ection 5.3	<u>, VHSIC (</u>	<u>CMOS</u>									
5.4	GaAs MMIC (Ea = 1.5)					• • •							0040			67
	1 to 100 Elements	(8 Pin DIP)	.0013	.0052	.010	.010	.016	.011	.013	.015	.022	.021	.0013	.013	.031	.5./
	101 to 1000 Active Elements (Default: Onlym and High Power (> 100 mW))	(16 Pin DIP)	.0028	.011	.022,	.022	.034	.023	.028	.030	.047	.045	.0028	.028	.000	1.2
												•				
	GaAs Digital (Ea = 1.4)													_		
5.4	1 to 1000 Active Elements	(36 Pin DIP)	.0066	.026	.052	.052	.078	.054	.067	.078	.12	.11	.0066	.065	.16	2.9
	1001 to 10,000 Active Elements	(64 Pin PGA)	.013	.050	.10	10	.15	.10	.13	.15	.23	.20	.013	.13	.30	5.5

•

Generic Fallure Rate, λ_g (Fallures/10⁶ Hours) for Microcircuits. See Page A-4 for π_Q Values (Defaults: π_T Based on Ea Shown, Solder or Weld Seal DIPs/PGAs (No. Pins as Shown Below), $\pi_L \approx 1$ (Device in Production ≥ 2 Yr.))

Α ω MIL-HDBK-217F NOTICE 1

APPENDIX A: PARTS COUNT

	Description	πQ
ass <u>S Ca</u>	tegories:	
1.	Procured in full accordance with MIL-M-38510, Class S requirements.	
2.	Procured in full accordance with MiL-H38535 and Appendix B thereto (Class U).	.25
3.	Hybrids: (Procured to Class S requirements (Quality Level K) of MiL-H-38534.	
2.	Procured in full accordance with MIL-1-38535, (Class Q).	1.0

Years in Production, Y	π
s.1	2.0
.5	1.8
1.0	1.5
1.5	1.2
≥ 2.0	1.0

Y = Years generic device type has been in production

Group	MIL-STD-883 Screen/Test (Note 3)	Point	Valuation
f.	TM 1010 (Temperature Cycle, Cond B Minimum) and TM 2001 (Constant Acceleration, Cond B Minimum) and TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temp Extremes) and TM 1014 (Seal Test, Cond A B or C)	50	
	and TM 2009 (External Visual)		
	TM 1010 (Temperature Cycle, Cond B Minimum) or TM 2001 (Constant Acceleration, Cond B Minimum)		
2*	TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temp Extremes) and TM 1014 (Seal Test, Cond A, B, or C) and TM 2009 (External Visual)	37	
3	Pre-Burn in Electricals TM 1015 (Burp-in Br) evel/S-Level) and TM 5004 (or 5008 for Hybride)	20	(Dieve)
Ŭ	(Post Burn-in Electricals @ Temp Extremes)	36	(S Level)
4*	TM 2020 Pind (Particle Impact Noise Detection)	11	
5	TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temperature Extremes)	11	(Note 1)
6	TM 2010/17 (Internal Visual)	7	
7*	TM 1014 (Seal Test, Cond A, B, or C)	7	(Note 2)
8	TM 2012 (Radiography)	7	
9	TM 2009 (External Visual)	7	(Note 2)
10	TM 5007/5013 (GaAs) (Wafer Acceptance)	1	
11	TM 2023 (Non-Destructive Bond Pull)	1	
	$\pi_Q = 2 + \frac{87}{\Sigma Point Valuations}$ PPROPRIATE FOR PLASTIC PARTS		
OTES			
1.	Point valuation only assigned if used independent of Groups 1, 2 or 3.		
2.	Point valuation only assigned if used independent of Groups 1 or 2.		
3. ∡	TM refers to the Mill-STD-883 Test Method		
5.	Nonhermetic parts should be used only in controlled environments (i.e., Gn	and other	
	temperature/humidity controlled environments).		
XAMP	LES: 87		
1.	Mfg. performs Group 1 test and Class B burn-in: $\pi_{Q} = 2 + \frac{1}{50+30} = 3.1$		
		w /	
2.	Mig. performs internal visual test, seal test and final electrical test: $\pi_Q = 2$	+ 7+7+11	5.5

π_Q = 10

MIL-HDBK-217F

A-4

		Env+ Go	G-	G	Ne	Nu	Ain	Air	An	A _{l IE}	APM	SF	M _F	M	c
Section #	Part Type	$T_{\rm J}(^{\circ}{\rm C}) \rightarrow 50$	60 60	-M 65	60 . 	65	75	75		90	75	50	65	75	60
	DIODES														
6.1	General Purpose Analog	.0036	.028	.049	.043	.10	.092	.21	.20	.44	.17	.0018	.076	.23	1.5
6.1	Switching	.00094	.0075	.013	.011	.027	.024	.054	.054	.12	.045	.00047	.020	.060	.40
6.1	Fast Recovery Pwr. Rectifier	.065	.52	.89	.78	1.9	1.7	3,7	3.7	8.0	3.1	.032	1.4	4,1	28
6.1	Power Rectifier/ Schottky Pwr.	.0028	.022	.039	.034	.082	.073	.16	.16	.35	.13	.0014	.060	.18	1.2
6.1	Transient Suppressor/Varistor	.0029	.023	.040	.035	.084	.075	.17	.17	.36	.14	.0015	.062	.18	1.2
6.1	Voltage Ref/Reg. (Avalanche	.0033	.024	.039	.035	.082	.066	.15	.13	.27	.12	.0016	.060	.16	1.3
	and Zener)														
6.1	Current Regulator	.0056	.040	.066	.060	.14	.11	.25	.22	.46	.21	.0028	.10	.28	2.1
6.2	Si Impatt (f ≤ 35 GHz)	.86	2.8	8.9	5.6	20	11	14	36	62 [.]	44	.43	16	67	350
6.2	Gunn/Bulk Effect	.31	.76	2.1	1.5	4.6	2.0	2.5	4.5	7.6	7.9	.16	3.7	12	94
6.2	Tunnel and Back	.004	.0096	.027	.019	.058	.025	,032	.057	.097	.10	.002	.048	.15	1.2
6.2	PIN .	.028	.068	.19	.14	.41	.18	.22	.40	.69	.71	.014	.34	1.1	8.5
6.2	Schottky Barrier and Point	047	.11	.31	.23	.68	.30	.37	.67	1.1	1.2	.023	.56	1.8	14
	Contact (200 MHz s f s 35 GHz)														
6.2	Varactor	.0043	.010	.029	.021	.063	.028	.034	.062	.11	.11	.0022	.052	.17	1.3
6.10	Thyristor/SCR	.0025	.020	.034	.030	.072	.064	.14	.14	.31	.12	.0012	.053	.16	. 1.1
	ļ	<u> </u>													
	TRANSISTORS														
6.3	NPN/PNP (I < 200 MHz)	.00015	.0011	.0017	.0017	.0037	.0030	.0067	.0060	.013	.0056	.000073	.0027	.0074	.056
6.3	Power NPN/PNP (f < 200 MHz)	.0057	.042	.069	.063	.15	.12	[.] .26	.23	.50	.22	.0029	.11	.29	2.2
6.4	Si FET (f ≤ 400 MHz)	.014	.099	.16	.15	.34	.28	.62	.53	1.1	.51	.0069	.25	.68	5.3
6.9	SI FET (f > 400 MHz)	.099	.24	.64	.47	1.4	.61	.76	1.3	2.3	2.4	.049	1.2	3.6	30
6.8	GaAs FET (P < 100 mW)	.17	.51	1.5	1.0	3.4	1.8	2.3	5.4	9.2	7.2	.083	2.8	11	63
6.8	GaAs FET (P ≥ 100 mW)	.42	1.3	3 .9	2.5	8.5	4.5	5.6	13	23	18	.21	6.9	27	160
6.5	Unijunction	.016	.12	.20	,18	,42	.36	.80	.74	1.6	.66	.0079	.31	.88	6.4
6.6	RF, Low Noise (I > 200 MHz, P < 1W)	.094	.23	.63	.46	1.4	.60	.75	1.3	2.3	2.4	.047	1.1	3.6	28
67	RE Power (P > 1W)	.045	.091	.23	.18	.50	.18	.23	.32	.55	.73	.023	.41	1.1	11

Supersedes page A-5 of Revision F

A-5

MIL-HDBK-217F NOTICE 1

	Generic Failure Rate - λ_g (Failures/10 ⁶ Hours) for Discrete Semiconductors (cont'd)														
Section	Part Type	Env.→ G _B	G _F	GM	NS	NU	A _{IC}	AIF	Auc	AUF	A _{RW}	s _F	M _F	ML	շլ
#		T _J (℃)→ 50	60	65	60	65	75	75	90	90	75	50	65	75	60
	OPTO-ELECTRONICS														
6.11	Photodetector	.011	.029	.13	.074	.20	.084	.13	.17	.23	.36	:0057	,15	.51	6.6
6.11	Opto-Isolator	.027	,070	.31	.17	.47	.20	.30	.42	.56	.85	·.013	.35	1.2	16
6.11	Emitter	.00047	.0012	.0056	.0031	.0084	.0035	.0053	.0074	.0098	.015	.00024	.0063	.021	.28
6.12	Alphanumeric Display	.0062	,016	.073	.040	.11	.046	.069	.096	.13	.20	.0031	.082	.28	3.6
6.13	Laser Diode, GaAs/Al GaAs	5.1	16	78	39	120	58	86	86	110	240	2.6	87	350	3600
6.13	Laser Diode, in GaAs/In GaAsP	9.0	28	135	69	200	100	150	150	200	400	4.5	150	600	6200
7	TUBES	See	Section	7 (includes	Receivers	, CRTs, Cr	oss Field	Amplifiers, I	Klystrons, 1	WTs, Mag	netrons)	<u> </u>			
8	LASERS	See	Section	8	-										

Discrete	Semiconductor	Quality	Factors	-	πο
----------	---------------	---------	---------	---	----

Section Number	Part Types	JANTXV	JANTX	JAN	Lower	Plastic
6.1, 6.3, 6.4, 6.5, 6.10, 6.11, 6.12	Non-RF Devices/ Opto-Electronics*	.70	1.0	2.4	5.5	8.0
6.2	High Freq Diodes	.50	1.0	5.0	25	50
6.2	Schottky Diodes	.50	1.0	1.8	2.5	
6.6, 6.7, 6.8, 6.9	RF Transistors	.50	1.0	2.0	5.0	
6.13	*Laser Diodes	$\pi_{Q} = 1$ = 1 = 3	.0 Hermetic Pac .0 Nonhermetic .3 Nonhermetic	kage with Facet Coal without Facet C	ting Coating	

APPENDIX A: PARTS COUNT

.

.

				Gen	eric Fal	lure Rate	», λ _α (F	allure/10 ⁰	Hours	For Re	sistors						
Section	Part Type	Style	MIL-R-	Env. → G _B	GF	GM	NS	NU	AIC	AIF	Auc	AUF	ARW	SF	MF	ML	ς
#	Fouriype			$T_A (^{\circ}C) \rightarrow 30$	40	45	40	45	55	55	70	70	55	30	45	55	40
9,1	Composition	RCR	39008	.00050	.0022	.0071	.0037	.012	.0052	.0065	.016	.025	.025	.00025	.0098	.035	.36
9.1	Composition	RC	11	.00050	.0022	.0071	.0037	.012	.0052	.0065	.016	.025	.025	.00025	.0098	.035	.36
9.2	Film, Insulated	RLR	39017	.0012	.0027	.011	.0054	.020	.0063	.013	.018	.033	.030	.00025	.014	.044	.69
9.2	Film, Insulated	RL	22684	.0012	.0027	.011	.0054	.020	.0063	.013	.018	.033	.030	.00025	.014	.044	.69
9.2	Film, RN (R, C or N)	ANR	55182	.0014	.0031	.013	.0061	.023	.0072	.014	.021	.038	.034	.00028	.016	.050	.78
9.2	Film	RN	10509	.0014	.0031	.013	.0061	.023	.0072	.014	.021	.038	.034	.00028	.016	.050	.78
9.3	Film, Power	RD	11804	.012	.025	.13	.062	.21	.078	.10	.19	.24	.32	.0060	.18	.47	8.2
9.4	Film, Network	RZ	83401	.0023	.0066	.031	.013	.055	.022	.043	.077	.15	.10	.0011	.055	.15	1.7
9.5	Wirewound, Accurate	RBR	39005	.0085	.018	.10	.045	.16	.15	.17	.30	.38	.26	.0068	.13	.37	5,4
9.5	Wirewound, Accurate	RB	93	.0085	.018	.10	.045	.16	.15	.17	.30	.38	.26	.0068	.13	.37	5.4
9.6	Wirewound, Power	RWR	39007	.014	.031	.16	.077	.26	.073	.15	.19	.39 ·	.42	.0042	.21	.62	9,4
9.6	Wirewound, Power	RW	26	.013	.028	.15	.070	.24	.066	.13	.18	.35	.38	.0038	.19	.56	8.6
9.7	Wirewound, Power,	RER	39009	.0080	.018	.096	.045	.15	.044	.088	.12	.24	.25	.0040	.13	.37	5.5
9.7	Wirewound, Power,	RE	18546	.0080	.018	.096	.045	.15	.044	.088	.12	.24	.25	.0040	.13	.37	5.5
9.8	Thermistor	RTH	23648	.065	.32	1.4	.71	1.6	.71	1.9	1.0	2.7	2.4	.032	1.3	3.4	6 2
9.9	Wirewound, Variable	RTR	39015	.026	.056	.36	.17	.59	.17	.27	.36	.60	1.1	.013	.53	1,6	25
9.9	Wirewound, Variable	RT	27208	.026	.056	.36	.17	.59	.17	.27	.36	.60	1.1	.013	.53	1.6	25
9.10	Wirewound, Variable,	RR	12934	.36	.80	7.7	3.2	13	3.9	5.8	7.8	11	26	.18	12	37	560
9.11	Precision Wirewound, Variable,	RA	19	.15	.35	3.1	1.2	5.4	1.9	2.8	•	•	9.0	.075	· •	•	•
9.11	Semiprecision Wirewound, Variable,	RK	39002	.15	.35	3.1	1.2	5.4	1.9	2.8	•	•	9.0	.075	•	•	•
9.12	Semiprecision Wirewound, Variable,	RP	22	.15	.51	2.9	1.2	5.0	1.6	2.4	•	•	7.6	.076	٠	•	•
9.13	Power Norwirewound	BJR	39035	.033	.10	.50	.21	.87	.19	.27	.52	.79	1.5	.017	.79	2.2	35
0.12	Variable	RI	22007	033	10	50	21	87	10	27	52	70	15	017	79	22	35
9.13	Variable		22097	.000	.10		.21		. 13		.52	7.5	0.0	0.05	1.5	47	67
9.14	Composition, variable	HV	94	.050	.11	1.1	.45	1.7	2.8	4.6	4.6	7.5	3.3	.025	1.5	4.7	67
9.15	Nonwirewound, Variable Precision	RQ	39023	.043	.15	.75	.35	1.3	:39	.78	1.8	2,8	2.5	.021	1.2	3.7	49
9.15	Film, Variable	RVC	23285	.048	.16	.76	.36	1.3	.36	.7 2	1.4	2.2	2.3	.024	1.2	3.4	52

~

NOTE: 1) * Not Normally used in this Environment 2) $T_A = Default Component Ambient Temperature (°C)$

<u> </u>		Established R	eliability Style			1	
Quality	s	R	P .	М	MIL-SPEC	Lower	ŀ
[#] Q	.030	.10	.30	1.0	3.0	10	

MIL-HDBK-217F NOTICE 1

÷

APPENDIX A: PARTS COUNT

Supersedes page A-7 of Revision F

A-7

Section #	Part Type or Dielectric	Style	MIL-C-	Env.→ G _B T _A (°C)→ 30	Gç 40	6 _М 45	N _S 40	N _ປ 45	А _{ІС} 55	A _{IF} 55	AUC 70	A _{UF} 70	A _{RW} 55	S _F 30	м _F 45	м _L 55	Շլ 40
10.1	Paper, By-Pass	CP	25	.0036	.0072	.033	.018	.055	.023	.03	.070	,13	.083	.0018	.044	.12	2.
10.1	Paper, By-Pass	CA	12889	.0039	.0087	.042	.022	.070	.035	.047	.19	.35	.13	.002	.056	.19	2.
10.2	Paper/Plastic, Feed- through	CZR	11693	.0047	.0096	.044	.034	.073	.030	.040	.094	.15	.11	.0024	.058	.16	2.
10.3	Paper/Plastic Film	CPV	14157	.0021	.0042	.017	.010	.030	.0088	.013	.026	.048	.044	.0010	.023	.063	1.
10.3	Paper/Plastic Film	COR	19978	.0021	.0042	.017	.010	.030	.0088	.013	.026	.048	.044	.0010	.023	.063	1.
10.4	Metallized Paper/Plastic	CHR	39022	.0029	.0058	.023	.014	.041	.012	.018	.037	.066	.060	.0014	.032	.088	1.
10.4	Metallized Plastic/ Plastic	сн	18312	.0029	.0058	.023	.014	.041	.012	.018	.037	.066	.060	.0014	.032	.088	1.
10.5	Metallized Paper/Plastic	CFR	55514	.0041	.0083	.042	.021	.067	.026	.048	.086	.14	.10	.0020	.054	.15	2.
10.6	Metallized Plastic	- CFIH	83421	0023	0092	019	012	033	.0096	.014	034	053	048	.0011	026	.07	1.
10.7	MICA (Dipped or Molded)	CMR	39001	.0005	.0015	.0091	.0044	.014	.0068	.0095	.054	.069	.031	.00025	.012	.046	.4
10.7	MICA (Dipped)	СМ	5	.0005	.0015	.0091	.0044	.014	.0068	.0095	.054	.069	.031	.00025	.012	.046	.4
10.8	MICA (Button)	СВ	10950	.018	.037	.19	.094	.31	.10	.14	.47	.60	.46	.0091	,25	.68	1
10.9	Glass	CYR	23269	.00032	00096	.0059	,0029	.0094	0044	0062	.035	.045	.020	.00016	.0076	.030	.2
10.9	Glass	CY	11272	.00032	.00096	.0059	.0029	.0094	.0044	.0062	.035	.045	.020	.00016	.0076	.030	.2
10.10	Ceramic (Gen. Purpose)	СК	11015	.0036	.0074	.034	.019	.056	.015	.015	.032	.048	.077	.0014	.049	.13	2
10.10	Ceramic (Gen. Purpose)	CKR	39014	.0036	.0074	.034	.019	.056	.015	.015	.032	.048	.077	.0014	.049	.13	2
10.11	Ceramic (Temp. Comp.)	CCR	20	.00078	.0022	.013	.0056	.023	.0077	.015	.053	.12	.046	.00039	.017	.065	.6
10.11	Ceramic Chip	COR	55681	.00078	.0022	.013	.0056	.023	.0077	.015	.053	.12	.046	.00039	.017	.065	.6
10.12	Tantalum, Solid	CSR	39003	.0018	.0039	.016	.0097	.028	.0091	.011	.034	.057	.055	.00072	.022	.066	1.
10.13	Tantalum, Non-Solid	СІЯ	39006	.0061	.013	.069	.039	.11	.031	.061	.13	.29	.18	.0030	.089	.26	4
10,13	Tantalum, Non-Solid	a	3965	.0061	.013	.069	.039	.11	.031	.061	.13	.29	.18	.0030	.089	.26	4.
10.14	Aluminum Oxide	CUR	39018	.024	.061	,42	.18	.59	.46	.55	2.1	2.6	1.2	.012	.49	1.7	2
10.15	Aluminum Dry	CE	62	.029	.081	.58	.24	.83	.73	.88	4.3	5.4	2.0	.015	.68	2.8	2
10.16	Variable, Ceramic	cv	81	.08	.27	1.2	.71	2.3	.69	1.1	6.2	12	4.1	.032	1.9	5.9	8
10.17	Variable, Piston	PC	14409	.033	.13	.62	.31	.93	.21	.28	2.2	3.3	2.2	.016	.93	3.2	3
10.18	Variable, Air Trimmer	СТ	92	.080	.33	1.6	.87	3.0	1.0	1.7	9.9	19	6.1	.040	2.5	8.9	10
10.19	Variable, Vacuum	CG	23183	0.4	1.3	6.7	3.6	13	5.7	10	58	90	23	.20	•	•	
N	OTE: 1) * Not Norm 2) T _A = Default	ally used Compor	l in this En ent Ambie	vironment ent Temperature) (°C)												

		Establishee	d Reliab				
Quality	S	R	P	<u> </u>	L	MIL-SPEC	Lower
· ^π Q –	.030	.10	.30	1.0	3.0	3.0	10

MIL-HDBK-217F NOTICE 1

	1	G	eneric Fallur	e Rate,	λ _g (Fai	ilures/10 ⁶	Hours)	for Indu	ctive an	d Electro	omechani	cal Parts	5			
			Env.→ G _R	GF	GM	Ns	N ₁₁	Aic	AIE	Airc	A, E	Acres	Sc	ME	M,	C,
Section	Part Type	MiL-	T. CLAS	40	45	40	45	55	55	70	70	55	30	45	55	40
*			1A(0)-30										00			
	INDUCTIVE DEVICES									.						
11.1	Low Power Pulse XFMH	1-21038	.0035	.023	.049	.019	.065	.027	.037	.041	.052	.11	.0018	.053	.16	2.3
11.1	Audio XFMH	1-2/	,00/1	.046	.097	.038	.13	.055	.073	.081	.10	.22	.0035	.11	.31	4.7
31.1	I High Pwr. Pulse and Pwr. I YELID Elim	1-27	.023	.16	.34	.13	.45	.21	.27	.35	.45	.82	.011	.37	1.2	16
111	AF YEAR	T-55631	.028	18	39	.15	52	22	29	33	42	88	014	42	12	10
11.2	BE Colls, Fixed or	C-15305	.0017	.0073	.023	.0091	.031	.011	.015	016	022	052	00083	025	073	1 1
	Molded	C-39010										.00L				•••
11.2	RF Coils, Variable	C-15305	.0033	.015	.046	.018	.061	.022	.03	.033	.044	.10	.0017	.05	.15	2.2
	ROTATING DEVICES															·····
12.1	Motors .		1.6	2.4	3.3	2.4	3.3	7.1	7.1	31	31	. 7.1	1.6	•	•	•
12.2	Synchros		.07	.20	1.5	.70	2.2	.78	1.2	7.9	12	5.1	.035	1.7	7.1	68
12.2	Resolvers		.11	.30	2.2	1.0	3.3	1.2	1.8	12	18	7.6	.053	2.6	11	100
	ELAPSED TIME															
	METERS									•						
12.3	ETM-AC		10	20	120	70	180	50	80	160	250	260	5.0	140	380	•
12.3	ETM-Inverter Driver	· ·	15	30	180	105	270	75	120	240	375	390	7.5	210	570	•
13.3	ETM-Commutator DC		40	80	480	280	720	200	320	640	1000	1040	20	560	1520	•
	RELAYS															
13.1	General Purpose		.13	.28	2.1	1.1	3.8	1.1	1.4	1.9	2.1	7.0	.066	3.5	10	•
13.1	Contactor, High Current		.43	.89	6.9	3.6	12	3.4	4.4	6.2	6.7	22	.21	11	32	•
13.1	Latching		.13	.28	2.1	1.1	3.8	1.1	1.4	1.9	2.1	7.0	.066	3.5	10	+
13.1	Reed		.11	.23	1.8	.92	3.3	.96	1.2	2.1	2.3	6.3	.054	3.0	9.0	•
13.1	Thermal, Bi-metal		,29	.60	4.6	2.4	8.2	2.3	2.9	4.1	4.5	15	.14	7.6	22	•
13.1	Meter Movement		.88	1.8	14	7.4	26	7.1	9.1	13	14	46	.44	24	67	•
13.2	Solid State		.40	1.2	4.8	2.4	6.8	4.8	7.6	8.4	13	9.2	.16	4.8	13	240
13.2	Hybrid and Solid State		.50	1.5	6.0	3.0	8.5	6.0	9.5	11	16	12	.20	6.0	17	300
	Time Delay															
	SWITCHES				010	0000	000			040				005		
14.1	Toggle or Pushbutton	C 0005	.0010	.0030	.018	.0000	.029	.010	.018	.013	.022	.046	.0005	.025	.007	1.2
14.2	Sensitive	5-8805	,15	.44	2.1	1.2	4.3	• 1.5	2.7	1.9	3.3	6.8	.074	3.7	9.9	180
14.3	Hotary Water	5-3786	.33	.99	5.9	2.0	9.5	3.3	5.9	4.3	1.2	15	.16	8.2	22	390
14.4	Thumbwheel	5-22/10	,56	1.7	10	4.5	16	5.6	10	7.3	12	26	.28	14	38	670
14.5	Circuit Breaker, Thermal	C-83383	.11	.23	1.7	.91	3.1	.80	1.0	1.3	1.4	5.2	.057	2.8	7.5	N/A
14.5	Circuit Breaker, Monactio	C-55629	.060	.12	.90	.48	1.6	.42	.54	.66	./2	2.8	.030	1.5	4.0	N/A
	CONINECTORS		<u> </u>		· · ·											
15.1	Circular/Back/Panel		0.011	0 14	12	.069	.20	059	098	23	34	37	0054	16	53	6.8
15.1	Cogviel		.012	015	13	075	.21	060	10	22	32	38	0061	16	54	7.3
15.2	Printed Circuit Board		0054	021	063	.035	.10	059	.11	085	16	19	0027	078	27	3.4
10.2	Connector								• • •	.000			.0011			9.7
15.3	IC Sockets		.0019	.0058	.027	.012	.035	.015	.023	.021	.025 .	.048	.00097	.027	.070	1.3
16.1	Interconnection		.053	.11	.37	.69	.27	.27	.43	.85	1.5	1.0	.027	.53	1.4	27
	Assemblies (PCBs)															

NOTE: 1) * Not normally used in this environment 2) T_A = Default Component Ambient Temperature (°C)

Supersedes page A-9 of Revision F

A-9

MIL-HDBK-217F NOTICE 1

APPENDIX A: PARTS COUNT

			Gener	ic Failur	e Rate, I	^ک g (Fail	ures/10 ⁶	Hours)	for Misce	llaneous	Parts					
Section #	Part Type Dielectric	MIL-	Env.→ G _B T _A (°C)→ 30	G _F 40	G _M 45	N _S 40	N _U 45	A _{IC} 55	A _{IF} 55	Auc 70	A _{UF} 70	A _{RW} - 55	S _F 30	M _F 45	М _L 55	 40
	SINGLE CONNECTIONS															
17.1	Hand Solder, w/o Wrapping		.0026	.0052	.018	.010	.029	.010	.016	.016	.021	.042	.0013	.023	.062	1.1
17.1	Hand Solder, w/Wrapping	[.00014	.00028	.00098	.00056	.0015	.00056	.00084	.00084	.0011	.0022	.00007	.0013	.0034	.059
17.1	Crimp		.00026	.00052	.0018	.0010	.0029	.0010	.0016	.0016	.0021	.0042	.00013	.0023	.0062	.11
17.1	Weld			~.0 00100	:000350	.000200	.000550	.000200	.000300	.000300	.000400	.000800	.000025	.000450	.001200	.021000
17.1	Solderless Wrap		.0000035	.000007	.000025	.000014	.000039	.000014	.000021	.000021	.000028	.000056	.0000018	.000031	.000084	.0015
17.1	Clip Termination		.00012	.00024	.00084	.00048	.0013	.00048	.00072	.00072	.00096	.0019	.00006	.0011	.0029	.050
17.1	Reflow Solder		.000069	.000138	.000483	.000276	.000759	.000276	.000414	.000414	<u>.0</u> 00552	.001104	.000035	.000621	.001656	.02898
	METERS, PANEL															
18.1	DC Ammeter or Voltmeter	M-10304	0.09	0.36	2.3	1.1	3.2	2.5	3.8	5.2	6.6	5.4	0.099	5.4	N/A	N/A
18.1	AC Ammeter or Voltmeter	M-10304	0.15	0.61	3.8	1.8	5.4	4.3	6.4	8.9	11	9.2	0.17	9.2	N/A	N/A
19.1	Quartz Crystals	C-3098	.032	.096	.32	.19	.51	.38	.54	.70	.90	.74	.016	.42	1.0	16
20.1	Lamps, Incandescent, AC		3.9	7.8	12	12	16	16	16	19	23	19	2.7	16	23	100
20.1	Lamps, Incandescent, DC		13	26	38	38	51	51	51	64	77	64	9.0	51	77	350
	ELECTRONIC FILTERS															
21.1	Ceramic-Ferrite	F-15733	.022	.044	.13	.088	.20	.15	.20	.24	.29	.24	.018	.15	.33	2.6
21.1	Discrete LC Comp.	F-15733	.12	.24	.72	.48	1.1	.84	1.1	1.3	1.6	1.3	.096	.84	1.8	14
21.1	Discrete LC & Crystal Comp.	F-18327	.27	.54	1.6	1.1	2.4	1.9	2.4	3.0	3.5	3.0	.22	1.9	4.1	32
22.1	FUSES	ł	.010	.020	.080	.050	.11	.090	.12	.15	18	16	009	.10	21	23

APPENDIX A: PARTS COUNT

MIL-HDBK-217F

~

Section #	Part Type	Established Reliability	MIL-SPEC	Non-MIL
11.1, 11.2	Inductive Devices	.25*	1.0	10
12.1, 12.2, 12.3	Rotating Devices	N/A	N/A	N/A
13.1	Relays, Mechanical	.60	3.0	9.0
13.2	Relays, Solid State and Time Delay (Hybrid &	N/A	1.0	4
· ·	Solid State)			
14.1, 14.2	Switches, Toggle, Pushbutton, Sensitive	N/A	1.0	20
14.3	Switches, Rotary Wafer	N/A	1.0	50
14.4	Switches, Thumbwheel	Ń/A	1.0	10
14.5	Circuit Breakers, Thermal	N/A	1.0	8.4
15.1, 15.2, 15.3	Connectors	N/A	1.0	2.0
16.1	Interconnection Assemblies	N/A	1.0	2.0
17.1	Connections	<u>N/A</u>	N/A	N/A
18.1	Meters, Panel	N/A	1.0	3.4
19.1	Quartz Crystals	N/A	1.0	2.1 ·
20.1	Lamps, Incandescent	N/A	N/A	N/A
21.1	Electronic Filters	N/A	1.0	2.9
22.1	Fuses	N/A	N/A	N/A

*

π_{Ω} Factor for Use with Section 11-22 Devices

* Category applies only to MIL-C-39010 Coils.

APPENDIX A: PARTS COUNT

A-11

Section #	Part Type	хр	π _T	^π M	πS	πC	^π A	۳R	
5.0	MICROCIRCUITS		All Defa	ults provi	ided with	λ _α Table)		
						3		· · ·	
6.1	DIODES General Purpose Analog	.0038			.42	1.0			Voltage Stress = .7, Metallurgically Bonded
6.1	Switching	.001			.42	1.0			Contacts Voltage Stress = .7, Metallurgically Bonded
0.1		060			40	1.0			Contacts
6.1	Fast Recovery Power Rectilier	.069			.42	1.0			Contacts
6.1	Transient Suppressor/Varistor	.0031			1.0	1.0			Metallurgically Bonded Contacts
6.1	Power Recuiter	.003			.42	1.0			Contacts
6.1	Voltage Ref/Reg. (Avalanche &	.002			1.0	1.0			Metallurgically Bonded Contacts
6.1	Current Regulator	.0034			1.0	1.0			Metallurgically Bonded Contacts
6.2	Si Impatt (≤ 35 GHz)	.22					1.0	1.0	
6.2	Gunn/Bulk Effect	.18					1.0	1.0	
6.2	Tunnel and Back	.0023					1.0	1.0	
6.2	PIN	.0081					1.0	2.0	Rated Power = 1000W
6.2	Schottky Barrier and Point Contact	.027			1.0	1.0			
6.2	Varactor	.0025			2.5	1.0			Multiplier Application
6.10	Thyristor/SCR	.0022			.51			1.0	Voltage Stress = .7, Rated Forward Current = 1 Amp
6.2	TRANSISTORS	00074			21		70	77	Voltage Stress = 5 Switching Application, Bated
0.3	11 + 10 + 10 + (1 < 200 + 10 + 12)				. 2 1		./ 0		Power = .5W
6.3	Power NPN/PNP (f < 200 MHz)	.00074			.54		1.5	5.5	Voltage Stress = .8, Linear Application, Rated
6 A		012					70		MOSEET Small Signal Switching
0.4 ¢ 0		060							MOSEET
6.8	GaAs FET (P < 100 mW)	.052		1.0			1.0		Low Noise Application, $1 \le f \le 10$ GHz, Input and
0.0	Garater (i Croomity								Output Matching
6.8	GaAs FET (P ≥ 100 mW)	.13		1.0			1.0		Pulsed Application, 5 GHz, 1W Average Output Power Input and Output Matching
6.5	Unitunction	.0083							
6.6	RF, Low Noise, Bipolar (f > 200 MHz P < 1W)	.18			.39			.77	Voltage Stress = .7, Rated Power = .5W
6.7	RF, Power ($P \ge 1W$)	.08	.36	1.0			1.6		1 GHz, 100W, T _J = 130°C for all Environments,
									Voltage Stress = .45, Gold Metallization, Pulsed Application, 20% Duty Factor, Input and Output Matching

. _. _ _

---- -

Default Parameters for Discrete Semiconductors

A-12

č perseues page A h revision r

MIL-HDBK-217F NOTICE 1

- - --

Supersedes
page A-13
of Revision F

Ĺ

		Defaul	t Para	meters	for D	iscrete	Semic	onduct	ors
Section #	Part Type	λ	^π T	^π M	πs	^π C	^π A	[#] R	Comments
6.11 6.11 6.11 6.12 6.13	OPTO-ELECTRONICS Photodetector Opto-Isolator Emitter Alphanumeric Display Laser Diode, GaAs/Al GaAs	.0055 .013 .00023 .0030 3.23			1.0 (π _P)		.77		Phototransistor Phototransistor, Single Device LED 7 Character Segment Display For Environments with $T_J > 75^{\circ}$ C, assume $T_J = 75^{\circ}$ C, Forward Peak Current = .5 Amps ($\pi_i = .62$), Pulsed Application, Duty Cycle = .6,
6.13	Laser Diode, In/GaAs/in GaAsP	5.65			1.0 (π _p)		.77		Pr/Ps = .5 (π_p = 1) For Environments with T _J > 75°C, assume T _J = 75°C, Forward Peak Current = .5 Amps (π_i = .62), Pulsed Application, Duty Cycle = .6, Pr/Ps = .5 (π_p = 1)

APPENDIX A: PARTS COUNT

.

MIL-HDBK-217F NOTICE 1

A-13

A-14

-

			Default	Paramet	ters for	Resistors	3
Section #	Part Type	Style	MIL-R-SPEC	۳R	πν	TAPS	Comments
9.1	Composition	RČR	39008	1.1		11	Pwr. Stress = .5, 1M ohm
9.1	Composition	I RC	11	1.1			Pwr. Stress = .5, 1M ohm
9.2	Film, Insulated	RLR	39017	1.1		}	Pwr. Stress = .5, 1M ohm
9.2	Film, Insulated	RL	22684	1.1		Į [Pwr. Stress = .5, 1M ohm
9.2	Film, RN (R, C or N)	RNR	55182	1.1			Pwr. Stress = .5. 1M ohm
9.2	Film	FIN	10509	1.1	ĺ		Pwr. Stress = .5, 1M ohm
9.3	Film, Power	RD	11804	1.0			Pwr. Stress = .5, 100 ohm
9.4	Fixed, Network	.RZ	83401]	ļ]]	Pwr. Stress = .5, $T_C = T_A + 28^{\circ}C$, 10 Film Resistors
9.5	Wirewound, Accurate	RBR	39005	1.7			Pwr. Stress = .5,100K ohms
9.5	Wirewound, Accurate	RB	93	1.7		1	Pwr. Stress = .5, 100K ohms
9.6	Wirewound, Power	RWR	39007	1.1	Ì		Pwr. Stress = .5, 5K ohms, RWR 84
9.6	Wirewound, Power	RW	26	1.0			Pwr, Stress = .5, 5K ohms, RW10
9.7	Wirewound, Power, Chassis Mounted	RER	39009	1,1		1	Pwr. Stress = .5, Noninductively Wound, 5K ohm, RER 55
9.7	Wirewound, Power, Chassis Mounted	RE	18546	1.1			Pwr. Stress = .5, MIL-R-18546, Char. N, 5K ohm, RE75
9.8	Thermistor	RTH	23648			[[Disk Type
9.9	Wirewound, Variable	RTR	39015	1.4	1.1	1.0	Pwr. Stress = .5, 5K ohms, 3 Taps, Voltage Stress = 1
9,9	Wirewound, Variable	RT	27208	1.4	1.1	1.0	Pwr. Stress = .5, 3 Taps, Voltage Stress = .1
9.10	Wifewound, Variable, Precision	HR	12934	1.4	1.1	1.0	Pwr. Stress = .5, Construction Class 5 ($\pi_c = 1.5$),
							50K ohm, 3 Taps, Voltage Stress = .1
9.11	Wirewound, Variable, Semiprecision	RA.	19	1.4	1.0	1.0	Pwr. Stress = .5, 5K ohms, 3 Taps, Voltage Stress = .5
9.11	Wirewound, Semiprecision	RK	39002	1.4	1.0	1.0	Pwr. Stress = .5, 3 Taps, Voitage Stress = .5
9.12	Wirewound, Variable, Power	RP	22	1.4	1.0	1.0	Pwr. Stress = .5, 3 Taps, Voltage Stress = .5, Unenclosed ($\pi_c = 1$)
9.13	Nonwirewound, Variable	RJR	39035	1.2	1.0	1.0	Pwr. Stress = .5. 200K ohm .3 Tans. Voltage Stress5
9.13	Nonwirewound, Variable	RJ	22097	1.2	1.0	1.0	Pwr. Stress = .5, 200K ohm, 3 Taps, Voltage Stress = .5
9.14	Composition, Variable	RV	94	1.2	1.0	1.0	Pwr. Stress = .5, 200K ohm, 3 Taps, Voltage Stress = .5
9.15	Precision	HO	39023	1.2	1.0	1.0	Pwr. Stress = .5, 200K ohm, 3 Taps, Voltage Stress = .5
9.15	Film, Variable	RVC	23285	1.2	1.0	1.0	Pwr. Stress = .5, 200K ohm, 3 Taps, Voltage Stress = .5

- ----

APPENDIX A: PARTS COUNT

_

		_	<u>Default</u> Pa	rameters	for Capaci	itors
Section #	Part Type or Dielectric	Style	MIL-C-SPEC	πcv	Temp. Rating	Comments
10.1	Paper, By-Pass	CP	25	1.0	125	Voltage Stress = .5, .15 μF
10.1	Paper, By-Pass	CA	12889	1.0	85	Voltage Stress = .5, .15 µF
10.2	Paper/Plastic, Feed-through	CZR	11693	1.0	125	Voltage Stress = .5, .061 µF
10.3	Paper/Plastic Film	CPV	14157	1.0	125	Voltage Stress = .5, .027 µF
10.3	Paper/Plastic Film	COR	19978	1.0	125	Voltage Stress = .5033 μF
10.4	Metallized Paper/Plastic	CHR	39022	1.0	125	Voltage Stress = .514 µF
10.4	Metallized Plastic/Plastic	lан	18312	1.0	125	Voltage Stress = $.5.14 \mu\text{F}$
10.5	Metallized Paper/Plastic	CFR	55514	1.0	125	Voltage Stress = .533 µF
10.6	Metallized Plastic	CRH	83421	1.0	125	Voltage Stress = .514 uF
10.7	MICA (Dipped or Molded)	CMR	39001	1.0	125	Voltage Stress = .5, 300 pF
10.7	MICA (Dipped)	L CM	5	1.0	125	Voltage Stress = .5, 300 pF
10.8	MICA (Button)	CB	10950	1.0	150	Voltage Stress = .5, 160 pF
10.9	Glass	CYR	23269	1.0	125	Voltage Stress = .5, 30 pF
10.9	Glass	I CY	11272	1.0	125	Voltage Stress = .5, 30 pF
10.10	Ceramic (Gen, Purpose)	CK	11015	1.0	125	Voltage Stress = .5, 3300 pF
10.10	Ceramic (Gen, Purpose)	CKR	39014	1.0	125	Voltage Stress = .5, 3300 pF
10.11	Ceramic (Temp, Comp.)	COR	20	1.0	125	Voltage Stress = .5, 81 pF
10.11	Ceramic Chip	COR	55681	1.0	125	Voltage Stress = .5, 81 pF
10.12	Tantalum, Solid	CSR	39003	1.0	125	Voltage Stress = .5, 1.0 µF, .6 ohms/volt, series
						resistance, $\pi_{SR} = .13$
10.13	Tantalum, Non-Solid	CLR	39006	1.0	125	Voltage Stress = .5, Foil, Hermetic, 20 μ F, π_c = 1
10.13	Tantalum, Non-Solid	a	3965	1.0	125	Voltage Stress = .5, Foil, Hermetic, 20 μ F, π_c = 1
10.14	Aluminum Oxide	CUR	39018	1.3	125	Voltage Stress = .5, 1700 μF
10.15	Aluminum Dry	CE	62	1.3	85	Voltage Stress ≃ .5, 1600 μF
10.16	Variable, Ceramic	l cv	81		85	Voltage Stress = .5
10.17	Variable, Piston	PC	14409		125	Voltage Stress = .5
10.18	Variable, Air Trimmer	I CT	92	l	85	Voltage Stress = .5
10.19	Variable, Vacuum	l cg	23183		85	Voltage Stress = .5, Variable Configuration

. · ·

Section	Part Type	MIL-SPEC	πc	^π CYC	π _F	Comments
	INDUCTIVE					
11.1	Low Pwr. Pulsed, XFMR	MIL-T-21038				Max. Rated Temp. = 130° C, Δ T = 10° C
11.1	Audio XFMR	MIL-T-27			Ì	Max. Rated Temp. = 130°C, ΔT = 10°C
11.1	High Pwr. Pulse and Pwr. XFMR, Filter	MIL-T-27	ļ			Max. Rated Temp. = 130°C, ΔT = 30°C
11.1	RF Transformers	MIL-T-55631				Max. Rated Temp. = 130°C, ΔT = 10°C
11.2	RF Coils, Fixed or Molded	MIL-C-15305	1			Max. Rated Temp. = 125°C, ΔT = 10°C
11.2	RF Coils, Variable	MIL-C-15305	2			Max. Rated Temp., = 125°C, ΔT = 10°C
12.1	ROTATING DEVICES Motors				ĺ	t = 15,000 hours (Assumed Replacement Time)
12.2	Synchros					T _F ≕ T _A + 40, Size 10 - 16, 3 Brushes
12.2	Resolvers					T _F = T _A + 40, Size 10 - 16, 3 Brushes
12.3	Elapsed Time Meters (ETM) ETM-AC		-			Op. Temp/Rated Temp. = .5 (π_T = .5)
12.3	ETM-Inverter Driver					Op. Temp/Rated Temp. = .5 (π_{τ} = .5)
12.3	ETM-Commutater DC					Op. Temp/Rated Temp. = .5 (π_T = .5)
13.1	RELAYS General Purpose		3	1	5	Max. Rated Temp. = 125°C , DPDT, MIL-SPEC, 10 Cycles/Hour, 4 Amp., General Purpose, Balanced Armature, Resistive Load,
13.1	Contactor, High Current		3	1	5	Max. Rated Temp. = 125°C, DPDT, MIL-SPEC, 10 Cycles/Hour, 600 Amp., Solenoid, Inductive Load, s = .5
13.1	Latching		3	1	5	Max. Rated Temp. = 125°C, MIL-SPEC, 4 Amp., Mercury Wetted, 10 Cyles/Hour, DPDT, Resistive Load, s = .5
13.1	Reed		1	2	6	Max. Rated Temp. = 85° C, MIL-SPEC, Signal Current, Dry Reed, 20 Cycles/Hour, SPST, Resistive Load, s = .5
13.1	Thermal Bi-Metal		1	1	10	Max. Rated Temp. = 125°C, MIL-SPEC, Bi-Metal, 10 Cycles/Hour, SPST, Inductive Load, 5 Amp., s = .5
13.1	Meter Movement		1	1	100	Max. Rated Temp. = 125°C, MIL-SPEC, Polarized Meter Movement, 10 Cycles/Hour, SPST, Resistive Load, s = .5
13.2	Solid State	MIL-R-28750				No Defaults
13.2	Time Delay Hybrid and Solid State	MIL-R-83726				No Defaults