Dark matter: direct searches with underground detectors

Giuliana Fiorillo Università degli Studi di Napoli "Federico II"

July 1, 2013

WIMP direct detection

$\chi N \rightarrow \chi N$ elastic scattering off nuclei

M. Goodman, E. Witten, PRD 1985

$$E_0 = \frac{1}{2}m_{\chi}c^2\beta^2$$

$$r = \frac{4m_{\chi}m_N}{\left(m_{\chi} + m_N\right)^2}$$

$$E_R = E_0 r \frac{\left(1 - \cos\theta\right)}{2}$$

 $\beta \approx 10^{-3}$ m_{\chi} \approx 100 GeV

Nucleus recoil energy < 100 keV

Spin Independent: χ scatters coherently off of the entire nucleus A: $\sigma \sim A^2$

<u>Spin Dependent:</u>

only unpaired nucleons contribute to scattering amplitude: $\sigma \sim J(J+I)$

Expected Scattering Cross Sections

- A general WIMP candidate: fermion (Dirac or Majorana), boson or scalar particle
- The most general, Lorentz invariant Lagrangian has 4 types of interactions (S, P, V, A)
- In the extreme NR limit relevant for galactic WIMPs (VWIMP ~ 10⁻³c), the interactions leading to WIMP-nuclei elastic scattering are classified as:

scalar interactions (WIMPs couples to nuclear mass; from the scalar and vector part of L)

$$\sigma_{SI} = \frac{m_N^2}{4\pi (m_\chi + m_N)^2} \left[Zf_p + (A - Z)f_n \right]^2 \qquad \text{f}_{p,n} = \text{effective couplings to p, n}$$

⇒ spin-spin interactions (WIMPs couples to nuclear spin J_N, from the axial part of L)

$$\sigma_{SD} = \frac{32}{\pi} G_F^2 \frac{m_{\chi}^2 m_N^2}{(m_{\chi} + m_N)^2} \frac{J_N + 1}{J_N} \left(a_p \left\langle S_p \right\rangle + a_n \left\langle S_n \right\rangle \right)^2$$

 $\langle S_{p,n} \rangle = expectation$ values of the spin content of the p, n in the target nucleus

large hadronic uncertainties in the cross section J. Ellis, K.A. Olive, C. Savage, arXiv:0801.3656v2

ap,n = effective couplings to p, n

Expected Interaction Rates

 Integrate over WIMP velocity distribution; in general assumed to be a simple 1D Maxwellian (good approximation for isothermal halo with ideal WIMP gas):

$$\frac{dR}{dE_R} = \frac{\sigma_0 \rho_0}{2m_\chi \mu^2} F^2(E_R) \int_{v > \sqrt{m_N E_R/2\mu^2}}^{v_{\text{max}}} \frac{f(\vec{v},t)}{v} d^3 v$$
$$f(\vec{v},t) \propto \exp\left\{\frac{-(\vec{v}+\vec{v}_E(t))^2}{2\sigma^2}\right\}$$

$$F^2(E_R) = \left[\frac{3j_1(qR_1)}{qR_1}\right]^2 e^{-(qs)^2}$$

 with WIMP-nucleon cross sections < 10⁻⁷ pb, the expected rates are

< 1 event/100kg/day

Differential rates for different targets (SHM)

 m_N

Expected rate

 E_R

 $2\boldsymbol{m}_{N}$

 $a_{\mu} Urement_{(1-\cos\theta) \le 50 \ keV}$

Astrophysics

Sun's velocity around the galaxy $\langle v \rangle \approx 230$ km/s WIMP energy density $\rho_{\chi} \approx 0.3$ GeV/cm³

Integral rate (as a function of E_R) <1 ev/kg/yr

$$\frac{dR}{dE_R}\Big|_{True} = \frac{dR}{dE_R}\Big|_{Ideal} \times \Big[$$

$$E_0 F^2(q)$$

$\sigma_p(cm^2)$

region for

 σ_{p}, m_{χ}

Current experimental limits

A low mass signal?

Local dark matter

Galaxy embedded in a dark matter "halo"

Local density \approx 0.3 GeV/cm³

Motion of the sun around the galaxy induces a WIMP "wind"

Rotation of the earth about the sun produces a seasonal modulation in the velocity of the wind

Annual flux modulation

Energy deposition in detector

Expected variation of WIMP count rate ± 3%

The current status

La ricerca mondiale delle WIMP

WIMP direct detection

$\chi N \rightarrow \chi N$ elastic scattering off nuclei

M. Goodman, E. Witten, PRD 1985

 $\beta \approx 10^{-3}$ $m_{\chi} \approx 100 \text{ GeV}$

Low energy nuclear recoils (< 100 keV) Low rate (~1 event/ton/yr for $\sigma = 10^{-47}$ cm²)

Large mass, long exposureLow threshold

Low radioactive bgGood bg discrimination

Detection of WIMPs: Signal and Backgrounds

Quenching Factor and Discrimination

- WIMPs (and neutrons) scatter off nuclei
- Most background noise sources (gammas, electrons) scatter off electrons
- Detectors have a different response to nuclear recoils than to electron recoils
- Quenching factor (QF) = describes the difference in the amount of visible energy in a detector for these two classes of events
 - keVee = measured signal from an electron recoil
 - keVr = measured signal from a nuclear recoil

For nuclear recoil events:

$$E_{visible}(keVee) = QF \times E_{recoil}(keVr)$$

 The two energy scales are calibrated with gamma (⁵⁷Co, ¹³³Ba, ¹³⁷Cs, ⁶⁰Co, etc) and neutron (AmBe, ²⁵²Cf, n-generator, etc) sources

Quenching Factor and Discrimination

- The quenching factor allows to distinguish between electron and nuclear recoils if two simultaneous detection mechanisms are used
- Example:
 - charge and phonons in Ge
 - ⇒ E_{visible} ~ 1/3 E_{recoil} for nuclear recoils
 - ➡ QF ~ 30% in Ge
- ER = background
- NR = WIMPs (or neutron backgrounds)

Backgrounds in Dark Matter Detectors

- Radioactivity of surroundings
- Radioactivity of detector and shield materials
- Cosmic rays and secondary reactions
- Remember: activity of a source

Do you know?

$$A = \frac{dN}{dt} = -\lambda N$$

N = number of radioactive nuclei λ = decay constant, T_{1/2} = ln2/ λ =ln2 τ [A] = Bq = 1 decay/s (1Ci = 3.7 x 10¹⁰ decays/s = A [1g pure ²²⁶Ra])

- 1. how much radioactivity (in Bq) is in your body? where from?
- 1. 4000 Bq from ¹⁴C, 4000 Bq from ⁴⁰K (e⁻ + 400 1.4 MeV γ + 8000 v_e)
- 2. how many radon atoms escape per 1 m² of ground, per s?
- 2. 7000 atoms/m² s
- 3. how many plutonium atoms you find in 1 kg of soil?
- 3. 10 millions (transmutation of ²³⁸U by fast CR neutrons), soil: 1 3 mg U per kg

Background

from natural radioactivity: $\gamma e^{-} \rightarrow \gamma e^{-}$ $nN \rightarrow nN$ $N \rightarrow N' + \alpha, e^{-}$

nuclear recoils

electron recoils

• Gamma ray interactions:

mis-identified electrons mimic nuclear recoil signals

• Neutrons:

 α , n

γ, e⁻

 (α,n) , U, Th fission, cosmogenic spallation

• Contamination:

²³⁸U and ²³²Th decays, recoiling progeny mimic nuclear recoils

Underground labs

reduction of muon flux by:

I Laboratori Nazionali del Gran Sasso

Detector strategies

Aggressively reduce the absolute background	Background reduction by pulse shape analysis and/or self-shielding	Background rejection based on simultaneous detection of two signals	Other detector strategies
State of the art: (primary goal is 0vββ decay): Past experiments: Heidelberg-Moscow HDMS IGEX Current and near-future projects: GERDA MAJORANA	Large mass, simple detectors: NaI (DAMA, LIBRA, ANAIS, NAIAD) CsI (KIMS) Large liquid noble gas detectors: XMASS, CLEAN, DEAP	Charge/phonon (CDMS, EDELWEISS, SuperCDMS, EURECA) Light/phonon (CRESST, ROSEBUD, EURECA) Charge/light (XENON, ZEPLIN, LUX, ArDM, WARP, DARWIN)	Large bubble chambers - insensitive to electromagnetic background (COUPP, PICASSO, SIMPLE) Low-pressure gas detectors, sensitive to the direction of the nuclear recoil (DRIFT, DMTPC, NEWAGE)

In addition:

- → reject multiple scattered events and events close to detector boundaries
- \rightarrow look for an annual and a diurnal modulation in the event rate

Direct Detection Techniques

Single channel techniques

Charge Ge: **COGENT, TEXONO** C,F,I,Br: **PICASSO, COUPP** CS₂,CF₄,³He: **DRIFT, DMTPC, MIMAC**

Improve surface effects Improve volume effects Improve scaleability

scintillation

Light Nal: **DAMA/LIBRA** Csl: **KIMS** LXe: **XMASS**, LAr, LNe: **CLEAN/DEAP** ionization

phonons

Improve resolution Improve threshold Improve noise Decrease T

Heat Al₂O₃: **CRESST-I**

Double channel techniques

Light & Ionisation Detectors PMTs for both channel readout LXe: **ZEPLIN, XENON**, LAr: **WARP, ArDM, DarkSide** mildly cryogenic (-100 C)

Improve surface effects Improve volume effects Improve scaleability ionization

scintillation

ZIP/NTD for Q & H channels Ge,Si: **CDMS** Ge: **EDELWEISS** cryogenic (<50 mK)

honons

Heat & Ionisation Bolometers

Improve resolution Improve threshold Improve noise Decrease T

Light & Heat Bolometers TES/NTD for L & H channels CaWO₄, Al₂O₃: **CRESST** even more cryogenic (~10 mK)

Path to Discovery

current experiments: O(100 kg) detector mass

zero background paradigm \rightarrow any excess of events is candidate signal

 future goal: multi-ton experiments to measure dark matter properties with 100-1000 events

paradigm shift \rightarrow search for signal above measured background, in a low background observatory

need multiple targets and techniques to verify signals

Hybrid techniques: nuclear recoil discrimination

M.Attisha

NTD= Neutron Transmutation Doped (thermal phonons) crystals TES= Transition Edge Sensors (athermal phonons) SPT= Superconducting Phase Transition thermometers

Bolometers

Principle: a deposited energy E produces a temperature rise ∆T

$$\Delta T \propto \frac{E}{C(T)}$$
$$T \ll T_c \Rightarrow C(T) \propto T^3$$

- => the lower T, the larger ΔT per unit of absorbed energy
- T-sensors:
 - superconductor thermistors

(highly doped superconductor): NTD Ge → EDELWEISS

superconduction transition sensors

(thin films of SC biased near middle of normal/SC transition):

TES→CDMS, SPT→CRESST

Phonons: discriminating backgrounds

- Advantages: high sensitivity to nuclear recoils (measure the full energy in the phonon channel); good energy resolution, low energy threshold (keV to sub-keV)
- Ratio of light/phonon or charge/phonon:
 - nuclear versus electronic recoils discrimination

 \rightarrow separation of S and B

Ratio of charge (or light) to phonon

Background region

Expected signal region

CRESST at LNGS: light and phonons

- Phonons and scintillation in CaWO₄ targets at ~ 10 mK
- Phonon detector: W-SPT (Superconducting Phase Transition) thermometers (Tc at 15 mK)
- Light detector: Si wafer read out by W-SPT(E_{thr} → few optical γ, ~ 20eV)
- No dead layer effects

- Nuclear recoils have much smaller light yield than electron recoils
- Photon and electron interactions can be be distinguished from nuclear recoils (WIMPs, neutrons)

67 events observed (730 kg-day) ~ 37 expected from backgrounds room for a signal? focus on reducing backgrounds

EDELWEISS at LSM: charge and phonons

- EDELWEISS-I: Ge NTD heat and ionization detectors (3 x 320 g at 17 mK)
 - Data taking 2000-2003
 - Backgrounds from neutrons, alpha and surface electron recoils
- EDELWEISS-II: 10 kg (30 modules) of NTD and NbSi Ge detectors in new cryostat, new charge electrodes
 - 113 kg d low threshold analysis E < 20 keV)

arXiv:1207.1815v2 [astro-ph.CO]

Superconducting films that detect minute amounts of heat Transition Edge Sensor sensitive to fast athermal phonons

CDMS

ZIP: Z-dependent ionization and phonon detectors

- Charge/phonon AND phonon timing different for nuclear and electron recoils; event by event discrimination!
- Measured background rejection still improving! 99.9998% for γ's, 99.79% for β's
- Clean nuclear recoil selection with ~ 50% efficiency Can tune between signal efficiency and background rejection

CDMS: a negative result?

30 Ge/Si detectors operated at 40 mK in a low-background shield at the Soudan mine in northern Minnesota

Final WIMP search runs (Ge detectors) - 612 kg-d: 2 events passing all cuts

• Expected background: 0.8 ± 0.1 (stat) ± 0.2 (syst) events

• Probability to observe two or more events is 23%

CDMS: latest results

Analysis of a 140.23 kg-day exposure of the CDMS-II Si detectors

 Three events were seen in the signal region with a total expected background of <0.7 events

 A profile likelihood analysis favors a WIMP +background hypothesis over the known background estimate as the source of signal at the 99.81% confidence level (~3σ)

CDMS profile likelihood analysis

- A profile likelihood analysis favors a WIMP+background hypothesis over the known background estimate as the source of our signal at the 99.81% confidence level (~30, p-value: 0.19%).
- We do not believe this result rises to the level of a discovery, but does call for further investigation.
- The maximum likelihood occurs at a WIMP mass of 8.6 GeV/c² and WIMP-nucleon cross section of 1.9x10⁻⁴¹cm².

Current step: the SuperCDMS experiment

CDMS II data-taking ended March 2009

Five super-towers installed at Soudan, each with 3 new, iZIP detectors, of 650 g

Total mass is 9 kg (~ 6kg fiducial mass)

The detectors are cold, the science run should start soon; expected to run for 2 years

Expected sensitivity: between 5 - 8 x 10⁻⁴⁵ cm²

The SuperCDMS program: future

Future in Europe: EURECA

- Joint effort for 100 kg-1 t cryogenic mK experiment in Europe (CRESST, EDELWEISS, ROSEBUD and other groups)
- Multi-target approach: Ge, CaWO₄, Al₂O₃, other?
- Design study (2009 2012) approved by ASPERA first common call in Europe
- Technical design report to be submitted in 2012

Light: the noble liquids strategy

- Large mass detectors

 scalability
- Multiple targets available: Xe, Ar
- Bright scintillators: Light Yield ~ 40 γ /keV \rightarrow low threshold

Two detection channels: ionization charge scintillation light

different dE/dx from nuclear and electron recoils → background discrimination

Ionization and scintillation

Ratio of charge to light

3D Position Resolution: fiducial cut, singles/multiples

XENONI00 ~99.5% rejection @ 50% acceptance

A low background technique

Intrinsic contaminations

LXe – U/Th <10⁻¹³, technogenic ⁸⁵Kr (beta) removed (<10⁻¹³) by distillation or chromatography LAr – cosmogenic ³⁹Ar (beta) depleted (<10⁻²) Ar from underground reservoirs

Use low-radioactive materials ONLY !

Teflon – U <10⁻⁸, Th <10⁻⁹, K<10⁻⁶ Copper – U<10⁻¹¹, Th<10⁻¹¹, K<10⁻⁹ Titanium – U <10⁻⁹, Th <10⁻⁹, K<10⁻⁶

Rn – should be removed from the vicinity of setup

In-situ measurement of backgrounds:
Active veto shield
→ identification of neutron recoils

Noble liquid TPC principle

Dual phase TPC: signals

Xenon I 00

- 62 kg LXe target
- 99 kg active LXe veto
- Dual phase TPC 30 cm drift
- 242 PMTs
- running @ LNGS (IT)

Last science run: PRL 109, 181301 (2012) 224.6 live days \times 34 kg exposure two candidate events observed in the nuclear recoil energy range of 6.6-30.5 keVnr \rightarrow fully compatible with background \rightarrow best WIMP limit over large mass range

Argon: Pulse Shape Discrimination

Nuclear Recoil

Scintillation and ionization in LAr

a seminal work: WARP 3.2 kg

- Operational since 2005 at LNGS
- First LAr detector to publish DM search results (3 months WIMP search)
- Testing ground for larger scale detectors

WIMP search results from WARP 3.2 kg

- Very good test of the detection principle
- Excellent results from study of discrimination power between nuclear and electron recoils:
 - 10⁻⁸ pulse shape discrimination
 - 5x10⁻³ ionization/scintillation

P. Benetti et al., Astrop. Phys. 28 (2008) 6

darkside two-phase argon TPC for Dark Matter Direct Detection

- depleted argon
- liquid-scintillator based neutron veto
- ultra-low bkgd PMTs
- DarkSide-50 sensitivity 10⁻⁴⁵ cm²
 - Demonstrate potential of the technology for multi ton-year **background-free** sensitivity
- DarkSide-5k sensitivity 10⁻⁴⁷ cm²

Artist Rendition of DarkSide-50, its 30-ton Neutron Veto, and its 1,000 ton muon veto (CTF)

DarkSide-50 Status

- Construction/Assembly near completion
 - TPC: assembly completed (first deployment configuration)
 - ➡ LSV: assembly completed
 - ➡ WT: assembly partially completed (PMTs still missing)
- Commissioning started end of May 2013
 - TPC: first test run with atmospheric argon ongoing
 - ➡ LSV: PMTs and electronic tested
- Physics run Fall 2013
- Towards G2 detector: I,000 tons water Cerenkov muon veto and 30 tons liquid scintillator neutron veto built to house 5ton DarkSide-G2 dark matter search

Cryostat containing the Time Projection Chamber hanging inside the neutron veto. The neutron veto sphere will be filled with boron-loaded liquid scintillator.

Neutron Veto sphere inside the Water tank.

②Napoli: tests of DS-50 cryogenic PMTs

 Optimization of the voltage divider Pulse linearity measurements

200

250

Naples fellow

Princeton PhD

Naples Princeton fellow !

former Naples fellows

Cocco

Darkside projected sensitivity

dark matter search with noble liquids

R&D and design study for a multi-ton scale LXe/LAr facility in Europe

funded by FP7-ASPERA in 2010

A total of 25 groups from ArDM, DarkSide, WARP, XENON Europe: UZH, INFN, ETHZ, Subatech, Mainz, MPIK, Münster, Nikhef, KIT, TU Dresden, Israel:WIS, USA: Columbia, Princeton, UCLA, Arizona SU

DARWIN

neutrino background or further physics reach?

Neutrino-nucleus scattering

Neutrino-electron scattering

Neutrino spectra: L. Strigari, New J. Phys. 11 (2009)

 $2\nu\beta\beta$: EXO measurement of ¹³⁶Xe T_{1/2}

Assumptions: 50% NR acceptance, 99.5% ER discrimination, 80% flat cut acceptance Contribution of $2\nu\beta\beta$ background can be reduced by using depleted xenon

A WIMP observatory

Scientific Roadmaps 2015-2020

Astroparticle physics

The European Roadmap

"Looking beyond the scale of one ton, we strongly recommend that DARWIN, a program aiming to extend the target mass of noble liquids to several tons, is pursued and supported."

ASPERA

"The construction and operation of the DARWIN multi-ton Dark Matter search facility should receive an appropriate Swiss contribution."

PARTICLE PHYSICS IN SWITZERLAND

DOE/NSF HEPAP

US Particle Physics: Scientific Opportunities A Strategic Plan for the Next Ten Years

"The panel further recommends joint NSF and DOE support for direct dark matter search experiments."

Liquid xenon and liquid argon TPCs

XENON100 at LNGS:

in conventional shield 161 kg LXe (~50 kg fiducial), dual-phase, 242 PMTs taking science data

LUX at SURF:

in water Cherenkov shield 350 kg LXe (100 kg fiducial), dualphase, 122 PMTs, physics run to start in early 2013 PandaX in conventional shield at CJPL:

stage I: 123 kg LXe (25 kg fiducial), dualphase, 180 PMTs starts in early 2013

850 kg LAr TPC 2 arrays of PMTs in commissioning at Canfranc Laboratory

DarkSide at LNGS

50 kg LAr (depleted in 39Ar) TPC in CTF at LNGS under construction to run 2013 - 2014

Liquid xenon and liquid argon detectors

- Under construction: XENON1T at LNGS, 3 t LXe in total
- Future and R&D: XMASS (5 t LXe), LZ (7 t LXe), DARWIN (20 t LXe/LAr)

Single-phase detectors (light only)

- XMASS at Kamioka (LXe), DEAP/CLEAN at SNOLab (LAr)
- Challenge: ultra-low absolute background

XMASS at Kamioka: in water Cherenkov shield at Kamioka 835 kg LXe (100 kg fiducial), single-phase, 642 PMTs soon to take science data

MiniCLEAN at SNOLab: 500 kg LAr (150 kg fiducial) single-phase open volume under construction to run in summer 2013 DEAP-3600 at SNOLab: 3600 kg LAr (1t fiducial) single-phase detector under construction to run in 2014

Light on WIMPs

Light collection: PMT Principle

The light signal is converted into a charge signal and amplified: $G \sim 10^6$ Even a single photon can be detected in this way: $Ne=QE \cdot CE \cdot G \cdot N_{\gamma}$

An ICARUS spin-off: Photocathode sensitivity at LN temperature

A.Ankowski et al. NIMA 556 (2006) 146

• The drawbacks due to the photocathode resistivity can be avoided at manufacture by the use of conductive underlayers

Napoli PMT test facility

More than 400 PMTs characterized at cryogenic temperature for the WARP programme

gain stabilization

peak to valley ratio

> single pe resolution

Warp R&D on photomultipliers

Metal underlayer to increase conductivity of photocathode at LAr temperature

New LT-Bialkali photocathode

Photodetectors in noble liquids

- New ideas: gas photomultipliers (GPMs)
- hybrid photodetectors (QUPID), LAAPDs (so far in EXO LXe)

A. Breskin, RD51-CERN February 2012 Weizmann Institute Concept

GPM LXe/LAr detectors

QUPID for LXe/LAr detectors

Room temperature scintillators

- Nal: DAMA/LIBRA, ANAIS; Csl: KIMS
- New idea: DM-Ice -> 17 kg Nal deployed as feasibility study at the South Pole (look for annual modulation in the southern hemisphere, 2.4 km deep in ice)
- Goal: build a 250-500 kg Nal detector array, closely packed inside a pressure vessel; use IceCube as a veto

lo in

DM-Ice

local muon veto in ice

250 kg Nai detector array in pressure vessel

:

local muon veto in ice

Bubble chambers

- Detect single bubbles induced by high dE/dx nuclear recoils in heavy liquid bubble chambers (with acoustic, visual or motion detectors)
- Large rejection factor for MIPs (10¹⁰), scalable to large masses, high spatial granularity
- Existing detectors: COUPP, PICASSO, SIMPLE
- Future: COUPP-500 -> ton-scale detector

n-induced event (multiple scatter)

WIMP: single scatter

COUPP 4 kg CFal detector at SNOLAB COUPP 60 kg CF₃I detector installed at SNOLAB; physics run in March 2013

PICASSO at SNOLAB

Recoil range << 1 μ m in a liquid - very high dE/dx

Directional dependance of the signal

- The Earth's motion with respected to the Galactic rest frame produces a direction dependance of the recoil spectrum
- The peak WIMP flux comes from the direction of the solar motion, which points towards the constellation Cygnus
- Assuming a smooth WIMP distribution, the recoil rate is then peaked in the opposite direction
- · In the laboratory frame, this direction varies over the course of a sidereal day due to the Earth's rotation
- This effect can provide a robust signature for a Galactic origin of a WIMP signal

Projection of the WIMP flux in Galactic coordinates
Directional detectors

- R&D on low-pressure gas detectors to measure the recoil direction, correlated to the galactic motion towards Cygnus
- MicroTPCs: MIMAC (CF4, CHF3, H gas), NEWAGE (CF4 gas)
- TPC: DRIFT (negative ion, CS₂), DM-TPC (CF₄ gas)
- New ideas: see talk by D. Nygren

MIMAC 100x100 mm² 5I chamber at Modane

NEWAGE, Kamioka

DM-TPC n-calibration

DRIFT, Boulby Mine

References

- "Particle Dark Matter", editor Gianfranco Bertone; Cambridge University Press, December 2009
- Cold thermal relics: "The Early Universe", by Edward W. Kolb, Michael S. Turner, Addison Wesley, 1990
- Direct and indirect detection: "Supersymmetric Dark Matter", by G. Jungmann, M. Kamionkowski and K. Griest, Physics Reports 267 (1996)
- Principles of direct dark matter detection: "Review of mathematics, numerical factor and corrections for dark matter experiments based on elastic nuclear recoils", by J.D. Lewin and P.F. Smith, Astroparticle Physics 6 (1996)
- Reviews of direct detection experiments: "Direct Detection of Dark Matter" by R.J. Gaitskell, Ann. Rev. Nucl. Part. Sci. 54 (2004), L. Baudis, "Direct Detection of Cold Dark Matter" SUSY07 Proceedings
- Low background techniques: "Low-radioactivity background techniques" by G. Heusser, Ann. Rev. Part. Sci. 45 (1995)
- Particle Astrophysics: "Particle and Astroparticle Physics" by U. Sarkar. Taylor & Francis 2008;
 "Particle Astrophysics" by D. Perkins, Oxford University Press 2003; L. Bergström and A. Goobar,
 "Cosmology and Particle Astrophysics", J. Wiley & Sons.
- mK Cryogenic Detectors: "Low-Temperature Particle Detectors", by N.E. Booth, B. Cabrera, E. Fiorini, Annu. Rev. Nucl. Part. Sci. 46, 1996
- Liquid xenon detectors: "Liquid xenon detectors for particle physics and astrophysics", by E. Aprile and T. Doke, Reviews of Modern Physics, Volume 82, 2010
- PDG: Particle Detectors for Non-Accelerator Physics (<u>http://pdg.lbl.gov/2010/reviews/rpp2010-rev-particle-detectorsnon-</u>accel.pdf)