

Study of TeV-PeV cosmic-ray anisotropy with the IceCube, IceTop and AMANDA detectors

Paolo Desiati, for the IceCube Collaboration

WIPAC & Department of Astronomy University of Wisconsin - Madison

<<u>desiati@wipac.wisc.edu</u>>

Roma International Conference on Astroparticle Physics - RICAP 2013 La Sapienza Università di Roma - May 22-24, 2013

Wednesday, May 22, 2013

Paolo Desiati

Outline

- cosmic ray spectrum and anisotropy the legacy
- anisotropy with IceCube & IceTop
 - energy dependency
 - angular structure
- anisotropy with AMANDA & IceCube
 - Iong time-scale stability

cosmic ray anisotropy observations the legacy

Wednesday, May 22, 2013

cosmic ray anisotropy observations the legacy

 cosmic rays possess anisotropy of order

$$10^{-4} - 10^{-3}$$

from 10's GeV to 10's TeV with consistent topology

- anisotropy amplitude increases with energy (up to ~10 TeV)
- anisotropy has strong dipole & quadrupole components

Paolo Desiati

Paolo Desiati

cosmic ray anisotropy observations the legacy

- significant small angular scale features ~10x smaller amplitude over global anisotropy
- the tail-in excess region composed of smaller structures above TeV energy
- observation of spectral anomalies associated to localized excess regions (Milagro, ARGO-YBJ)

Paolo Desiati

cosmic ray anisotropy observations the legacy

- cosmic rays < 10's GeV affected by solar</p> activity (short time-scale variability)
 - heliospheric physics as laboratory to study particle diffusion properties in interplanetary magnetic field
- \blacktriangleright cosmic rays > 100 GeV influenced by magnetic perturbations > O(10) AU
- snapshot of magnetic field influence at larger distance with higher energy

The IceCube Collaboration

University of Albert

Clark Atlanta University Georgia Institute of Technology Lawrence Berkeley National Laboratory Ohio State University **Pennsylvania State University** Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California-Berkeley University of California-Irvine University of Delaware University of Kansas University of Maryland University of Wisconsin-Madison University of Wisconsin-River Falls

International Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF) German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat The Swedish Research Council (VR) Uppsala Universitet

Stockholm University

Deutsches Elektronen-Synchrotron Humboldt Universität Ruhr-Universität Bochum RWTH Aachen University Technische Universität München Universität Bonn Universität Dortmund Universität Mainz Universität Wuppertal

Ecole Polytechnique Fédérale de Lausanne University of Geneva

University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

7

Wednesday, May 22, 2013

Paolo Desiati

University of Oxford Université Libre de Bruxelles Université de Mons University of Gent

> University of Canterbury

University of Adelaide

Vrije Universiteit Brussel

Chiba

University

air shower detection @ 2835 m altitude (680 g/cm²)

IceCube Observatory

muon detection @ 1450-2450 m depth

8

Paolo Desiati

Wednesday, May 22, 2013

detection principle

Paolo Desiati

growing lceCube & event collection

Year	µ rate (SMT8)	CR shower rate (STA3)
2007	500 Hz	13 Hz
2008	1100 Hz	15 Hz
2009	1700 Hz	25 Hz
2010	2000 Hz	30 Hz
2011+	2200 Hz	35 Hz

Observed InIceSMT Rate (Run Duration > 1 hour)

Wednesday, May 22, 2013

growing lceCube & historical data

NOTE: anisotropy is **not a dipole** topology changes above ~ 100 TeV IC59 Abbasi et al., ApJ, **746**, 33, 2012 IC22 Abbasi et al., ApJ, **718**, L194, 2010

Paolo Desiati

a known anisotropy Earth's motion around the Sun

Compton & Getting, Phys. Rev. 47, 817 (1935) Gleeson, & Axford, Ap&SS, 2, 43 (1968)

a known anisotropy Earth's motion around the Sun

- the observation of the solar dipole supports the observation of the sidereal anisotropy in cosmic ray arrival direction
- NO Compton-Getting Effect signature from galactic rotation observed

cosmic ray anisotropy large scale IceTop

Aartsen et al., ApJ, **765**, 55, 2013

NOTE: global topology does not change above ~100 TeV

deficit amplitude increases with energy

15

NOTE: different energy response distribution

IceTop with sharper low energy threshold

might explain IC/IT amplitude differences

16-

Paolo Desiati

IceCube

IceTop

cosmic ray anisotropy large scale

cosmic ray anisotropy large scale energy dependency

 IceCube-22
 Abbasi et al., ApJ, 718, L194, 2010

 dipole component
 IceCube-59
 Abbasi et al., ApJ, 746, 33, 2012

 EAS-TOP
 Aglietta et al., ApJ, 692, L130, 2009

 ARGO-YBJ
 Zhang 31st ICRC Łódź-Poland,2009

 ARGO-YBJ
 32nd ICRC Beijng China,2011

gaussian fit IceTop Aartsen et al., ApJ, 765, 55, 2013

- modulation in amplitude of dipole component
- corresponds to transition in anisotropy topology

18-

Paolo Desiati

cosmic ray anisotropy small scale IceCube

Abbasi et al., ApJ, 740, 16, 2011

Wednesday, May 22, 2013

cosmic ray anisotropy

- full sky map at comparable energy
 - to better determine low *e* spherical harmonic
 components

 to analyze fine angular structures across the sky

Wednesday, May 22, 2013

cosmic ray anisotropy lceCube 2007-2012

relative intensity equatorial coordinates lceCube Preliminary lceCube-22 to 86 -1 -0.5 0 0.5 1 Relative Intensity [×10⁻³]

- ▶ 1.4 × 10¹¹ events from 2007 to 2012
 - sensitivity to 5° structures with relative intensity of O(10⁻⁴)

cosmic ray anisotropy AMANDA-IceCube 2000-2011

- AMANDA and IceCube yearly data show long time-scale stability of global anisotropy within statistical uncertainties
 - no apparent effect correlated to solar cycles

cosmic ray anisotropy AMANDA-IceCube 2000-2011

Wednesday, May 22, 2013

• stochastic effect of nearby & recent sources & temporal correlations Erlykin & Wolfendale, Astropart. 2006

• stochastic effect of nearby & recent sources & temporal correlations Erlykin & Wolfendale, Astropart. 2006

Blasi & Amato, 2011

Ptuskin+, 2012

Pohl & Eichler, 2012

Sveshnikova+, 2013

propagation effect from a near by source to produce localized excess

Salvati & Sacco, 2008 Drury & Aharonian, 2008 Salvati, 2010 Malkov+, 2010

- ▶ stochastic effect of nearby & recent sources & temporal correlations Erlykin & Wolfendale, Astropart. 2006
 - Blasi & Amato, 2011
 - Ptuskin+, 2012
 - Pohl & Eichler, 2012
 - Sveshnikova+, 2013
- propagation effect from turbulent realization of interstellar magnetic field Giacinti & Sigl, 2012 within scattering mean free path
 Figure 12 Sigl, 2012
 Biermann+, 2012

FIG. 1. Renormalized CR flux predicted at Earth for a concrete realization of the turbulent magnetic field, after subtracting the dipole and smoothing on 20° radius circles. Primaries with rigidities $p/Z = 10^{16} \text{ eV}$ (left panel) and $5 \times 10^{16} \text{ eV}$ (right panel). See text for the field parameters and boundary conditions on the sphere of radius R = 250 pc.

Paolo Desiati

diffusion coefficient hardly a single power law, homogeneous and isotropic
 Effenberger+, 2012

local ISMF shaped by LOOP I expansion sub-shell (with center ~90 pc away in Scorpius-Centaurus OB Association)

local cloudlets fragments of the shell moving at similar velocities

interstellar magnetic field affected by inhomogeneities

Redfield & Linsky, 2008

Frisch+, 2011

Iocal ISMF relatively uniform over spacial scales of order 100-200 pc (inter-arm)

Frisch+, 2012

heliosphere as O(100-1000) AU magnetic perturbation of local ISMF

PD & Lazarian, 2013

- influence on ≤ 10 TeV protons (R_L ≤ 600 AU)
- cosmic rays >100 TeV ifluenced by interstellar magnetic field

29

Paolo Desiati

Wednesday, May 22, 2013

conclusions

- cosmic ray anisotropy observed up to PeV scale & down to 5° with IceCube & IceTop
- anisotropy not a dipole, changes topology with energy and has complex structure
- AMANDA & IceCube global anisotropy stable over one solar cycle
- study correlation between anisotropy & spectral anomalies vs primary mass
 - high energy cosmic ray anisotropy to probe into their origin and propagation
 - understanding of interstellar medium towards astrophysical scenarios for the observations
 - better understand particle diffusion in magnetic fields

thanks for your attention

Cosmic Ray Anisotropy Workshop

September 26-28, 2013

Union South • 1308W Dayton St • Madison, WI wipac.wisc.edu/CRA2013

SEPTEMBER 26-28, 2013 UNION SOUTH - 1308 W DAYTON ST - MADISON, WI

Scientific Program

The goal of the workshop is to bring together different scientific communities to discuss the origin of the anisotropy of cosmic rays and their spectral anomalies in a variety of energy ranges. We invite experts in the detection of cosmic rays on the ground, with balloons, or in space and from a variety of fields --- cosmic ray physics, astrophysics, plasma physics, heliospheric physics, interstellar medium, and particle interactions in magnetic fields. Participants will explore scenarios on the origin of cosmic rays and their acceleration and transport in the interstellar medium and in the heliosphere.

Topics

- Cosmic ray anisotropy
- Cosmic ray spectrum and composition
- Interstellar medium and interstellar magnetic field
- Isotopic composition of cosmic rays

interstellar medium

- Cosmic ray origin, acceleration and propagation
- Heliosphere and its boundary region with the

Organizing Commitees

Scientific Commit	tee:	Local Committee:		
Pasquale Blasi	Eun-Suk Seo	Markus Ahlers	Albrecht Karle	
Priscilla Frisch	Gus Sinnis	Segev BenZvi	Kim Kreiger	
Nikolai Pogorelov		Paolo Desiati	Marcos Santander	
		Francis Halzen	Stefan Westerhoff	

http://wipac.wisc.edu/CRA2013

Cosmic Ray Anisotropy

Cosmic Ray Spectrum and Composition

Cosmic Ray Origin, Acceleration and Propagation

> Interstellar Medium and Interstellar Magnetic Field

Heliosphere and its Boundary Region with the Interstellar Medium

Organizing Committee

Scientific Committee

riscilla Frisch

Nikolai Pogorelo

Fun-Suk Sec iegev BenZvi Paolo Desiat

Marcos Santand recht Kark

Local Committee

backup slides

IceCube geometry

growing lceCube & event collection

Year	µ rate (SMT8)	CR shower rate (STA3)
2007	500 Hz	13 Hz
2008	1100 Hz	15 Hz
2009	1700 Hz	25 Hz
2010	2000 Hz	30 Hz
2011+	2200 Hz	35 Hz

Observed InIceSMT Rate (Run Duration > 1 hour)

Wednesday, May 22, 2013

growing IceCube & event collection

Paolo Desiati

low energy cosmic ray anisotropy in arrival direction

37

cosmic ray anisotropy vs energy

J.L. Zhang et al., 31st ICRC Łódź - Poland, 2009

ARGO-YBJ

- data from 2008
- ► 365 days livetime
- ▶ 6.5 · 10¹⁰ events
- median CR energy ~ 1.1 TeV

Amenomori et al., Science Vol. 314, pp. 439, 2006

Tibet-III

- data from 1997 to 2005
- 1874 days livetime
- ▶ 3.7 · 10¹⁰ events
- angular resolution ~ 0.9°
- modal CR energy ~ 3 TeV

38-

Super-Kamiokande

Guillian et al., Phys Rev D, Vol 75, 063002 (2007)

- data from 1996 to 2001
- ▶ 1662 days livetime
- $2.1 \cdot 10^8$ events
- angular resolution $< 2^{\circ}$
- median CR energy ~ 10 TeV

Milagro

Abdo et al., ApJ, Vol 698-2, pag 2121 (2009)

- data from 2000 to 2007
- ▶ 9.5 · 10¹⁰ events
- ▶ angular resolution < 1°</p>
- median CR energy ~ 6 TeV

Amenomori et al., Science Vol. 314, pp. 439, 2006

relative intensity

370 TeV

Galactic Cosmic Ray Anisotropy in IceCube - Trieste - Paolo Desiati

EAS-TOP

Aglietta et al., ApJ 692, L130, 2009

Declination (deg)

Wednesday, May 22, 2013

IceCube muon bundle trigger statistics

detector	trigger rate (Hz)	actual time (d)	livetime (d)	number of events ^(*)	
IceCube-22	500	300	226	5.4×10 ⁹	
IceCube-40	1,100	358	324	19×10 ⁹	
IceCube-59	1,700	367	334.5	34×10 ⁹	
IceCube-79	2,000	365	337	40×10 ⁹	
IceCube-86	2,500	365 × 2	365 × 2	50×10 ⁹ × 2	

^(*) number of events with LLH reconstruction from online-filter collected by DST

cosmic ray anisotropy analysis technique

Wednesday, May 22, 2013

42

Paolo Desiati

cosmic ray anisotropy energy selection IceCube

cosmic ray anisotropy vs energy in IceCube-59

Wednesday, May 22, 2013

NOTE: anisotropy is not a dipole topology changes at high energy

IC59 Abbasi et al., ApJ, **746**, 33, 2012 IC22 Abbasi et al., ApJ, **718**, L194, 2010

Х

45

cosmic ray anisotropy large scale IceCube

NOTE: anisotropy is not a dipole topology changes at high energy

IC59 Abbasi et al., ApJ, **746**, 33, 2012 IC22 Abbasi et al., ApJ, **718**, L194, 2010

Fraction of events 90.0 events 90.0 events 90.0 events 90.0 events 90.0 events

> 0.03 0.02 0.01

20 TeV 400 TeV

mixed

composition

Paolo Desiati

cosmic ray anisotropy vs energy in IceCube-59

- reference map derived from data with time scrambling
- smoothing radius optimized on highest significance in excess/deficit region

Wednesday, May 22, 2013

cosmic ray anisotropy large scale IceTop

Aartsen et al., ApJ, **765**, 55, 2013

NOTE: global topology does not change

deficit amplitude increases with energy

48

cosmic ray anisotropy large scale IceTop

Aartsen et al., ApJ, **765**, 55, 2013

NOTE: global topology does not change

deficit amplitude increases with energy

49-

cosmic ray anisotropy large scale

IceCube

PRELIMINARY

50

Paolo Desiati

0

Wednesday, May 22, 2013

cosmic ray anisotropy large scale energy dependency

a known anisotropy Earth's motion around the Sun

Compton & Getting, Phys. Rev. 47, 817 (1935) Gleeson, & Axford, Ap&SS, 2, 43 (1968)

a known anisotropy Earth's motion around the Sun

- the observation of the solar dipole supports the observation of the sidereal anisotropy in cosmic ray arrival direction
- NO Compton-Getting Effect signature from galactic rotation observed

origin of large scale anisotropy : Compton-Getting Effect ?

Compton & Getting, Phys. Rev. 47, 817 (1935) Gleeson, & Axford, Ap&SS, 2, 43 (1968)

 $\frac{\Delta I}{I} = (\gamma + 2)\frac{v}{c}\cos\theta$

- motion of solar system around galactic center ~ 220 km/s
- reference system of cosmic rays is unknown
 - at most one dipole component of the observation

anti-/extended-sidereal distributions vs energy in IceCube-59

Wednesday, May 22, 2013

systematic uncertainties IceCube-59

Wednesday, May 22, 2013

cosmic ray anisotropy small scale IceCube

region	right ascension	declination	optimal scale	peak significance	post-trials	IC79 (post-trials)
1	$(122.4^{+4.1}_{-4.7})^{\circ}$	$(-47.4^{+7.5}_{-3.2})^{\circ}$	22°	7.0σ	5.3σ	6.8σ
2	$(263.0^{+3.7}_{-3.8})^{\circ}$	$(-44.1^{+5.3}_{-5.1})^{\circ}$	13°	6.7σ	4.9σ	5.4σ
3	$(201.6^{+6.0}_{-1.1})^{\circ}$	$(-37.0^{+2.2}_{-1.9})^{\circ}$	11°	6.3σ	4.4σ	6.4σ
4	$(332.4^{+9.5}_{-7.1})^{\circ}$	$(-70.0^{+4.2}_{-7.6})^{\circ}$	12°	6.2σ	4.2σ	6.1σ
5	$(217.7^{+10.2}_{-7.8})^{\circ}$	$(-70.0^{+3.6}_{-2.3})^{\circ}$	12°	-6.4σ	-4.5σ	-6.1σ
6	$(77.6^{+3.9}_{-8.4})^{\circ}$	$(-31.9^{+3.2}_{-8.6})^{\circ}$	13°	-6.1σ	-4.1σ	-4.3σ
7	$(308.2^{+4.8}_{-7.7})^{\circ}$	$(-34.5^{+9.6}_{-6.9})^{\circ}$	20°	-6.1σ	-4.1σ	-4.4σ
8	$(166.5^{+4.5}_{-5.7})^{\circ}$	$(-37.2^{+5.0}_{-5.7})^{\circ}$	12°	-6.0σ	-4.0σ	-6.4σ

Paolo Desiati

Wednesday, May 22, 2013

57

anisotropy vs. angular scale

-2

cosmic ray anisotropy AMANDA-IceCube 2000-2011

Preliminary

Period	Detector	Start	End	Live-time (days)	No. of events ($\times 10^9$)	χ^2 /dof	p-value
1	AM-II	02/13/2000	11/02/2000	213.4	1.4	11.3/15	0.73
2	AM-II	02/11/2001	10/19/2001	235.3	2.3	16.6/15	0.34
3	AM-II	01/01/2002	08/02/2002	169.2	2.4	26.0/15	0.04
4	AM-II	02/09/2003	12/17/2003	236.0	2.2	19.3/15	0.20
5	AM-II	01/05/2004	11/02/2004	225.8	2.5	14.3/15	0.50
6	AM-II	12/30/2004	12/23/2005	242.9	2.6	21.0/15	0.14
7	AM-II	01/01/2006	09/13/2006	213.1	2.4	24.4/15	0.06
8	IC22	06/01/2007	03/30/2008	269.4	5.3	45.2/15	7×10^{-5}
9	IC40	04/18/2008	04/30/2009	335.6	18.9	12.8/15	0.62
10	IC59	05/20/2009	05/30/2010	335.0	33.8	11.1/15	0.75
11	IC79	05/31/2010	05/12/2011	299.7	39.1	6.5/15	0.97
12	IC86	05/13/2011	05/14/2012	332.9	52.9	8.9/15	0.88

statistical uncertainties only

59-

Paolo Desiati