Core Collapse

A star passes most of its lifetime burning H (main sequence). The resulting He builds up in the core and its mass increase, heating and contracting under the pressure of outer layer. The star contraction pauses as nuclear fusion provides the energy necessary to replenish the energy the star loses in radiation and neutrinos. When the T in the core is sufficiently large, He burning begins. After He burning the evolution is greatly accelerated by neutrino losses The scheme repeats for different stages

(i) Hydrogen burning $4p \rightarrow {}^{4}\text{He} + 2e^{+} + 2\nu_{e}$ (ii) Helium burning $3\alpha \rightarrow {}^{12}\text{C} + 2\gamma$ (iii) Carbon burning ${}^{12}\text{C} + {}^{4}\text{He} \rightarrow {}^{16}\text{O} + \gamma$ (iv) Oxygen burning ${}^{16}\text{O} + {}^{16}\text{O} \rightarrow {}^{28}\text{Si} + \alpha$ (iv) Iron burning ${}^{28}\text{Si} + {}^{28}\text{Si} \rightarrow {}^{56}\text{Fe} + \gamma$ Million yrs Few weeks

Teresa Montaruli, Apr. 2006

Evolution of a 15 M_{sun} star

	Time	Fuel or	Ash or	Temperature	Density	Lumin	Neutrino
Stage	Scale	Product	product	(10°K)	(gm/cm ³)	osity	Losses
-			-			(solar	(solar
						units)	units)
Hydrogen	11 My	H	He	0.035	5.8	28,000	1800
Helium	2.0 My	He	C,0	0.18	1390	44,000	1900
Carbon	2000 y	C	Ne,Mg	0.81	2.8 x 10 ⁵	72,000	3.7 x 10 ⁵
Neon	0.7 y	Ne	O,Mg	1.6	1.2 x 10 ⁷	75,000	1.4 x 10 ⁸
Oxygen	2.6 y	O,Mg	Si,S,Ar,	1.9	8.8 x 10 ⁶	75,000	9.1 x 10 ⁸
	_		Ca				
Silicon	18 d	Si,S,Ar,	Fe,Ni,	3.3	4.8 x 107	75,000	1.3 x 1011
		Ca	Cr,Ti,				
Iron core	~1 s	Fe,Ni,	Neutron	> 7.1	>7.3 x 10°	75,000	>3.6 x 10 ¹⁵
collapse ^a		Cr, Ti,	Star				

^aThe presupernova star is defined by the time when the contraction speed anywhere in the iron core reaches 1,000 km s⁻¹.

Teresa Montaruli, Apr. 2006

Collapse

Each cycle requires a higher T for ignition due to the stronger Coulomb repulsion between nuclei.For most stars the process stops when the pressure is not sufficient to heat the core at the necessary T for the next ignition and the stars turns into a white dwarf.

The most massive stars can develop an iron core of (iron is the "ground state" of nuclear matter, the most tightly bound of all nuclei and no further nuclear burning is possible). The Fe core is substained by the degenerate pressure of its electrons until it reaches the Chandrasekar mass of 1.4 M_{Sun} . After this limit the core collapses. photodisintegration (radiation melt down some of the Fe nuclei to He) contribute in reducing pressure:

$$egin{aligned} &\gamma+rac{56}{26}\mathrm{Fe}\leftrightarrow13\,lpha+4\,n \ &\gamma+lpha\leftrightarrow2\,p+2\,n \end{aligned}$$

Collapse

Neutronization follows (time scale of ms): electron capture

 $e^- + p
ightarrow
u_e + n$ About $~10^{57}$ $~
u_e$ are emitted contributing to the collapse.

The core collapses to a hot n rich sphere of about 30 km in radius (protoneutron star).

The short range nuclear force halts the collapse when the density is about 2 x atomic nucleus density 4-5 10¹⁴ g/cm³. Neutrinos remain trapped in the collapsing core and are in thermal equilibrium within the core. The energy is released in thermal processes like **(thermalization)**

$$e^+ + e^- \rightarrow \nu_j + \overline{\nu}_j$$

With an emission of the order of 10 s.

The shock wave produced by the abrupt halt of the collapse and the bounce of the core travels towards the surface of the star. This is the explosion visible in the optical.

Collapse

Neutronization follows (time scale of ms): electron capture

 $e^- + p \rightarrow \nu_e + n$ About $~10^{57}~\nu_e$ are emitted contributing to the collapse

Neutronization burst of ν_e

$$N_{\nu_e} \simeq N_e = N_p \simeq \frac{M_{\rm core}}{m_p} Y_e \simeq 0.9 \times 10^{57}$$

 $Y_{\rm e} \equiv n_{e^-} - e_{e^+}$ is electron fraction per baryon

The total energy

$$E_{binding} = G \frac{M_{core}^2}{R_f} - G \frac{M_{core}^2}{R_i} \approx G \frac{M_{core}^2}{R_f} \approx 3 \times 10^{53} erg$$

is accounted for by neutrinos while the ejecta carry only 10^{51} erg (1%)

Stellar collapse and SN explosion

Classification of SuperNovae

Type II, outer H layer remains at collapse;

Type Ib, outer H layer stripped before collapse;

Type Ic, outer H and He layers stripped before collapse.

Classification of Supernovae

Spectral Type	Ia	ІЬ	Ic	II		
		Hydrogen				
Spectrum	Silicon	No S				
		Helium	No Helium			
Physical Mechanism	Nuclear explosion of low-mass star	Core collapse of evolved massive star (may have lost its hydrogen or even helium envelope during red-giant evolution)				
Light Curve	Reproducible	Large variations				
Neutrinos	Insignificant	\sim 100 $ imes$ Visible energy				
Compact Remnant	None	Neutron star (typically appears as pulse Sometimes black hole ?				
Rate / h ² SNu	0.36 ± 0.11	0.14 ± 0.07		0.71 ± 0.34		
Observed Rate a		approx. 1 SN / 30 years / galaxy				
1 Snu = 1 SN/10 ¹⁰ L _{sun,B} /100 yrs						

١

Type Ia vs. Core-Collapse Supernovae						
Τγρε Ια	Core collapse (Type II, Ib/c)					
Carbon-oxygen white dwarf (remnant of low-mass star) accretes matter from companion	Degenerate iron core of evolved massive star Accretes matter by nuclear burning at its surface					
Chandrasekhar limit is reach COLLAPSE	ed - M _{Ch} ≈1.5 M _{sun} (2Y _e)² SETS IN					
Nuclear burning of C and O ignites → Nuclear deflagration ("Fusion bomb" triggered by collapse)	Collapse to nuclear density Bounce & shock Implosion → Explosion					
Powered by nuclear binding energy	Powered by gravity					
Gain of nuclear binding energy ~1 MeV per nucleon	Gain of gravitational binding energy ~ 100 MeV per nucleon 99% into neutrinos					
	5 E1					

Comparable "visible" energy release of ~ 3 × 10⁵¹erg

Some definitions

Definition of Specific intensity Electromagnetic energy dE passing Through surface dA and coming from an angle θ within a solid angle d Ω during time dt:

 $dE = I_v(\theta,\phi)\cos\theta dv dA dt d\Omega$

 $I_{v} = I_{v}(\theta, \phi)$

$$\left[I_{v}\right] = W \cdot m^{-2} s r^{-1} H z^{-1}$$

The Intensity (integral)

$$I(Wm^{-2}sr^{-1}) = \int_{v}^{v_2} I_v dv$$

Flux density = intensity integrated over the solid angle (of the source) is called:

$$dF_{v} = I_{v} \cos\theta d\Omega$$
$$F_{v} = \int_{\Omega} I_{v} \cos\theta d\Omega$$

$$\begin{bmatrix} F_v \end{bmatrix} = W \cdot m^{-2} H z^{-1}$$

1Jansky = 1Jy = 10⁻²⁶ W \cdot m^{-2} H z^{-1}

Flux and Luminosity

 $E_{\nu_e}^{\text{tot}} = E_{\overline{\nu}_e}^{\text{tot}} = E_{\nu_{\mu}}^{\text{tot}} = E_{\overline{\nu}_{\mu}}^{\text{tot}} = E_{\overline{\nu}_{\tau}}^{\text{tot}} = E_{\overline{\nu}_{\tau}}^{\text{tot}} \simeq \frac{E_{\text{binding}}}{6}$

Elapsed time from first event [sec]

SN almost as bright as Galaxies!

: 2006

SN 1994D in NGC 4526

SN 19985 in NGC 3877

The historical SNs

Over the past 2000 yrs we have historical records of AD 185, 1006, 1054 Crab Nebula, 1181, 1572 Tycho's SN,1604 Kepler's SN http://arxiv.org/pdf/astro-ph/0301603

	length of	Historical Records					
date	visibility	remnant	Chinese	Japanese	Korean	Arabic	European
AD1604	12 months	G4.5+6.8	few	-	many	-	many
AD1572	18 months	G120·1+2·1	few	-	two	-	many
AD1181	6 months	3C58	few	few	-	-	-
AD1054	21 months	Crab Nebula	many	few	-	one	-
AD1006	3 years	SNR327.6+14.6	many	many	-	few	two
AD393	8 months	-	one	-	-	-	-
AD386?	3 months	-	one	-	-	-	-
AD369?	5 months	-	one	-	-	-	-
AD185	8 or 20 months	-	one	-	-	-	-

Table 1. Summary of the historical supernovae, and the source of their records

時虜使八在館石	不見自去年六日	儀甲戌客星守信	金宿為兵姦臣從	各星出紫微外庭	告以示休咎星士	傳舍占客星亦好	
王是乃夫	月已已至是凡一	侍舍第五星 九	周惑天子於是金	座傳舍星宜備姦	人者事大而嗣深	以星天之使者見	八年六月
	百八十五日乃消	年正月癸酉客星	廣遣使來爭執進	使邊夷侵境又云	色白其分有兵喪	於天而無常所入	已已容星出奎宿

大 始 書 田 今 別 犯

Supernova 1054 Petrograph

Possible SN 1054 Petrograph by the Anasazi people (Chaco Canyon, South-Western U.S.)

Tycho Brahe 1572

3kpc Type la

De Nova et nullius aevi memoria prius visa Stella

Distantiam verò buius stelle à fixis aliquibus in hac Caßiopeiæ constellatione, exquifito infirumento, & omnium minutorum capaci, aliquoties oblernaui. Inueni autemeam distareab ea, quæ oft in pectore, Schedir appellata B, 7. partibus & 55. minutis : à fuperiori verò

SN 1604

4-8 kpc Type II?

Johannes Kepler, De Stella Nova in Pede Serpentarii, (1606)

Cassiopeia A

2.8 kpc, neutron star

John Flamsteed August 16, 1680

Neutrino Signal of Supernova 1987A

Kamiokande (Japan) Water Cherenkov detector Clock uncertainty ±1 min

Irvine-Michigan-Brookhaven (US) Water Cherenkov detector Clock uncertainty ±50 ms

Baksan Scintillator Telescope (Soviet Union) Clock uncertainty +2/-54 s

Within clock uncertainties, signals are contemporaneous

$$\begin{array}{l} \mbox{Detection of SN neutrinos} \\ E_{\rm e} = E_{\rm v} - 1.3 \ {\rm MeV} \\ \mbox{Eargest cross section} \end{array} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} \end{array} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \mbox{argest cross section} & \overline{\nu_e} + p \rightarrow n + e^+ \\ \m$$

expected rate in Galaxy: 2-4 /century

H₂O Detectors:

SK 22.5 kt (fiducial) 31 Apr 96-15 Jul 01 : search for v bursts 1704 d E_{th} =6.5 MeV Expected: 3500 events for 10 kpc SN 12 Msun (2% decrease due to Eth changement in SK-II due to 1/2 PMTs), limit on number of explosions/yr: 0.49 SN/yr (90%c.l.) full efficiency up to 100 kpc in SNEWS **AMANDA II** 677 Oms V_{eff}/OM~400-500 m³ 4.3 SN/yr (90%c.l.) in Galaxy (Ahrens et al, 2002): expect 15 fake/yr \Rightarrow SNEWS bckg < 1/week) **SNO** 1+1.4 kt (D₂O+H₂O)

Scintillator detectors

LVD 1 kt (Jun 92 - Mar 03 - Jan 01 final configuration) 3511 d E_{th} =4-7 MeV
0.2 SN/yr (90%c.l.) in Galaxy, in SNEWS since 98
Expected events from SN at 8.5 kpc 320 (210 in MACRO upper limit 0.27 SN/yr)
Others: Kamland (1 kt), MiniBoone (0.6 kt), Borexino (0.3 kt),...

SN1987A

AMANDA as supernova detector

Optical Background and Filtering in ANTARES

All data (>0.3 pe) sent to shore 1GB/s Offline filter: 1 MB/s casuality condition

Teresa Montaruli, Apr. 2006

Ice is an extremely quite environment! 1st IceCube string

- The IceCube
 optical sensors
 were optimized for
 low noise.
- Research on glass material resulted in lower
 contamination with radioactivity.
- Fewer background photons from the glass.

September 2005 InIce Noise Rates

String 21 DOM Position

Teresa Montaruli, Apr. 2006

Galactic point Sources The case of RXJ1713.7-3946

Open problem: elusive π^0 produced in accelerated nuclei collisions with SN ambient material Still not a clear evidence BUT...CANGAROO claim

Controversial Reimer et al., A&A390,2002 Incompatible with EGRET

RXJ1713.7-3946

No cut-off in the HE tail of HESS spectrum favors π^0 decay scenario respect to the case of em processes Study of electron density and B can help

Predictions Galactic sources

Burgio, Bednarek, TM, New Astron. Rev. 49, 2005

	Source	Distance	E	N _v	Ref.	
	Туре	(kpc)	(GeV)	(km ⁻² yr ⁻¹)		
	Supernovae	10	<~ 10 ³	~100	Waxman & Loeb 2001	
	Shocks		~ 10 ² – 10 ⁶	50 – 1000	Protheroe et al. 1998	
	pulsars		~ 10 ⁵ - 10 ⁸	~ 100 – 1000	Beall & Bednarek 2002	
			~ 10 – 10 ⁸	<~ 1000	Nagataki 2004	
	Plerions	0.5 – 4.4	< 10 ³ – 10 ⁵	~ 1 – 12	Guetta & Amatto 2003	
			~ 10 ³ − 5 • 10 ⁵	<~ 1	Bednarek 2003	
	Crab	2	~ 10 ³ − 5 • 10 ⁵	a few	Bednarek & Protheroe 1997	
			~ 10 ³ − 5·10 ⁵	~ 1	Bednarek 2003	
			10– 10 ⁶	~ 4 – 14	Amato et al. 2003	
	Shell SNRs					
	SNR RX J1713.7	6	<~ 10 ⁴	~ 40	Alvarez-Muñiz & Halzen 2002	
- 1	Sgr A East	8	<~ 10⁵	~ 140		
	Puleare + Cloude					
	Galactic Centre	8	10 ⁴ - 10 ⁷	~ 2 - 30	Bednarek 2002	
	Cygnus OB2	1.7	≻~ 10 ³	a few	Torres et al. 2004	
			$10^4 - 10^7$	~ 0.5	Bednarek 2003	
			<~ 10 ⁶	~4	Anchordoqui et al. 2003	
	Binary systems					
	A0535+26	2.6	$3 \cdot 10^2 - 10^3$	a few	Anchordoqui et al. 2003	
	Microquasars	1 – 10	10 ³ – 10 ⁵	1 – 300	Distefano et al. 2002	
	Magnetars	3 – 16	<~ 10 ⁵	1.7 (0.1/ΔΩ) (5/d²)	Zhang et al. 2003	

Microquasars

Galactic X-ray binaries with radio relativistic jets: star transferring mass to a compact object (n star or BH). Their structure make them similar to quasars but ~10⁶ times smaller. Most have bursting activity (hrs-days) Persistent: SS433 GX339-4

Microquasars

Neutrinos from p- γ interactions (photons from synchr. Emission of electrons accelerated in jet or from accretion disc) Distefano, Waxman et al 2002

Source angular size ~ 50 arcsec Source distance ~ 2.5 kpc Gamma rays within radius ~ 0.6 pc Likely to be associated to 3EG J1824-1514 Hard E⁻² spectrum

Apr. 2006

Time averaged gamma ray spectra

(1) Gamma ray production close to jet base $z < 10^8$ cm (more absorption, larger flux at low energy)

(2) Gamma ray production far from jet base $z < 10^{13}$ cm

Teresa Montaruli, Apr. 2006

The Galaxy

γ observations

- EGRET observed a diffuse emission 100MeV-10 GeV from Galactic Centre region (300 pc): excess > factor 10 around 1 GeV
- INTEGRAL: resolved 91 point sources. 90% of 'diffuse' flux can be due to point sources <100 keV
- Milagro: discovery of TeV emission (astro-ph/0502303)

4.5 σ excess from |b|<5° and I∈[40°,100°]

Covered pond with 2 layers of PMTs, from relative timing 0.75° shower direction resolution, gamma-hadron discrimination based on shape of Cherenkov light emitted by showers

Extreme Models

Hard nucleus model E^{-2.4}

Hard electron model E-2.9

For E^{-2.4} 20 years of ANTARES to have 88% discovery prob

Teresa Montaruli, Apr. 2006

Galactic Centre

- High matter density and activity
- compact radio source Sgr A* possibly associated to black hole ~3 10⁶ M_{sun} in the center

HESS TeV-γ spectrum in

Sgr A East SNR

disagreement with the other experiments Variability? **Iocalization? HESS 1 arcmin** VERITAS. 45:00.0 95% conf. recion **TeV** detections VERITAS: Observations from 1995-2003: 3.7 o -28:50:00.0 CANGAROO II: Observations in 2001/2002: 9.80 H.E.S.S. Observations in Summer 2003: 11.80 9 5% 68% H.E.S.S. combined 55:00 syst. & statistical Declination -29:00:00.0 CANGAROO II Sgr A East Syst. Uncertainties only **Chandra & Radio** 20cm VLA, Yusef-Zadeh 1989 30.0 17:46:00.0 45:00.0 30.0

High Energy Stereoscopic System

Four 12 m diameter telescopes running since ~ 1yr in Namibia (+1 large) E_{th} ~ 100 GeV

Cherenkov light is emitted by showers induced by high-energy gamma rays This light is very faint - about 10 γ s/m² at E γ =100 GeV - and the duration of the light flash is only a few nsec. Large mirrors, fast photon detectors and short signal-integration times are required to collect enough light from the shower, with minimal contamination from night-sky background light.

 γ direction < 0.1°

Neutrinos flux with different constraints

$ \begin{array}{c} $	E _µ >1TeV dΩ<0.5° Not optimized PRELIMINARY		ANTARES			KM3
L) 10 ⁴ CANGAROO 10 ⁵ 10 ⁵ 10 ⁷ 10 ⁸			Signal events /year	Bkg events /year	Time for detection (4 σ CL)	Time for detection (4 σ CL)
10 ³ 10 ¹⁰ EGRET and HESS spectra	GC	HESS	2 10 -2	7 10 ⁻³	247 yr	6.2 yr
10 ⁻¹² extrapolations don't match		HESS+EHECR	5 10 ⁻²		64 yr	1.7 yr
10 ⁻¹ 1 10 10 ² 10 ³ E (GeV)		EGRET+EHECR	2.6		0.4 yr	week
Crocker, Melia, Volkas, 2005	RX J1713.7 -3946	Constantini et al (2005)	0.16	9 10 ⁻³	15 yr	0.4 yr
		Halzen et al (2002)	0.95		1.8 yr	3 weeks
	PSR B1509- 58	HESS	0.11	1.1 10 ⁻²	22 yr	0.6 yr
HESS+EHECR dF/dE _{vp}	ι+ νμ = [•]	1.3 x 10 ⁻⁵ E ⁻²	^{.0} m ⁻² s ⁻¹	GeV ⁻¹		
EGRET+EHECR dF/dE	νμ+νμ = \	= 4.1 x 10 ⁻³ E	^{-2.22} m ⁻² s	⁻¹ GeV ⁻¹		

Upper bounds on X-galactic fluxes

Cosmic p accelerators produce CRs, γ 's and ν 's Ultimate bound of any scenario involving ν and γ production from π s: diffuse extra-galactic γ background $E^2F_{\nu} < 6 \ 10^{-7} \text{ GeV} / \text{cm}^2 \text{ s sr}$ (EGRET) Measured UHECR flux provides most restrictive limit (Waxman & Bahcall (1999) - optically thin sources: nucleons from photohadronic interactions escape - CR flux above the ankle (>3 $\cdot 10^{18}$ eV) are extragalactic protons with E⁻²

spectrum $\Rightarrow E^2 F_v < 4.5 \ 10^{-8} \text{ GeV} /(\text{cm}^2 \text{ s sr})$

This bound does not apply to harder spectra or optically thick

Mannheim, Protheroe & Rachen (2000): Magnetic fields and uncertainties in photohadronic interactions of protons can largely affect the bound as these effects restrict number of protons able to escape

