Some more on Gamma-Astronomy: Why on satellites?

For $E_{\gamma} < \sim 100$ GeV, must detect above atmosphere (balloons, satellites)

For $E_{\gamma} > \sim 100$ GeV, information from showers penetrates to the ground (Cerenkov, air showers)

Summary of techniques

Space-based:

use pair-conversion technique

- Ground-Based:
 - Airshower Cerenkov Telescopes (ACTs)

image the Cerenkov light from showers induced in the atmosphere. Examples: Whipple, STACEE, CELESTE, VERITAS

Extensive Air Shower Arrays (EAS)

Directly detect particles from the showers induced in the atmosphere. Example: <u>MILAGRO</u>

stereoscopic approach

image of source is somewhere on the image axis ...

need several views to get unambiguous shower direction

Attenuation of photons

- Photons with E> 10 GeV are attenuated by optical-IR extragalactic background light (EBL)
- Only e⁻ of the source flux reaches us
- Important investigation for GLAST

No significant attenuation below ~10 GeV.

galactic diffuse (flux ~O(100) times larger)

high latitude (extra-galactic) point sources (typical flux from EGRET sources $O(10^{-7} - 10^{-6})$ cm⁻²s⁻¹

The VHE Sky – today

11 Galactic, 11 Extragalactic, GC, plus 15 unidentified not many sources ... but at least 7 source populations !

http://www.icrr.u-tokyo.ac.jp/~morim/TeV-catalog.htm

TeV Source Catalog									
Name	RA	Decl	GL	GB	Claim	Comment	No.		
NGC 253	11.888	-25.2882	97.369	-87.964	C2, ~H	Starburst Gal., z=0.00080		1	
3C66A	35.66505	43.0355	140.143	-16.767	Cr	QSO, z=0.444 2			
PSR0531+21	83.63288	22.01446	184.557	-5.785	Many	Crab pulsar/n	ebula	3	
PSR0833-45	128.8359	-45.1766	263.552	-2.787	C1, ~H	Vela pulsar	4		
RXJ0852.0-4622		132.2458	-45.6333	265.385	-1.181	C2, H	SNR, G266.6-3	1.2, Vela Jr.	5
Mkn 421	166.1138	38.20883	179.832	65.031	Many	XBL, z=0.031	6		
Cen X-3	170.3132	-60.6233	292.09	0.336	D	X-ray binary	7		
M87	187.7059	12.39112	283.778	74.491	Н	Radio galaxy,	z=0.00436	8	
PSR1259-63/SS2883		195.6987	-63.8357	304.184	-0.992	Н	PSR/Be binary	9	
HESS J1303-6	31	195.7642	-63.1986	304.241	-0.356	Н	UnID	10	
H1426+428	217.1354	42.67361	77.49	64.899	Many	XBL, z=0.129	11		
SN1006	225.5919	-41.8962	327.514	14.642	C1, ~H	SNR, G327.6+	14.6	12	
MSH15-52	228.5292	-59.1575	320.330	-1.192	C1, H	SNR, G320.4-	1.2, HESS J1514	4-591	13
HESS J1614-5	18	243.5679	-51.8442	331.497	-0.594	Н		14	
HESS J1616-5	08	244.1033	-50.8964	332.394	-0.140	Н	PSR J1617-50	55?	15
HESS J1640-4	65	250.1829	-46.5319	338.317	-0.021	Н	G338.3-0.0?	16	
Mkn 501	253.4672	39.76004	63.6	38.859	Many	XBL, z=0.034	17		
PSR1706-44	257.426	-44.4825	343.1	-2.683	C1, ~H	3EGJ1710-44	39	18	
RXJ1713.7-3946		258.425	-39.7667	347.346	-0.498	C1, C2, H	SNR, G347.3-0	0.5	19
Sgr A*	266.4169	-29.0078	359.944	-0.046	C2, W, H	Gal.C.[Rogers	et al.1994 ApJ4	434L59]	20
G0.9+0.1	266.8467	-28.1517	0.872	0.076	Н	SNR	21		
HESS J1804-2	16	271.1329	-21.6919	8.408	-0.027	Н	G8.7-0.1 / W3	30?	22
HESS J1813–178		273.4079	-17.8428	12.813	-0.034	Н	SNR AX J1813	-178/AGPS273	.4-17.8
HESS J1825-1	37	276.5150	-13.7633	17.820	-0.743	Н	G18.0-0.7?	24	
HESS J1826-14	48	276.5626	-14.8783	16.882	-1.289	Н	LS 5039	25	
HESS J1834-0	87	278.7104	-8.7533	23.258	-0.329	Н	G23.3-0.3 / W	/41?	26
HESS J1837-0	69	279.4279	-6.9275	25.206	-0.121	Н	G25.5+0.0?	27	
1ES1959+650		299.9994	65.14852	98.003	17.67	U, W, HC	XBL, z=0.048	28	
PKS2005-489	302.3721	-48.8219	350.386	-32.611	Н	XBL, z=0.071	29		
TeV J2032+4130		308.0292	41.50833	80.254	1.074	HC	UnID: Cyg OB2	2?	30
PKS2155-304	329.7169	-30.2256	17.73	-52.246	D, H	XBL, z=0.117	31		
Cas A	350.8529	58.8154	111.736	-2.13	HC	SNR, G111.7-	2.1	32	
BL Lac	330.6807	42.27779	92.59	-10.441	Cr	z=0.0686	33		
1ES2344+514		356.7702	51.70497	112.891	-9.908	W	XBL, z=0.044	34	

Claim: W: Whipple, C1: CANGAROO-I, C2: CANGAROO-II, D: Durham, Cr: Crimea, HC: HEGRA CT, H: H.E.S.S., ~H: H.E.S.S. upper limit

TeV γ ray source populations

Extended Galactic Objects

- > Shell Type SNRs
- Giant Molecular Clouds (star formation regions)
- Pulsar Wind Nebulae plerions

Compact Galactic Sources

- Binary pulsar PRB 1259-63
- LS5039 a Microquasar

Galactic Center

Review on Galactic sources Bednarek, Burgio, TM, http://arxiv.org/pdf/astro-ph/0404534

Extragalactic objects

- > M87 a radiogalaxy
- TeV Blazars with redshift from 0.03 to 0.18
- > and a large number of yet unidentified TeV sources ...

RXJ1713.7-3946 is a TeV source !

 Γ =2.1-2.2 -evidence of acceleration of protons ?

no significant spectral variation if a coordinate-independent single power law from 100 GeV to 10 TeV difficult to explain by IC

Vela Junior (a 2° diameter remnant)

Crab unit

 This is a unit of X-ray intensity evaluated at 5.2 keV, or over a band pass from 2 - 11 keV. If an X-ray source has the same type of spectrum as the Crab Nebula between 2 - 11 keV, we can compare them according to their brightness in Crab units. Numerically, 1 Crab equals 1060 microJanskys, and 1 microJansky = 0.242 x 10⁻¹¹ ergs cm⁻² sec⁻¹ keV⁻¹ or 1.51 x 10⁻³ keV cm⁻² sec⁻¹ keV⁻¹.

Example, at 2-11 keV, the star Algol produces 9 microJanskys or 9/1060 = 0.0085 Crabs, assuming Algol's spectrum has the same shape as the Crab nebula between 2 - 11 keV.

• <u>http://www.icrr.u-tokyo.ac.jp/~morim/CrabUnit.html</u>

Ref: Crab flux: Aharonian et al., ApJ 614, 897 (2004) [2.83E-11*(E/TeV)^(-2.62) /cm2 /s /TeV]

- SourceDiff. Index 2.62
- Energy threshold (GeV) 500
- Integral flux (Crab unit)

HESS Catalogue http://www.mpi-hd.mpg.de/hfm/HESS/public/HESS_catalog.htm

Source identifier	Sourc	ce coor	dinates (J20	00) F	lux	5	Size Co	bun	terpart	/ othe	r names	6 Refere	nce
	Ra	Dec		(Crab	units	s) (a	rcmin)						
HESS J0852-463	8h52n	ו	46d20'	~10	0%	~	-40	F	RX J08	52-462	2 (Vela 、	Jr) <u>A&A 4</u>	<u>137 (2005) L7</u>
HESS J1104-382	11h04	m27.6s	38d12' 54"	~30	0%	not e	xtende	d	Mkn 42	1		<u>A&A 4</u>	37 (2005) 95
HESS J1302-638	13h02	m49.3s	-63d49' 53"	up to ~	·10%	not e	xtende	d	PSR B	1259-6	3	<u>A&A 4</u>	<u>42 (2005) 1</u>
HESS J1303-631	13h03	m0.4s	-63d11' 55"	~1	7%	~	10					<u>A&A 43</u>	<u>9 (2005) 1013</u>
HESS J1514-591	15h14	m7s	-59d9' 27''	~1	5%	~6	x2 MS	SH	15-52 /	PSR E	31509–5	8 <u>A&A 43</u>	<u>35 (2005) L17</u>
HESS J1614-518	16h14	m19.0s	-51d49' 7''	~25	5%	~`	12		Science	e307(2	005)1938	<u>8 * ApJ 6</u>	36 (2006)777
HESS J1616-508	16h16	m23.6s	-50d53' 57"	~19)%	~	[,] 8 I	PSF	R J1617	7-5055	? <u>Sci</u>	ience307	<u>(2005)193</u>
HESS J1632-478	16h32	m8.6s -	-47d49' 24''	~12	%	8 IGF	R J163	20-4	4751, A	X J16	3252-474	46 ? <u>ApJ6</u>	36(2006) 777
HESS J1634-472	16h34	m57.2s	-47d16' 2''	~6%	6	~7	GR J16	6358	8-4726,	G337	2+0.1?	ApJ 636 ((2006) 777
HESS J1640-465	16h40	m44.2s	-46d31' 44"	~9%	6	~2 (G338.3	-0.0)?3EG	GJ1639	9-4702 ?	Science	307(2005) 193
HESS J1702-420	17h2n	144.6s	-42d4' 22''	~7%	6	~5						ApJ 636	(2006) 777
HESS J1708-410	17h8n	า14.3s	-41d4' 57''	~4%)	~3						ApJ 636	(2006) 777
HESS J1713-381	17h13	m58.0s	-38d11' 43"	~2%		~4	G34	48.7	7+0.3?		<u>ApJ</u>	636 (200	<u>6) 777</u>
HESS J1713-397	17h13	m	-39d45'	~66%	6	~15	RXJ 17	713	.7-3946	6, G347	7.3-0.5 <u>N</u>	lature 43	<u>2 (2004) 75</u>
HESS J1745-290	17h45	m41.3s	-29d0' 22"	~5%)	< 3	Sgr	A* .	/ Sgr A	East ?	<u>A8</u>	<u>kA 425 (2</u>	.004) L13
HESS J1745-303	17h45	m2.2s	-30d22'	14'' ·	~5%	~9	3EG J	174	44-3011	ا ? <u>Ap</u> ر	636 (20	06) 777	
HESS J1747-281	17h47	m23.2s	-28d9' 6"	~2%		<1.3	G0.9+	0.1		<u>A&A</u>	432 (200	05) L25	
HESS J1804-216	18h4n	131.6s -	-21d42' 3''	~25%		12	G8.7-0	.1,	PSR J1	803-2	137 ? <mark>Sc</mark>	cience 30	7 (2005) 1938
HESS J1813-178	18h13	m36.6s	-17d50' 35"	~6%		~2 G′	12.82-0	.02	, AX J1	813-17	78 ? <mark>Scie</mark>	ence 307	(2005) 1938
HESS J1825-137	18h26	m3.0s -	13d45' 44'' ~	·17% ~1	0 PSF	R J18	26-133 [,]	4/3	3EG J1	826-13	302 ? <mark>Sc</mark> i	ience 307	7 (2005) 1938
HESS J1826-148	18h26	m15s -	14d49' 30''	~3%	not e	extend	ed	L	-S 5039	•	<u>S</u>	cience 30	<u>)9 (2005) 746</u>
HESS J1834-087	18h34	m46.5s	-8d45' 52''	~8%	~!	5	G	23.	3-0.3 /	W41 ?	Science	307 (200	<u>)5) 1938</u>
HESS J1837-069	18h37	m37.4s	-6d56' 42''	~13%	~5	5	G25.5-	+0.0), AX J′	1838-0	655 ? <mark>Sc</mark>	cience 30	7 (2005) 1938
HESS J2009-488	20h9n	- 129.3s	48d49' 19''	~2.5%	not ex	ktende	ed PKS	20	05-489	<u>A&A 4</u>	36 (200	5) L17	
HESS J2158-302	21h58	m52.7s	-30d13'	18" ı	up to	50% r	not exte	ende	ed PKS	2155-	304 <u>* A8</u>	<u>A 430 (2</u>	<u>2005) 865</u>

Status of the y-astronomy field

The next-generation ground-based and space-based experiments are well matched.

Previous missions: BATSE and EGRET on CGRO

The high energy gamma ray detector on the Compton Gamma Ray Observatory (20 MeV - ~20 GeV)

EGRET (1990's) <u>established field</u>: increased number of ID'd sources by large factor;

broadband measurements covering energy range ~20 MeV - ~20 GeV;

★ discovered many still-unidentified sources;

discovered surprisingly large number of Active Galactic Nuclei (AGN); MELTEL ENERGY

discovered multi-GeV emissions from gamma-ray bursts (GRBs);

* discovered GeV emissions from the sun

GLAST: Gamma Ray Large Area Space Telescope Launch in late 2007.

- Main instrument: LAT (Large Area Telescope) sensitive to gamma rays between 20 MeV-300 GeV
- GBM (GLAST Burst Monitor) X-rays and γ-rays between 5 keV-25MeV

Mission duration > 5 yrs

Advancing wih GLAST

- Huge FOV (~20% of sky)
- Broadband (4 decades in energy, including unexplored region > 10 GeV)
- Unprecedented PSF for gamma rays (factor > 3 better than EGRET for E>1 GeV)
- Large effective area (factor > 4 better than EGRET)
- Results in factor > 30-100 improvement in sensitivity

EGRET/GLAST

172 of the 271 sources in the EGRET 3rd catalog are "unidentified"

Rosat or Einstein X-ray Source
1.4 GHz VLA Radio Source

EGRET source position error circles are $\sim 0.5^{\circ}$, resulting in counterpart confusion.

GLAST will provide much more accurate positions, with ~30 arcsec - ~5 arcmin localizations, depending on brightness.

Cygnus region (15x15 deg)

Definitions

Effective area

(total geometric acceptance) • (conversion probability) • (all detector and reconstruction efficiencies). Real rate of detecting a signal is (flux) • A_{eff}

Point Spread Function (PSF)

Angular resolution of instrument, after all detector and reconstruction algorith effects. The 2-dimensional 68% containment is the equivalent of $\sim 1.5\sigma$ (1-dimensional error) if purely Gaussian response. The non-Gaussian tail is characterized by the 95% containment, which would be 1.6 times the 68% containment for a perfect Gaussian response.

Scientific requirements

Parameter	SRD Value			
Peak Effective Area (in range 1-10 GeV)	>8000 cm ²			
Energy Resolution 100 MeV on-axis	<10%			
Energy Resolution 10 GeV on-axis	<10%			
Energy Resolution 10-300 GeV on-axis	<20%			
Energy Resolution 10-300 GeV off-axis (>60°)	<6%			
PSF 68% 100 MeV on-axis	<3.5°			
PSF 68% 10 GeV on-axis	<0.15°			
PSF 95/68 ratio	<3			
PSF 55% normal ratio	<1.7			
Field of View	>2sr			
Background rejection (E>100 MeV)	<10% diffuse			
Point Source Sensitivity(>100MeV)	<6x10 ⁻⁹ cm ⁻² s ⁻¹			
Source Location Determination	<0.5 arcmin			
GRB localization	<10 arcmin			

Experimental technique

- Measure direction, energy and arrival time of high energy photons (20 MeV-300 GeV)
- Dominated by pair production: clear signature for background rejection
- Background of CR is about 10⁴ larger than γ signal

Neutrini are much harder to detect than photons!

LAT: the main detector

Pair conversion detector built with:

- plastic anticoincidence shield,
- segmented CsI em calorimeter
- the largest Si strip tracker with slabs of tungsten converter ever built. 4 x 4 identical towers surrounded by an anticoincidence (ACD) to identify charged CRs

Instrument Design

On-board transient detection requirements, and on-board background rejection to meet telemetry requirements, are relevant to the electronics, processing, flight software, and trigger design.

Instrument life has an impact on detector technology choices.

Derived requirements (source location determination and point source sensitivity) are a result of the overall system performance.

GBM

12 Sodium Iodide (Nal) Scintillation Detectors

Characteristics

- 5-inch diameter, 0.5-inch thick
- One 5-inch diameter PMT per Det.
- Placement to maximize FoV
- Thin beryllium entrance window
- Energy range: ~5 keV to 1 MeV

Major Purposes

- Provide low-energy spectral coverage in the typical GRB energy regime over a wide FoV
- Provide rough burst locations over a wide FoV

2 Bismuth Germanate (BGO) Scintillation Detectors

Characteristics

- -5-inch diameter, 5-inch thick
- High-Z, high-density
- Two 5-inch diameter PMTs per Det.
- Energy range: ~150 keV to 30 MeV

Major Purpose

 Provide high-energy spectral coverage to overlap LAT range over a wide FoV

Constraints to Design

•Mass < 3000 kg (restricts calorimeter depth)

•Lateral dimensions < 1.8 m (restricts the geometric area)

•Power < 650 W (restricts number of readout channels and onboard CPU)

•Telemetry bandwidth < 300 kpbps (kbits per s) (sets the required level of onboard background rejection and data volume per event)

•Launch loads and other environmental constraints

Sensitivity to GRBs

FIGURE 3. Model-dependent LAT GRB sensitivity assuming a mean burst rate of 650 bursts/yr, including the effect of the EBL absorption. Different curves refer to different energy thresholds.

Alerts for GRBs

For 5 yrs GLAST will scan uniformly the full sky in 3 hrs (scanning mode)

GBM and LAT will trigger independently on GRBs, GBM on a rapid increase of counts and LAT considering spatial and temporal clustering of counts

GBM will detect 200 bursts/yr of which more than 60 will fall in LAT FoV Alerts will be sent to ground with a satellite communication system within 10 s The initial on-board GBM localization accuracy is about 15 degrees within 1.8 s that can be used by LAT. Updates come later and reduce the GBM localization error box up to about 5 degrees for a bright burst while the LAT can provide accuracy up to tens of arcminutes (1 arcmin = 0.01666 deg) depending on burst intensity

About 20/yr SWIFT detected GRBs will be in LAT FoV