Neutrino Astronomy at the South Pole Latest results from IceCube

Kurt Woschnagg UC Berkeley

> SLAC Summer Institute August 3, 2011

Neutrinos as Cosmic Messengers

Neutrinos and the Origin of Cosmic Rays

Galactic: SN remnants

Extragalactic: AGNs / GRBs / Other

We expect high-energy neutrinos from the same sources:

Greisen, Zatsepin, and Kuzmin (1966)

GZK neutrinos are "guaranteed"

Size matters: need for a km³ neutrino detector

Rate = Neutrino flux x Neutrino Effective Area

= Neutrino flux x Neutrino Cross Section x Absorption in Earth x Size of detector x (Range of muon for v_{μ})

Expected GZK neutrino rates in 1 km³ detector: ~ 1 per year

The IceCube Neutrino Observatory

Neutrino Detection Principle

Observe the charged *secondaries* via Cherenkov radiation detected by a 3D array of optical sensors

Need a huge volume (km³) of an optically transparent detector material

Antarctic ice is the most transparent natural solid known (absorption lengths up 200 m) μ

Neutrino Event Signatures

Tracks

$$\nu_{\mu} + N \rightarrow \mu + X$$

pointing resolution ~1°

Cascades

e-m and hadronic cascades

$$\begin{array}{l} \nu_{e(\tau)} + N \rightarrow e(\tau) + X \\ \nu_f + N \rightarrow \nu_f + X \end{array} f = e, \mu, \tau \end{array}$$

energy resolution 10% in log(E)

Composites

- starting tracks
- tau double bangs
- good directional and energy resolution

run 109457 event 5720360

Cascade candidate: signature of v_e **event IC22**

Reconstructed energy = 134 TeV

run 109682 event 6298338

arXiv: 1101.1692

Need high statistics and good angular resolution!

IceCube v_{μ} spectrum up to 400 TeV

Phys. Rev. D83 (2011) 012001

Search for Neutrino Point Sources

Search for an excess of astrophysical neutrinos from a common direction over a background of atmospheric neutrinos

All-Sky Point Source Search IC40+IC59

All-Sky Point Source Search

All-Sky Point Source Search

-log₁₀p

0.02

0.00

-log₁₀p

Searches for a Diffuse Neutrino Flux

Diffuse Flux = effective sum from all (unresolved) extraterrestrial sources (e.g., AGNs) Possibility to observe diffuse signal even if flux from any individual source is too weak for detection as a point source

Search for excess of astrophysical neutrinos with a harder spectrum than background atmospheric neutrinos

Advantage over point source search: can detect weaker fluxes

Disadvantages: high background must simulate background precisely

Sensitive to all three neutrino flavors

Limits on a diffuse muon neutrino flux

Experimental upper limits on the diffuse flux of muon neutrinos from sources with $\Phi \sim E^{-2}$ energy spectrum

Limits on a diffuse neutrino flux: cascades

Experimental upper limits on the diffuse flux of neutrinos from sources with $\Phi \sim E^{-2}$ energy spectrum

Extremely High-Energy Cosmic Neutrino Fluxes

The world's best all-flavor v upper limits to date from 10^6 to 10^{10} GeV

Cosmic Ray Anisotropy

Observation of anisotropy in the arrival directions of cosmic rays

Year	Rate (Hz)	LiveTime	CR Median Energy	Median Angular Resolution	Events
2007 (IC22)	240	~226 days	~19 TeV	3°	4·10 ⁹
2008 (IC40)	780	~324 days	~19 TeV	3°	1.9·10 ¹⁰
2009 (IC59)	1200	~324 days	~19 TeV	3°	3.3·10 ¹⁰

Cosmic Ray Anisotropy

Anisotropy seen in Southern Sky by IceCube is continuation of anisotropy seen in Northern Sky

Cause of anisotropy not known. Speculations include:

- Isolated nearby and recent SNR (unlikely)
- Configuration of magnetic fields in or near solar system
- Compton-Getting effect (not consistent with data)

Further studies of anisotropy vs energy, angular scale, time variability, spectral properties, ...

Indirect Dark Matter Searches

Search for neutrinos from objects where Dark Matter can have accumulated gravitationally over the evolution of the Universe:

Indirect Dark Matter Search: Solar WIMPs

Data collected when the Sun is below the horizon at South Pole

No excess of events from the Sun, observation consistent with the expected background

- \Rightarrow upper limit on the number of signal events at 90% CL : μ_s
- \Rightarrow 90% CL limit on the neutrino to muon conversion rate:

 \Rightarrow 90% CL limit on the neutralino annihilation rate in the Sun:

$$\Gamma_{\nu \to \mu} = \frac{\mu_s}{V_{eff} \times T}$$
$$\Gamma_A = \kappa^{-1}(\chi) \times \Gamma_{\nu \to \mu}$$

Indirect Dark Matter Search: Solar WIMPs

IceCube/AMANDA results from 1065 days of livetime between 2001-2008

90% CL **muon flux limit** from the Sun

(compared to MSSM scans)

90% CL neutralino-p Xsection limit

(compared to MSSM scans)

(particle physics and solar model)

Indirect Dark Matter Search: Galactic Halo

IC22 (275 days)

No observed excess over background

Summary

IceCube Neutrino Observatory completedThe era of km³ neutrino astronomy has begunPhysics run with complete detector started in May, 2011100,000+ high-energy neutrinos on the booksNo astrophysical neutrino sources detected yetIncreased sensitivity at lower energies with DeepCoreLots of physics to come:

cosmic ray spectrum • cosmic ray composition • cosmic ray anisotropies • atmospheric neutrinos (prompt component, oscillations, effects of quantum gravity, sterile neutrinos, ...) • neutrino point sources • gamma ray bursts • GZK neutrinos • multimessenger approaches • diffuse v fluxes • dark matter • magnetic monopoles • supernova bursts • shadow of the moon • atmospheric physics • glaciology • climatology • new technologies for highest energies (radio, acoustics)

The IceCube Collaboration

http://icecube.wisc.edu

36 institutions, ~250 members

Canada

US-

University of Alberta

Bartol Research Institute, Delaware Pennsylvania State University University of California - Berkeley University of California - Irvine Clark-Atlanta University University of Maryland University of Misconsin - Madison University of Wisconsin - River Falls Lawrence Berkeley National Lab. University of Kansas Southern University, Baton Rouge University of Alaska, Anchorage University of Alabama, Tuscaloosa Georgia Tech Ohio State University

Barbados

University of West Indies

SwedenGermanyUppsala UniversitetUniversitätStockholms UniversitetDESY-Zeuth

UK Oxford Unive

Oxford University

Universität Mainz DESY-Zeuthen Universität Dortmund Universität Wuppertal Humboldt-Universität zu Berlin

MPI Heidelberg RWTH Aachen Universität Bonn Ruhr-Universität Bochum

Belgium

Université Libre de Bruxelles Vrije Universiteit Brussel Universiteit Gent Université de Mons-Hainaut

Switzerland EPFL, Lausanne

ANTARCTICA Amundsen-Scott Station

Japan Chiba University

New Zealand University of Canterbury