TAUP2003 The lceCube Neutrino Telescope

Project overview and Status
 EHE Physics Example: Detection of GZK neutrinos

Shigeru Yoshida, Chiba University

The IceCube

- Chiba University, Chiba, Japan
- Clark Atlanta University, Atlanta, GA
- DESY-Zeuthen, Zeuthen, Germany
- Imperial College, UK
- Institute for Advanced Study, Princeton, NJ
- Lawrence Berkeley National Laboratory, Berkeley, CA
- Pennsylvania State University, Philadelphia, PA
- South Pole Station, Antarctica
- Southern University and A & M College, Baton Rouge, LA
- Stockholm Universitet, Stockholm, Sweden
- Universität, Mainz, Germany
- Universität Wuppertal, Wuppertal, Germany

Oniversite Libre de Bruxeelles, Bruxelles, Belgium

- Université de Mons-Hainaut, Mons, Belgium
- University of Alabama, Tuscaloosa, AL
- University of California-Barkeley, Berkeley, CA
- University of Delaware, Newark, DE
- University of Kansas, Lawrence, KS
- University of Maryland, College Park, MD
- University of Wisconsin-Madison, Madison, WI
- University of Wisconsi-RiverFalls, River Falls, WI
- Universidad Simon Bolivar, Caracas, Venezuela
- Uppsala Universitet, Uppsala, Sweden
- Vriie Universiteit Brussel, Brussels, Belgium

South Pole

IceCube

- 80 Strings
- 4800 PMT
- Instrumented volume: 1 km3 (1 Gt)
- IceCube is designed 1400 m to detect neutrinos of all flavors at energies from 10⁷ eV (SN) to 10²⁰ eV

	\cap	\cap	
4	-0	\bigcup	

IceTop

HAMMANAAAAAA an one constants of 111111111111111111 HHHHHHHHHHHHHHHHHHHHHHH WWWWWWWWWWWWWWWWWWWWWWW

AMANDA

outh

Skiway

Pole

How our events look like

lceCube

The typical light cylinder generated by a muon of 100 GeV is 20 m, 1PeV 400 m, 1EeV it is about 600 to 700 m.

E_{μ} =10 TeV \approx 90 hits

$E_u=6 \text{ PeV} \approx 1000 \text{ hits}$

DAQ design: Digital Optical Module - PMT pulses are digitized in the Ice

Design parameters:

- Time resolution:≤ 5 nsec (system level)
- Dynamic range: 200 photoelectrons/15 nsec
- (Integrated dynamic range: > 2000 photoelectrons)
 (1.p.e. /10ns ~ 160µA 10^7G ~8mV 50 Ω) 4V saturation→500p.e.
- Digitization depth: 4 µsec.
- Solution Noise rate in situ: ≤500 Hz
- Tube trig.rate by muons 20Hz

Capture Waveform information (MC)

 $\nu \tau$

E=10 PeV

Photomultiplier: Hamamatsu R7081-02 (10", 10-stage, 1E+08 gain)

- Selection criteria (@ -40 °C)
 - Noise < 300 Hz (SN, bandwidth)
 - Gain > 5E7 at 2kV (nom. 1E7 + margin)
 - P/V > 2.0 (Charge res.; *insitu* gain calibration)
- Notes:
 - Only Hamamatsu PMT meets excellent low noise rates!
 - Tested three flavors of R7081.

Digital Optical Module (DOM) Main Board Test Card

SPE Discriminator Scan PMT Pulses Input (71DB)

The big reel for the hotwater drill

Energy Spectrum Diffuse

Blue: after downgoing muon rejection

Red: after cut on-N_{hit} to improve sensitivity

Effective area of IceCube

Coincident eve

- Energy range:
 - ~3 x 10¹⁴ -- 10¹⁸ eV

Two functions

- veto and calibration
- cosmic-ray physics
- few to thousands of muons per event

Measure:

- Shower size at surface
- High energy muon component in ice
- Large solid angle
 - One IceTop station per hole
 - ~ 0.5 sr for C-R physics with "contained" trajectories
 - Larger aperture as veto

TAUP 2003

In three years operation... $e^{2}dN_{v}/dE \sim 10^{-8} \text{ GeV/cm}^{2} \text{ s sr (diffuse)}$ e E²dNv/dE ~7x10⁻⁹ GeV/cm² s (Point source) 200 bursts in coincidence (GRBs – WB flux)

Construction: 11/2004-01/2009

Next season: Buildup of the Drill and IceTop prototypes

TAUP 2003

Project status

- Startup phase has been approved by the U.S. NSB and funds have been allocated.
 100 DOMs are produced and being tested this year.
 - Assembling of the drill/IceTop prototypes is carried out at the pole this season.
- Full Construction start in 04/05; takes 6 years to complete.
- Then 16 strings per season, increased rate may be possible.

TAUP 2003

GZK EHEv detection

What is the GZK mechanism?
 EHE ν/μ/τ Propagation in the Earth
 Expected intensities at the IceCube depth
 Atmospheric μ – background

Event rate

Note: The oscillations convert v_e , v_μ to v_e , v_μ , v_τ

Muon(Neutrinos) from $\nu_{\mu} \nu_{\tau}$ Tau(Neutrinos) from $abla_{\mu} \, u_{ au}$ Nadir Angle 89.5 deg 89.5 deg dF/dLogE [Aribitrary Unit] dF/dLogE [Aribitrary Unit] 1 \$uppression By τ decay $v_{\mu} \rightarrow v_{\mu}$ $\rightarrow V_{\tau}$ ν<u>_</u>⇒μ 1**Մ⁵⊦** 1**5**∱ $\overline{\nu}_{\tau} \rightarrow \nu_{\mu}$ ν_μ ν_τ-**>**μ ν"→τ 1**σ**¹⁰ 1**ፓ**1 10⁸ 10¹⁰ 10¹⁰ 10¹ 10⁸ 10¹² 10 **้1**0ื่ Energy [GeV] Energy [GeV] TAUP 2003

Flux as a function of energy deposit in km^3 • dE/dX~ β E $\rightarrow \Delta$ E~ Δ XbE

Intensity of EHE μ and τ [cm ⁻² sec ⁻¹]								
GZP Zmax	(m=4 =4		lμ(E>10	PeV)	Ιτ (Ε>1	0PeV)	RATE [/yr/km²]	
Dow	n		5.90 ²	10 -19	5.97	10 -19	0.37	
Up			3.91 2	10-20	6.63	10 -20	0.03	
			lμ(E>10 Energy D	PeV) eposit	Iτ(E>1 Energy	0PeV) <mark>Deposit</mark>		
Dow	n		4.75 ′	10 ⁻¹⁹	2.94	10 ⁻¹⁹	0.24	
m=7 Zmax	=5 1 0wn		7.21 *	0-17	4.83	10 -17	37.9	
Atm	ıμ		1.74 ′	10 -19			0.05	

TAUP 2003

TAUP 2003

Conclusion

ICECUBE ICECUBE has great capability for TeV-PeV v-induced muons taking advantage of long range in the clear ice.

FOR EHE v **like the GZK...** τ/μ appeared in 10 PeV- EeV are our prime target on GZK v detection. 1/100-1/500 of primary v intensity!

Downward τ and μ make

main contributions in PeV -EeV

Energy Estimation would be a key for the bg reduction Because atmospheric μ spectrum ~ E^{-3.7}

GZK v is DETECTABLE by IceCube

0.2-40 events/year (BG 0.05 events/year)

Backup slides

Theoretical bounds

UHE (EeV or even higher) Neutrino Events Arriving Extremely Horizontally Needs Detailed Estimation Limited Solid Angle Window $(\sigma \rho N_A)^{-1} \sim 600 (\sigma / 10^{-32} \text{cm}^2)^{-1} (\rho / 2.6 \text{g cm}^{-3})^{-1} \text{[km]}$ **Involving the interactions generating** electromagnetic/hadron cascades $\mu N \rightarrow \mu X e^+e^-$

TAUP 2003

τ/μ propagation in Earth

