Neutrino Astronomy

Ph 135 Scott Wilbur

Why do Astronomy with Neutrinos?

- Stars, active galactic nuclei, etc. are opaque to photons
- High energy photons are absorbed by the CMB beyond ~100 Mpc
- 10²⁰ eV protons, which should be created with neutrinos, have been seen
- Can be used to observe possible dark matter reactions
- In short: we can probe new phenomena and look farther back

Why do Astronomy with Neutrinos?

Three main areas of research:

- Astronomy
 - More information about high-energy protons and γ rays
- Particle Physics
 - Extremely long baseline for neutrino oscillation studies
- Dark Matter Searches
 - Many dark matter candidates would leave neutrino signatures

The Detector

- A neutrino interacts with matter in the telescope, creating a muon or a hadronic or electromagnetic shower
- The muon (or shower) emits Cherenkov radiation as it travels through the ice
- Photomultipliers pick up the Cherenkov radiation and can infer the direction of travel
- To select only neutrino events, only tracks coming through the Earth are kept

The Detector

Picture from AMANDA II Web Site: http://www.amanda.uci.edu

Advantages of Neutrino Astronomy

- Can see through nearly anything
- Wide viewing angle

Disadvantages of Neutrino Astronomy

- Need gigantic telescopes
- Still see very few events

AMANDA

- Astronomy with a Neutrino Telescope and Abyss environmental RESearch
- Currently under construction, 5/12 strings completed
- 1000 photomultipliers, 0.1 km² planned
- Data will combine with AMANDA to provide better sky coverage

lceCube

- Next generation of neutrino telescopes
- 4200 photomultipliers, 1 km² telescope area
- 1^o angular resolution for muons, 10^o for showers
- 30% resolution in log of energy for muons, 20% in energy for showers

Astronomy

Extremely high energy protons (over 10²⁰ eV) have been observed

 Expected to come from supernova remnants and neutron stars accreting matter from companions

 These processes are expected to generate neutrinos as well, which would point back to their source

Astronomy

- Active Galactic Nuclei are the most luminous known objects in the Universe (10³⁵ 10⁴¹ W)
- Some emit relativistic jets with γ rays exceeding 10¹² eV
- Theoretical models of AGNs have large uncertainties
- Any observations of these sources (such as neutrino emissions) are helpful

Astronomy

- γ ray bursts are extremely violent releases of energy (10⁴⁵ J in ~1 sec in γ rays alone)
- We don't have a good theory about the mechanism of *γ* ray bursts
- By observing the afterglow, we can determine what happens, but not how it starts

Neutrino Physics

- A neutrino telescope can see atmospheric neutrinos produced on the other side of the Earth
- This gives a very long baseline for neutrino oscillation observations
- Much more accurate neutrino oscillation measurements, possibly including a sterile neutrino

Dark Matter Searches

- WIMPs can get trapped in gravity wells and annihilate at great rates
- γ rays would be absorbed, but neutrinos could be detected
- Neutrinos have energies 1/3 1/2 of WIMP mass
- Kaluza-Klein dark matter annihilates into neutrinos at a higher rate than WIMPs

Dark Matter Searches

Both dark matter candidates would lead to an increased neutrino rate from the Sun:

Possible Exotic Results

- Neutrino telescopes are essentially detectors for extremely high energy accelerators (10 PeV)
- We might see new physics at energy scales this high

Quantum Gravity

- Earth becomes opaque above ~100 TeV
- Angular distribution can give cross section
- Don't need known luminosity of source

Magnetic Monopoles

Magnetic monopoles would have a large equivalent charge

- Cherenkov radiation goes as charge squared
- AMANDA has improved the bound on monopole flux density

References

- Francis Halzen, <u>Astroparticle Physics with High</u> Energy Neutrinos: from AMANDA to IceCube
- Dan Hooper, <u>High Energy Neutrino Astronomy:</u> <u>Opportunities for Particle Physics</u>
- Gianfranco Bertone, Dan Hooper and Joseph Silk, <u>Particle Dark Matter: Evidence</u>, <u>Candidates and Constraints</u>
- ANTARES web site: http://antares.in2p3.fr