Recent Advances on CdTe/CdZnTe detectors

For High Energy PHOTON

Tad Takahashi

Institute of Space and Astronautical Science (ISAS) Japan Aerospace eXploration Agency (JAXA) and Univ. of Tokyo

Acknowledgement : Z. He(Michigan), P.Luke (LBNL), F. Harrison(Caltech), O. Limousin(CEA), C. Szeles (eV), R. Ohno(ACRORAD), J. Matteson (UCSD)

Outline

- Demand and CdTe/CdZnTe
- Recent Progress on technology
 - Crystal and ASIC
- X-ray Imager
 - Pixel & Strips
- Gamma-ray Detector
 - Coded Mask /PET
 - Compton Camera
- Summary/Future Prospects

T.Takahashi

Demands

Need Detector Material which can be used as an alternative to Si (in terms of Efficiency) an alternative to Ge (in terms of Operating Temperature)

> Good Energy Resolution similar to Ge (0.2%@662keV) High Efficiency, above 10 keV upto 1 MeV Position resolution a few hundred micron A detector can be operated at room temperature

> > In the field of Medical Application Homeland Security

Astronomical Observation

Seems to be very difficult and would need another 10 to 20 years for the final answer

T.Takahashi

3

All next generation telescopes need a Hard-X camera above 10 keV, where Si becomes transparent

To take a photo of SuperNova explosion

in hard X-ray

NuSTAR Small Explorer Two hard X-ray (6 - 79 keV) focusing telescopes Launch August 2011

-39d30m

CdTe/CdZnTe seem to be the only candidate at least, at this moment

• High Z semiconductor $(Z_{Cd} = 48, Z_{Te} = 52), \rho = 5.9 \text{ g/cm}^3$

Room Temperature Operation
 or Cool Environment

Material	Ge (77K)	Hgl₂	CdTe	CdZnTe
Atomic number	32	80, 53	48, 52	48, 30, 52
Band gap (eV)	0.74	2.13	1.50	1.57
Energy per e-h pair (e∀)	2.97	4.2	4.4	4.6
Fano factor	0.08	0.19	0.11	0.09
μ_{e} (cm ² /Vs)	40,000	100	1100	1000
$\mu_h (cm^2/Vs)$	40,000	4	100	10
$\tau_{e}\left(s\right)$	10 ⁻³	10 ⁻⁵	10 ⁻⁶	10 ⁻⁵
$\tau_{h}\left(s\right)$	10 ⁻³	10 ⁻⁵	10 ⁻⁶	10 ⁻⁶

CdTe/CdZnTe seem to be the only candidate

at least, at this moment

Because, they've already shown good performance

CdTe/CdZnTe Commercial Products

Amptek

AXION CdTe dental panoramic digital imaging system

Courtesy of AJAT (Finland)

Commercial Products Hard X-ray Imager

Integrated type

1 dim Imager (30cm)

Technologies

Crystal & ASIC

Recent Advances on Technologies

ACRORAD (JAPAN) Large Single Crystal

1st Large Scale CdTe Camera in Space (INTEGRAL)

Travel Heater Method (THM) Careful treatment of post heating Very uniform wafer

Quartz ampoule

Recent Advances on Technologies

eV Products (High Pressure Bridgman and improved method) Large Crystal

Radiator

BAT Detector Array

Power

Supply Box

T.Takahashi

Price / mm^3 (USD) — Largest CZT Surface area / mm^2

Recent Advances on Technologies

succeeded to make CZT by THM Large Single Crystal

REDLEN

Hard X-ray Camera

For photons above 10 keV below 100 keV

CdTe Photon-counting imager using XPAD chip

0.7 mm thick CdTe 20 kpixels (130µm x 130µm)

2 ms/frame 10⁶ photons/pixel

CdZnTe Imager with Spectroscopic Capability NDIPO8 **for NuStar Satellite**

0.5mm pitch, 2mm thick Two hybrids: 24 x 48

32 x 32 array, 0.6 mm pitch 2 mm thick CdZnTe

Flat Image

non-uniformity of the image comes from CZT, not from ASIC

CdZnTe Imager with Spectroscopic Capability NDIPO8 **for NuStar Satellite**

0.5mm pitch, 2mm thick Two hybrids: 24 x 48

32 x 32 array, 0.6 mm pitch 2 mm thick CdZnTe

CdTe Imager with Spectroscopic Capability NDIPO8 for Simbol-X Satellite

- HED: mosaic of 64 independent CdTe (Al/CdTe/Pt) cameras
- Caliste 64: first prototype of detection unit

Large Area Hard X-ray Imager

ISAS/JAXA

Large Area 1024 pixel CdTe Array (pixel size 1.4 x 1.4 mm²)

0.5 mm thick

Fine Pitch CdTe Strips

Previously

 Difficult to make strips on the barrier electrode (In) for CdTe diode.
 Wire-bond does not work on CdTe.

With new electrode material on CdTe (Al as anode/Pt as cathode) we have succeeded to make fine pitch Double Sided Cross Strip detector

Gamma-ray

above 100 keV

CdTe & CdZnTe detectors for gamma-ray Thick Approach

Gamma-ray Detector

Cross Strip CdZnTe

For a Large NIH Program 1 mm spatial resolution, ~2% energy resolution at 511 keV

Gamma-ray Detector

Mini Coded Mask (cross strip CZT)

DGAS specs:

- Image a 5 mCi source at >5 m in less than 10 sec, and localize it to <10 degrees
- Energy band of 40 250 keV
- Better than 10% energy resolution at 122 keV

T.Takahashi

Redlen CZT

J. Matteson & Aguila Tech., 2008 supported by HSRAPA

CdTe & CdZnTe detectors for gamma-ray Thin Approach

Watanabe, TT et al. 2002

40 layer = 20 mm thick CdTe

Gamma-ray Detector

CdTe PET (1st Result)

Achieved Spatial Resolution< 1mm

Array of 1mmX1mmX5mm 5120 CdTe BAR **Edge on geometry** Press Release by K. Ishii, Tohoku Univ., Japan **Brain** Fine Structure Imaging PET scanner

Tohoku Univ.

Gamma-ray Compton Camera for High Sensitivity Imaging

Gamma-ray Detector

CdZnTe Compton Camera (Thick)

Z. He et al. Michigan U. (2008)

- Cathode/Anode Ratio (Depth Infc
- Timing Measurement (Drift Time)
 (Multiple Interaction/ Depth Info)

= 6 cm³ CZT(eV Products)

ASIC front-end
 (Gamma-Medica-Ideas AS)

Gamma-ray Detector

Si/CdTe Compton Camera (Thin)

Japanese ASTRO-H "fomerly called as **NeXT** (New exploration X-ray Telescope)"Satellite will use it for the sensitive measurement from 100 keV to 600 keV.

Si is ideal device as "Scatterer",

since it is low Z material and momentum of electron around the nuclei is small -> Less affected by Doppler Broadening

1 unit

32 layers of 0.5 mmthick Si Pixel8 layers of 0.75 mmthick CdTe Pixel

Concept (Takahashi et al. SPIE 2003). Narrow FOV (field-of-view) Compton camera. Compton kinematics to suppress backgrounds

Summary/Future Prospects

1. CdTe and CdZnTe are now in the phase of real application.

2. Large and Thin CdTe wafers are widely used for the commercial products of hard X-ray camera

3. Photo Counting Detector

(10⁹-10¹⁰ photons/pixel /s)would be the next step.

4. For gamma-ray detection, *Thick* approach and *Thin* approach both work.

5. Homeland Security and Medical Imaging boost the development

6. Space missions are always one step ahead in terms of technological requirements, which is good.