

The high-energy pulsar world we knew 6 months ago...

• 6 pulsars detected with high confidence by CGRO/COS-B/SAS-2:

5 radio-loud young pulsars with top ranked $\frac{E_{rot}}{d^2}$ values 1 radio-faint (or -quiet) pulsar (Geminga)

• ~ half a dozen lower confidence candidates, including a ms pulsar

Layout of our presentation:

G.K.:

- the Fermi LAT in the context of multi-wavelength astronomy
- pre-flight preparations of timing tools for radio- or γ -ray-only pulsars
- Pulsar observations during initial on-orbit operations & first results
 - the ,classical' Vela pulsar
 - the first ,blind-search' $\gamma\text{-ray}$ only pulsar in the SNR CTA-1

M. B.:

- the Fermi LAT pulsar legacy burgeons:
 - the pulsar catalogue after 5 months of operations
- lightcurves and spectra of selected radio pulsars
- insights into γ -radiation processes and magnetospheric models
- the new GeV ms pulsar population

Fermi LAT (~ 100 MeV to 100 GeV) and the observation of Pulsars

Preparation of timing tools for radio- or γ **-ray-only pulsars**

Typical pulsar fluxes of 10⁻⁶ to 10⁻⁸ γ (>100 MeV) cm⁻² s⁻¹ lead to LAT detection rates of 1 γ /several minutes to 1 γ /several hours \rightarrow requires long observation times and high precision ephemerides

Radio pulsar timing database:

Monitoring of radio ephemerides for over 200 pulsars with large spin-down powers by an international consortium of radio telescopes (Smith et al., 2008, http://xxx.lanl.gov/abs/0810.1637v1)

Searching periodicity directly in the γ -ray data (,blind-search pulsars'):

Time differencing technique: Atwood et al., ApJ, 652, L49, 2006

Follow up refined analysis for P, P using FFT & folding techniques

The Vela pulsar taken to a new level of statistical detail with *Fermi LAT*

Vela Lightcurves across the e-m spectrum

Fermi LAT lightcurves from 30 MeV to >10 GeV

NB: the first pulse has disappeared

NB: the ,bridge' emission separates into a broad pulse

Vela Phase-averaged spectrum

$$N(E) = N_0 E^{-\Gamma} e^{-(E/E_c)^b}$$

Consistent with b=1

Pulsar search in an unidentified 3EG source: SNR CTA1 in radio, X, and γ -rays

Brazier et al, 1998 Hartman et al., 1999 (3EG) Slane et al., 2004 Halpern et al., 2004 SNR discovered in 1960 at 960 MHz Age $\sim (0.5 - 1) \times 10^4$ years Distance ~ 1.4 kpc Diameter $\sim 1.5^{\circ}$

- ROSAT image of SNR with pointsource
- XMM & Chandra show a PWN around the source $(L_{PWN} \sim 10^{35} - 10^{36} \text{ erg/s})$
- X-ray spectrum consistent with a NS
- unid EGRET source γ-ray energetics agree with PSR interpretation
- no radio (< 20 μJy kpc²) or optical (R>25) counterpart yet!

nowFERMI-LAT!10 days L&EO commissioning+10 days survey obs. (<Aug 22, 2008)</td>

P-P map of significances (χ^2) around strongest detection in `time differencing`search (Atwood et al., ApJ. 652, L49, 2006)

<u>Derived Parameters:</u> $\tau_{rot} = 1.4 \text{ x}10^4 \text{ years}, E_{rot} = 4.5 \text{ x} 10^{35} \text{ erg s}^{-1}, B_{surf} = 1.1 \text{ x} 10^{13} \text{ G}$

1.0

Pulse Phase

1.5

2.0

The γ flux from the CTA 1 pulsar corresponds to about 1-10% of \dot{E}_{rot} (depending on beam geometry)

N.B.: two rotations displayed

0.5

8.0

the classic EGRET 6

CTA 1

CTA 1 and the Gamma-Ray Pulsar discovered with Fermi-LAT

The Fermi-LAT Pulsar Legacy Burgeons

Matthew G. Baring on behalf of the Fermi LAT Collaboration

Fermi LAT Pulsar Discoveries

- AAS Press Conference (January 6, 2009) announcement of the Fermi-LAT discovery of
 - (a) 12 *new* pulsars found directly in the gamma-rays, and
 - (b) 17 additional pulsars seen for the first time as gamma-ray emitters.
- In the first 4 months of the mission, over 3 dozen pulsars detected!
 - confirmed 6 known EGRET pulsars (and several EGRET candidates);
 - Found 12 new young radio pulsars;
 - Found 13 young pulsars pulsing in Gamma-rays alone;
 - Found 7 'Millisecond' Gamma-ray pulsars.
- This harvest tells us many things:
 - A unique probe into the heart of the pulsar machine;
 - A new, less biased look at the fate of massive stars.

Fermi-LAT Disentangles Crowded Fields: PSR J1028-5819

COS-B flux 2.7x10⁻⁶ ph/cm2/s

Multiple source contributions

EGRET 3EG flux (6.6±0.7) x 10⁻⁷ ph/cm2/s

 Likely low energy contribution from nearby sources

LAT point source: integrated 0.1-30GeV flux:

• (1.62±0.27±0.32) x 10⁻⁷ ph/cm2/s

Shortly before launch of *Fermi*, PSR J1028-5819 discovered in radio search of EGRET error boxes *(Keith et al. 2008)*.

- *P* = 91.4 *m*s
- *dP/dt* = 1.61x10⁻¹⁴ sec/sec
- Characteristic age 9.21x10⁴ yr
- Spin-down power 8.43x10³⁵ erg/s

LAT point source is consistent with pulsar position. Pulsation detected with $6x10^{-28}$ *chance probability*.

PSR J1028-5819: Energy-Dependent Pulse Profiles

Light curve of PSR J1028-5819 in four energy bands as labeled, 25bins/rotation.

or *outer gap* models.

PSR J2021+3651: a Vela-like Pulsar

- 3EG J2021+3716 catalogued as a very bright EGRET source;
- Subsequent radio search revealed a Velalike pulsar (Roberts et al. 2002):
 - Period = 103.7 ms
 - Spin down power $\dot{E} = 3.38 \times 10^{36} \text{ ergs} \text{ s}^{-1}$
 - Characteristic age = 17 kyr
 - Large distance d=12 kpc due to dispersion measure: DM = 369.3 ± 0.3 pc cm⁻³.
- AGILE (Halpern et al. 2008) and the *Fermi*-LAT (Abdo et al. 2009) discovered gammaray pulsar independently.
- Two narrow peaks, separated by phase 0.468±0.002, with P1 offset from radio peak by phase 0.182±0.004.
- **Pulse asymmetry like Vela**: P1/P2 ratio decreases at higher energy.

PSR 2021+3651: Spectral Turnovers below 5 GeV are Exponential

- Integral energy flux 4.6 ± 0.7 x 10⁻¹⁰ ergs cm⁻² s⁻¹.
- Γ =1.5 ± 0.1 is power-law index, and E_c = 2.4 ± 0.3 ± 0.5 GeV is the cutoff energy.
- Super-exponential turnovers are excluded (b>1):
 - => majority of emission very near the stellar surface that is attenuated by magnetic pair creation is not possible.
 - This conclusion is true for both P1 and P2 peaks.
- Transparency to magnetic pair creation at and below 2 GeV also suggests moderate to high altitudes of emission.

Polar Cap Pair Creation Turnover Trends

Phase-Averaged LAT Spectrum for the Vela Pulsar

Abdo et al. (2009, in press)

7 *Fermi*-LAT (6 new) ms gamma-ray pulsars

- Very different characteristics from the normal gamma-ray pulsars:
 - Spinning 100 times faster
 - Magnetic fields
 ~10,000 times *lower*
 - ~10,000 times older
- "Recycled" pulsars spun-up by binary companion stars

First Fermi millisecond pulsar

PSR J0030+0451

- P = 4.56 ms
- Nearby: d = 317 pc
- Low spin-down power

 $\dot{E}_{sd} = 3.3 \times 10^{33} \,\mathrm{erg/s}$

- γ-ray and radio are not aligned
- X-ray and radio pulses nearly aligned
- (Abdo et al. 2009, ApJ submitted)

The Incipient Fermi Pulsar Legacy

- What the *Fermi*-LAT can do:
 - Find gamma-ray counterparts to known radio pulsars and discover previously unknown pulsars through blind searches;
 - Resolve crowded fields and provide much more sensitive phase-resolved spectroscopy;
- What *Fermi*-LAT has told us so far about pulsars:
 - Many young gamma-ray PSRs are radio-quiet or radioweak;
 - Peak phase separation is large, and exponential spectral turnovers in ~2-10 GeV range abound;
 - Young pulsars do not emit predominantly very near the stellar surface => slot-gap or outer gap scenarios;
 - Higher spin-down power millisecond PSRs commonly emit gamma-rays, probably in 47 Tuc too.