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Abstract:  

Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the 

most visible remains after massive stars, ending their lives, explode in core-collapse 

supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar 

located near the center of the compact synchrotron nebula inside the supernova remnant 

CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 

ms, a period derivative of 3.614 x 10-13  s s-1 . Its characteristic age of 104 years is 

comparable to that estimated for the SNR.  It is conjectured that most unidentified Galactic 

gamma ray sources associated with star-forming regions and SNRs are such young pulsars.  

_________________________________________________________________________ 

 

After the discovery of radio pulsars in the late 1960’s some clear SNR-pulsar associations 

were discovered, e.g. most notably the Crab and Vela systems. Observations in the radio, 

X-ray and gamma-ray bands with increasing sensitivity during the last 30 years have added 

many more SNR-pulsar associations. But we are still far from the complete census of these 

products of massive star deaths, which is needed to study a major population of stellar and 

Galactic astronomy. Here we report the discovery of a gamma-ray pulsar with spin period 

316 ms, coinciding with the previously known gamma-ray source 3EG J0010+7309, thus 

confirming the identification of the neutron star powering the PWN and the gamma-ray 

source. This pulsar detection implies that many of the yet-unidentified low latitude Galactic 

gamma-ray sources also could be pulsars. 
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A survey of radio sources conducted at 960 MHz with the Owens Valley Radio 

Observatory in the 1960’s discovered a previously uncataloged extended source (1), 

designated CTA 1, as the first object in Caltech’s catalogue A. Follow-up radio surveys (2-

7) with increased sensitivity and angular resolution showed that CTA 1 has the typical 

morphology of a shell-type SNR with an incomplete shell of filaments and extended 

emission from a broken shell roughly circular and about 90’ diameter (Fig. 1). The 

excitation of atomic lines in the shocked ISM with well-defined optical filaments (8) lends 

further support to the identification of CTA 1 as a young SNR in the Sedov phase of 

expansion.  The radio and X-ray characteristics of CTA 1 imply that it is 1.4±0.3 kpc away 

(6) and it exploded  5000 to 15000 years ago (6,10,11).   

 

Imaging and spectroscopy of CTA 1 with ROSAT (9) , ASCA (10) , XMM (11) , and 

CHANDRA (12) revealed a typical center-filled or composite SNR with a central point 

source, RXJ0007.0+7303, embedded in a compact nebula, and a jet-like extension (12). 

The offset of the X-ray source from the geometrical center of the SNR suggested that it has 

a transverse velocity (11) of  ~450 km s-1. The natural interpretation of these data is that of 

a young neutron star (NS), visible both in thermal surface and non-thermal magnetospheric 

emission (12), powering a synchrotron pulsar wind nebula (PWN). The thermal spectrum 

from the NS (11,12) is not easily interpreted: the temperature is too high and the required 

emission area is too small if the NS has no atmosphere. A particle-heated polar cap could 

be a possibility. Alternatively, if the NS has a light element atmosphere and cools through a 

direct URCA process, a cooling age of (1-2)×104 years is also possible (11). Although no 

signs of periodicity could be found in the X-ray data (11) the energetics of the PWN lead to 
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typical requirements for the time-averaged spin-down power of the putative pulsar of 1036 – 

1037 erg/s. Very deep searches (12) for a counterpart of the X-ray source in radio and 

optical wavebands resulted only in upper limits. If RX J0007.0+7303 is indeed a radio 

pulsar, its radio luminosity is an order of magnitude below the faintest radio pulsars known 

(12). It is likely that the radio beam does not intersect the Earth. 

 

High-energy emission (>100 MeV) from the EGRET source 3EG J0010+7309 matches RX 

J0007.0+7303 spatially although the EGRET position uncertainty is very large (13). The 

position derived from EGRET photons above 1 GeV (14) at l,b = 119.87, 10.52 with an 

error radius of 11 arcmin (95% confidence) overlaps even better with the ROSAT source. It 

has thus been suggested that the 3EG source is an unresolved source in CTA 1 (e.g. 14), or, 

more generally, that several unidentified gamma-ray sources are associated with SNRs (e.g. 

15).  Confirmation of such SNR associations based on imaging was however not possible 

with the EGRET angular resolution. The CTA 1 gamma-ray source shows all indications of 

being a young pulsar: the gamma-ray flux was constant through the epochs of EGRET 

observations (1991-95) and the spectrum showed a hard power law with an index of 

-1.6±0.2 and a spectral steepening above ~2 GeV (14), which is similar to other EGRET 

pulsars like Geminga and Vela. For an assumed pulsar beam of 1 sr, and taking into 

account the uncertainty in distance, the observed gamma-ray flux corresponds to a 

luminosity of  (4±2)×1033 erg/s, well within the range of the luminosities of Geminga 

(9×1032 erg/s, P~237ms ) and Crab (4×1034 erg/s, P~33ms).  
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On 11 June 2008, the Fermi Gamma-ray Space Telescope was launched into a low earth 

orbit (16). The imaging gamma-ray telescope LAT (Large Area Telescope), Fermi’s main 

instrument, covers the energy range from 20 MeV up to greater than 300 GeV with a 

sensitivity that exceeds that of EGRET.  The first exposures of the region of CTA 1 were 

made during the commissioning phase of Fermi LAT (30 June to 30 July 2008) and in the 

initial days (5-20 August 2008) of routine operations. Although the telescope was not yet 

fully tuned and calibrated during commissioning, more than 900 gamma-ray photons above 

100 MeV from 3EG J0010+7309 were recorded during these exposures (31), which 

amounts to about 2.6 times the number collected with EGRET from this source over its 

entire mission.   

A bright gamma-ray source is detected at l,b = 119°.652, 10°.468 with a 95% (statistical) 

error circle radius of 0°.038 (a systematic error of about 0°.02 is not included).  Fig. 1 

shows the LAT source and the X-ray source RX J00070+7302, which is located central to 

the PWN, superimposed on the radio map at 1420 MHz (7). These fall on the edge of 3EG 

J0010+7309 (l,b = 119.92, 10.54) and its 95% error circle of radius 0.24°. The measured 

flux of the LAT source is (3.8±0.2)×10-7 ph (>100 MeV) cm-2 s-1, with an additional 

systematic uncertainty of 30% owing to the ongoing calibration of the instrument, which is 

consistent with the EGRET measured flux of  (4.2±0.5) x 10-7 ph cm-2 s-1 (13).   
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Fig. 1: The Fermi LAT gamma-ray source, the central PWN X-ray source, and the 

corresponding EGRET source superimposed on a 1420 MHz map (7) of CTA 1.  

The LAT source and its 95% error region (small red circle) is displayed on the map 

together with the central PWN source RX J00070+7302 (cross) and the position and error 

of the corresponding EGRET source 3EG J0010+7309 (large blue circle). The coincidence 

of the pulsed gamma-ray source and the X-ray point source embedded in the off-center 

PWN is striking. The offset of the pulsar from the center of the radio SNR, which is 

thought to be the place of origin, is quite visible. The inferred transverse speed of the pulsar 

is ~450 km/s, which is a reasonable speed of a pulsar (20). 

_____________________________________________________________________ 
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The arrival times of the LAT photons, which are recorded with 300 ns accuracy and 

referenced to the Fermi satellite GPS clock, were corrected to the solar-system barycenter 

(SSB) using the JPL DE405 solar system ephemeris and the Chandra X-ray position (see 

table 1). Photons with energy greater than 100 MeV were selected within a radius of 1° 

around the source position and searched for periodicity. The results described here are not 

changed significantly if photons within selection radii between 0.7° and 2.5° are used. 

Application of a new search technique based on photon arrival time differencing (17), 

which is highly efficient for sparse photon data, and refining and fitting the detections with 

the pulsar analysis packages PRESTO (18) and Tempo2 (19) resulted in the detection of 

significant pulsations in the selected photons (31). Fig. S1 in the supporting online material 

shows that the pulsations are significantly present over the complete time interval of 

observation. The pulsar rotational ephemeris is given in table 1. 

 

Frequency (Hz) 3.165922467(9)

Frequency derivative (s-2) -3.623(4) ×10-12

Period (ms) 315.8637050(9)

Period derivative (s s-1) 3.615(4) ×10-13 

Epoch (MJD (TDB)) 54647.440 938 

R.A. (J2000.0) 00h 07m 01s.56 

DEC. (J2000.0) +73° 03´ 08´´.1 

Galactic longitude 119°.65947(3) 

Galactic latitude +10°.463348(3) 

Tab. 1: Rotational ephemeris for the pulsar in CTA 1. The numbers in parentheses indicate 

the error in the last decimal digit.  For the SSB correction the position of the Chandra X-

ray source (12) was assumed. 
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Extracting photons around the Vela pulsar from the same set of observations and applying 

the same analysis procedures, the rotational ephemeris for the Vela pulsar was found to be 

in good agreement with the values obtained by the LAT radio pulsar timing collaboration 

(30). 

 

A contour plot of period-period derivative search space reveals the pulsar (Fig. 2) as does 

the resulting gamma-ray light- curve above 100 MeV (Fig. 3).   

 

Fig. 2: Contours of detection significance over a range of  period and period derivative 

using photons within a radius of 1° around RXJ0007.0+7303. The initial indication of a 

signal in this  region was found with a novel search technique using photon arrival 

time differencing (17)

PP &,

 , while the determination of the exact ephemeris makes use of the 

tools PRESTO and Tempo2 (18, 19) 
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Fig. 3: Gamma-ray (>100 MeV) light-curve of  the pulsar in CTA 1 shown over two 

periods of rotation with a resolution of 32 phase bins per period (corresponding to ~10 

ms/bin). The two maxima in the broad emission feature each have a FWHM of ~0.12 and 

are separated by about 0.2 in phase. Overall, the LAT pulsar light-curve is similar to the 

gamma-ray light-curve of the EGRET pulsar PSR B1706-44 (21). 

_____________________________________________________________________ 
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A neutron star with a moment of inertia of I =1.0 ×1045 g cm2 and angular frequency ω  is 

assumed to lose its rotational energy through magnetic dipole radiation and follow a 

braking law of  . This can be integrated to yield the characteristic age 3ωω −∝& ωωτ &2=

I=

, 

which is a coarse estimate of the true age of a pulsar. The spin-down power  

and the dipole magnetic field strength, 

ωω &&Erot

PPB &19102.3 ×= G, also follow from the 

parameters of rotation.   

 

For the CTA 1 pulsar we derive a characteristic age of ~1.4×104 years, a spin-down power 

of ~4.5×1035 erg s-1, and a surface magnetic field strength of 1.1×1013 G.  This field 

strength is higher than any of the EGRET detected pulsars and second highest among 

known gamma-ray pulsars. PSR J1509-58 with an inferred field of 1.54×1013 G shows 

emission only up to ~30MeV, while emission from the CTA 1 pulsar is present to at least 5 

GeV. 

We searched archival data of exposures by XMM, ASCA, Chandra, and EGRET for periods 

near that extrapolated from the LAT ephemeris. The pulsar was not significantly detected in 

these data (22). 

 

The new pulsar in CTA 1 exhibits all the characteristics of a young high-energy pulsar, 

which powers a synchrotron pulsar wind nebula embedded in a larger SNR. The spin-down 

power of the CTA 1 pulsar of ~4.5×1035 erg s-1 is sufficient to supply the PWN with 

magnetic fields and energetic electrons at the required rate of 1035-1036 erg s-1 (11) and the 

pulsar age is consistent with the inferred age for the SNR. The Crab pulsar with its spin-
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down power of ~4.5×1038 erg s-1 supplies the Crab nebula with its requirement of ~1038 erg 

s-1 with a similar efficiency (23). Comparing the total luminosity from the CTA 1 pulsar 

inferred from the LAT flux measured for 3EG J0010+7309 to the pulsar spin-down power, 

we estimate an efficiency of converting spin-down power into pulsed gamma rays that is 

about 1%, if the emission is beamed into a solid angle of 1 sr. The Vela pulsar, which is of 

similar age, has a gamma-ray efficiency of 0.1%; however PSR B1706-44 (21) with an age 

of 1.7×104 years has an efficiency of 1.9%, and the much older Geminga pulsar (3.4×105 

years) converts its spin-down into energetic gamma-rays with an efficiency of about 3%.   

 

The gamma-ray characteristics and the absence of a radio signal (12) from the CTA 1 

pulsar is suggestive of the family of outer-gap or slot-gap model descriptions for energetic 

pulsars (24, 25, 26).  These outer-magnetosphere models naturally generate gamma-ray 

emission over a broad range of phase, with superposed sharp peaks resulting from caustics 

in the pattern of the emitted radiation.  Since the emission is predicted to cover such a large 

area of the sky (>> 1 sr) in such models, the total radiated luminosity as inferred from the 

observed pulsed flux could result in an efficiency as high as 10%, depending on the 

magnetic inclination angle.  The absence of the radio signal is readily explained by 

misalignment of a narrow radio beam and our line of sight. Both conditions can be met if 

we see the pulsar at a large angle with respect to the spin and magnetic field axes, but only 

a detailed model can quantify the viewing geometry of the CTA 1 pulsar.  Spectral cut-offs 

at energies of 1-10 GeV, that would be indicative of a polar cap mechanism with 

attenuation of outgoing photons via magnetic pair creation (27) or curvature radiation-

reaction limited acceleration in an outer gap (28) are not yet discernible.  
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Our detection of a new gamma-ray pulsar during the initial operation of the Fermi LAT 

implies that there may be many gamma-ray-loud but X-ray- and radio-quiet pulsars. 

Although 3EG J0010+7309 was long suspected to be a gamma-ray pulsar because of its 

clear association with a SNR at about 10° Galactic latitude, it is also fairly typical of many 

unidentified EGRET sources. If the radio remnant CTA 1 were located at low Galactic 

latitudes it could have been more difficult to recognize because of the higher and structured 

radio background of the Galactic disk. About 75% of the low Galactic latitude EGRET 

sources (|b|<10°, about 100 objects in the 3EG catalog and CTA 1 just on the edge of this 

region) are still unidentified, although several are associated with SNRs.  

The unidentified low Galactic latitude EGRET sources represent the closer and brighter 

objects of a Galaxy wide population of gamma-ray sources. EGRET was not sensitive 

enough to discern the more distant sources, which blurred into the diffuse Galactic 

emission. A model Galactic population conforming to the EGRET measurements (29), 

distributed in galacto-centric distance and height above the disk, yields several thousand 

sources, of typical >100MeV luminosities in the range 6×1034 - 4×1035 erg/s. The CTA 1 

pulsar with an isotropic luminosity above 100 MeV of ~6×1034 erg/s falls in the range 

required for these sources. The CTA 1 pulsar detection implies that gamma-loud but radio 

and X-ray faint pulsars are likely to be detectable in a fair fraction of the remnants of 

massive star deaths. Topics as diverse as the SN rate in the Galaxy, the development of 

young (including historical) SNRs and the physics of pulsar emission can then be studied.  
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Supporting Online Material (to be stored in a public web-site) 

 

Fig. S1: Photon density (grey scale) as a function of pulsar phase and   

epoch of observations. The origin of the time axis is 2008-06-30   

09:40:35. The right subplot show how the significance of the detection   

(represented as the reduced chi^2) increases with time. The two time   

periods with the strongest detection (beginning at 1.2E6 and 2.2E6   
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seconds into the observation) are the result of increased time on   

source during 3-axis pointed observations that were part of the Fermi   

Launch & Early Operations testing.  The rest of the data were taken in   

the nominal sky survey mode. 


