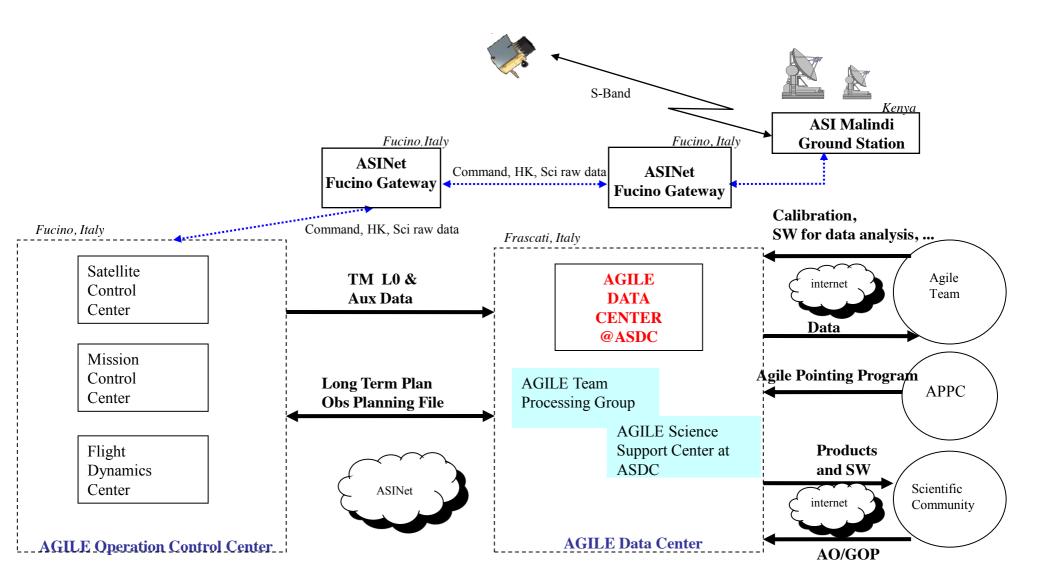

The AGILE Data Center and the First AGILE Catalog

Carlotta Pittori, on behalf of the ADC

7th Agile Meeting & The Bright Gamma-Ray Sky Frascati, 29 September - 1 October, 2009

PSLV



Malindi Ground Station

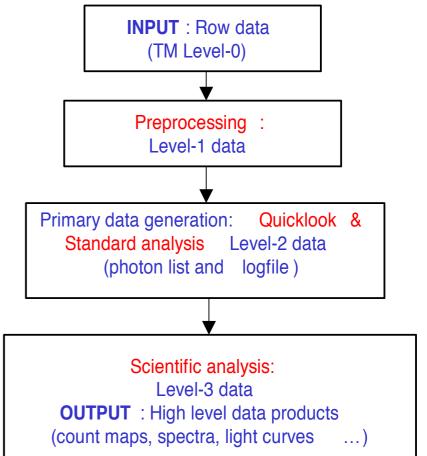
AGILE Mission Operations Center (Fucino)

ASI Science Data Center

AGILE GS Architecture



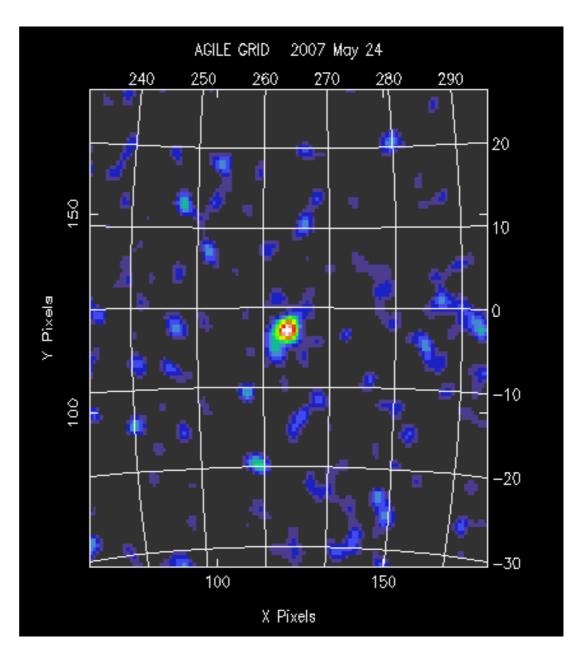
The AGILE Data Center at ASDC – ESRIN


• The ADC, based at ASDC-ESRIN, is in charge of all the scientific oriented activities related to the analysis and archiving of AGILE data:

From scientific telemetry (TM) Level-0:

- ✓ Preprocessing \rightarrow Level-1 data
- Quick-Look Analysis (transient detection)

- Scientific analysis (source detection, diffuse gamma-ray background)
- Archiving and distributing all scientific
 AGILE data


Summary of ASDC activities for AGILE: (from Agile Science Management Plan)

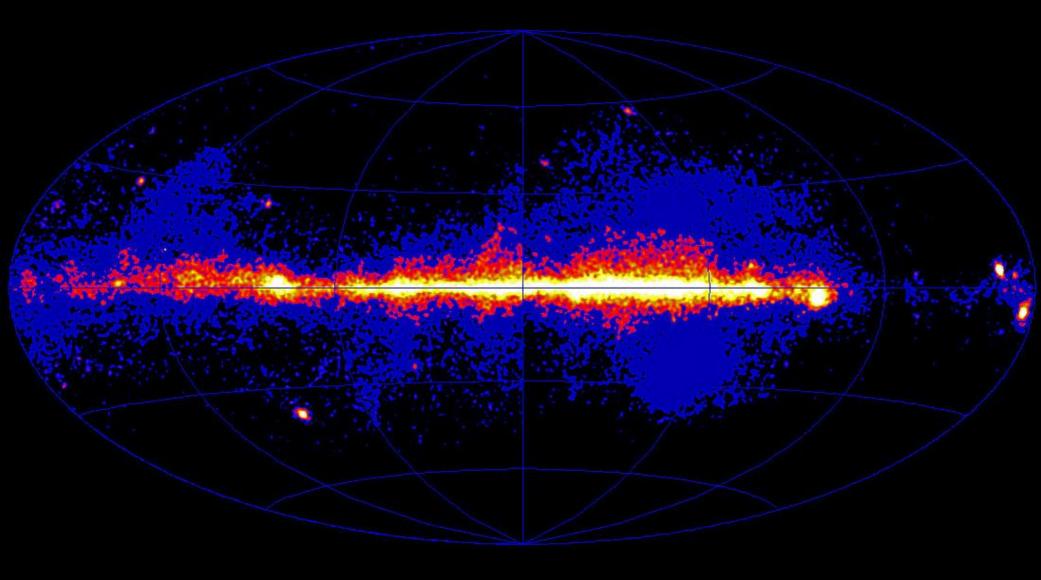
- Running the Quick Look Analysis
- Running the standard data reduction Analysis
- Performing, when necessary, the Interactive data Analysis
- Managing Announcement of Opportunities
- Contributing to the management of the AGILE Pointing Program
- Archiving all the data (raw, cleaned and calibrated, scientific)
- **Distributing** the data to the scientific community
- Providing scientific support to the users community
- Officially interface the project for both data and proposals via dedicated web pages
- Providing the standard software support for the data analysis

First AGILE GRID light ADC 24/5/2007

Commissioning Phase: AGILE Vela PSR Count Map

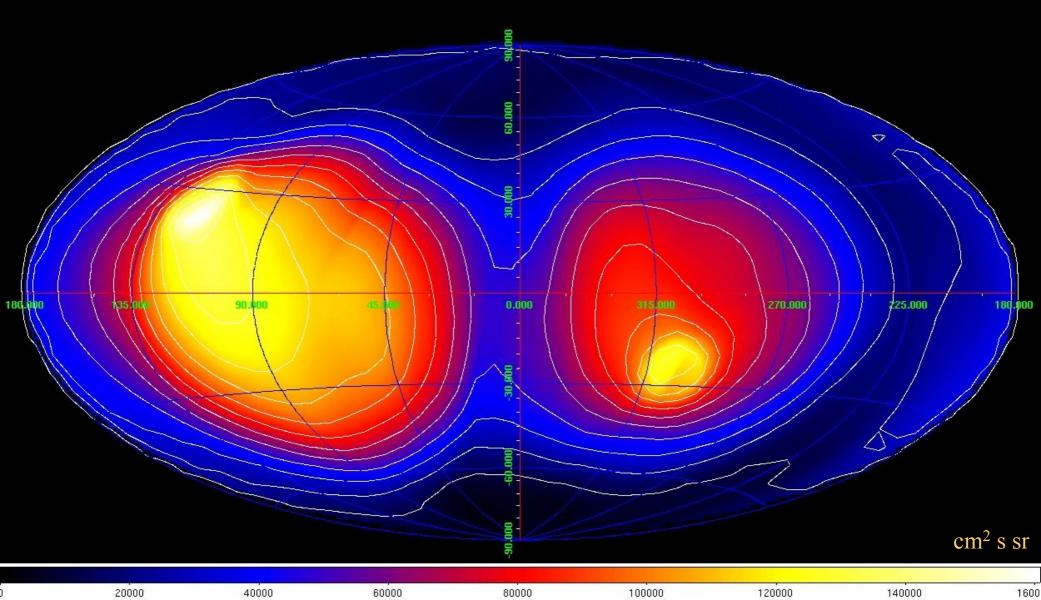
(~ 20000 s)

AGILE: ~ 2.4 years in orbit

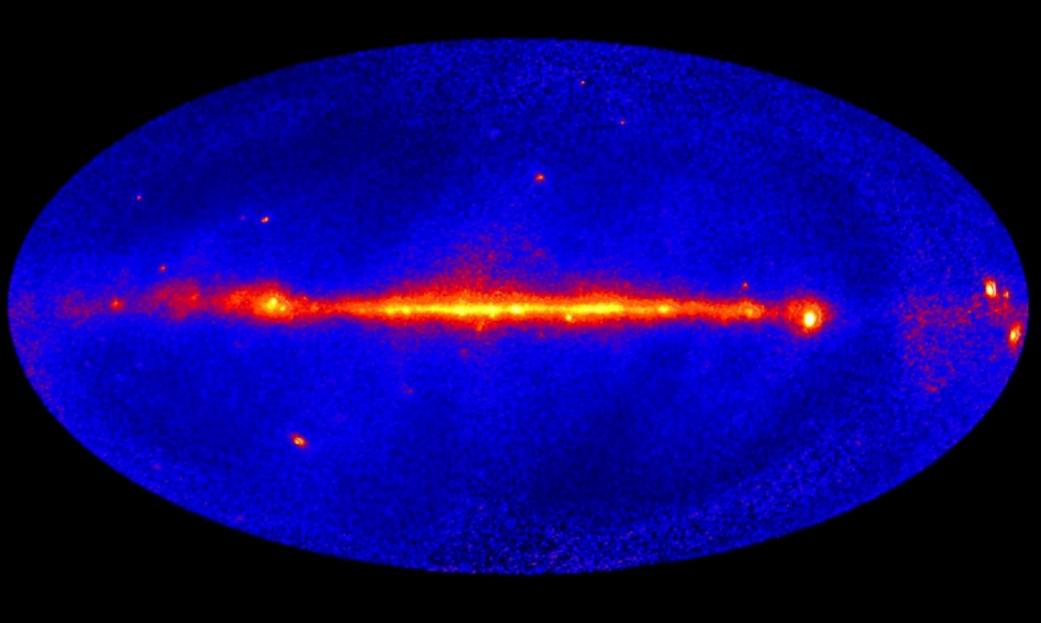

• AGILE demonstrates for the first time the covering of ~ 1/5 of the entire gamma-ray sky (FoV ~ 2.5 sr) with excellent angular resolution and competitive sensitivity.

• AGILE shows for the first time an optimal performance of its gamma-ray and hard X-ray imagers.

- > 12550 orbits, September 28, 2009 (~ 94% Fine Pointings)
- Very good scientific performance, especially at ~ 100 MeV


Guest Observer Program open to the scientific community: Cycle-1 completed, Dec. 1, 2007 – Nov. 30, 2008
Cycle-2: on-going, Dec. 1, 2008 – Nov 30, 2009

AGILE 1 year COUNT MAP (July 2007- June 2008)



AGILE 2-years EXPOSURE MAP

(July 2007- March 2009)

AGILE 2.4 years INTENSITY MAP

First AGILE Catalog: data analysis

AGILE pointings: predefined long exposures (10 - 30 days) drifting of about 1 degree per day with respect to the starting boresight direction to match solar panels constraints.

For the first AGILE catalog we adopted a **conservative analysis**, with a high-quality gamma event filter (filter F4 with relatively low effective area), optimized to select gamma-ray events within the central zone of the Field of View (radius of 30 degrees).

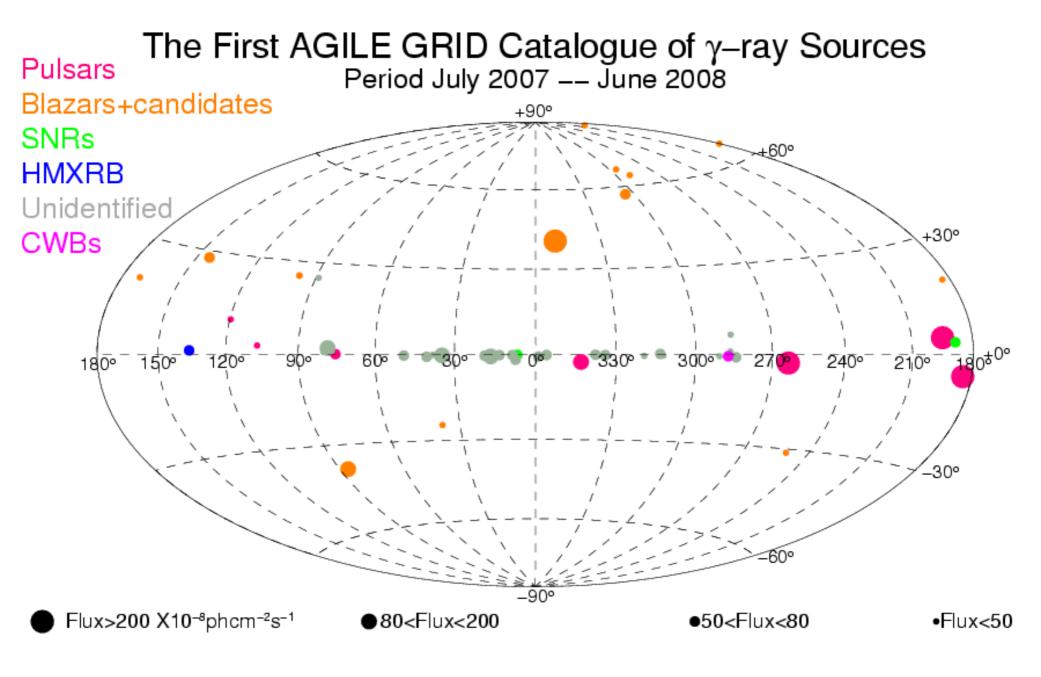
Merge of the entire "cleaned" dataset with healpix sky pixellisation.

AGILE source detection methods use a Maximum Likelihood (ML) analysis to derive the best parameters estimate for candidate sources, such as source significance, flux, and location.

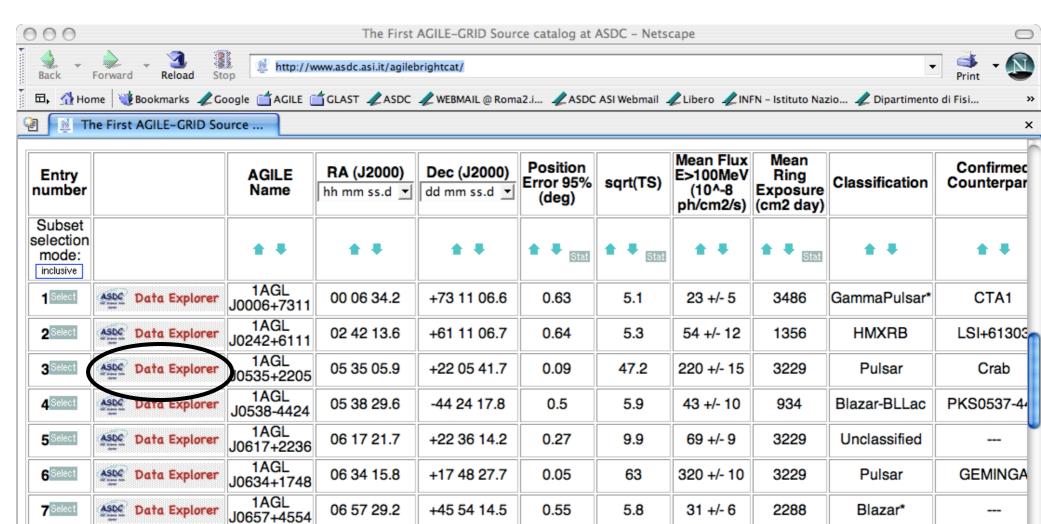
High confidence detection:

- two independent automatic source detection strategies in cross-correlation
- statistical significance above 4 sigma
- manual refined analysis performed with a multi source likelihood analysis task

\Rightarrow 47 validated, high confidence AGILE sources


First AGILE Catalog of High Confidence Gamma-Ray Sources

• **First year of scientific operations:** observations from July 9, 2007 to June 30, 2008


47 high confidence sources E> 100 MeV:

- 21 confirmed and candidate Pulsars,
- 13 Blazars (7FSRQ, 4BL Lacs, 2 unknown type),
- 2 possible HMXRBs,
- 2 possible SNRs,
- 1 Colliding-wind Binary System (Eta-Car)
- 8 Unidentified sources.

Interactive on-line version of the the First AGILE-GRID Catalog from ADC web page http://agile.asdc.asi.it/

C. Pittori et al., 2009, to appear in A&A - arXiv:0902.2959

🐝 🕮 🧍 🏏 🖾

ASDC Data Explorer

ASDC Data Explorer

ASDC Data Explorer

ASDC Data Explorer

8 Select

9 Select

10 Select

11 Select

1AGL

J0714+3340 1AGL

J0722+7125 1AGL

J0835-4509 1AGL

J1022-5822

07 14 29.4

07 22 22.9

08 35 13.3

10 22 08.8

+33 40 37.3

+71 25 31.1

-45 09 09.0

-58 22 17.0

0.85

0.37

0.09

0.36

4.2

10.9

41.7

10.1

18 +/- 5

68 +/- 9

780 +/- 32

59 +/- 7

2978

1614

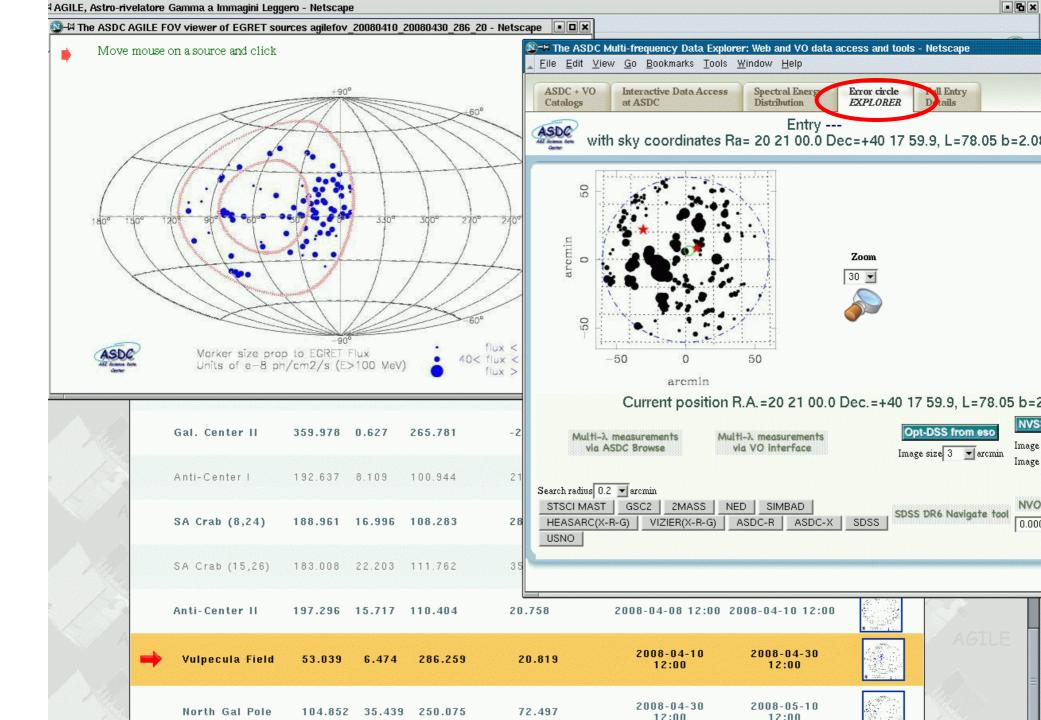
933

5616

Blazar*

Blazar-BLLac

Pulsar


Unclassified

) + +

S50716+71

VelaPSR

Remarks on AGILE First Catalog :

• The AGILE First Catalog includes only high-significance sources characterized by a prominent mean gamma-ray flux above 100 MeV when integrated over the total exposure period 2007 July - 2008 June and it is not a complete sample due to the non-uniform first year sky coverage.

• The AGILE-GRID spatial resolution reached with long exposures is substantially better than that of EGRET, and the total exposure accumulated by AGILE in several sky regions during the first year, particularly near the Galactic plane, is comparable with that obtained by EGRET in 6 years effective time.

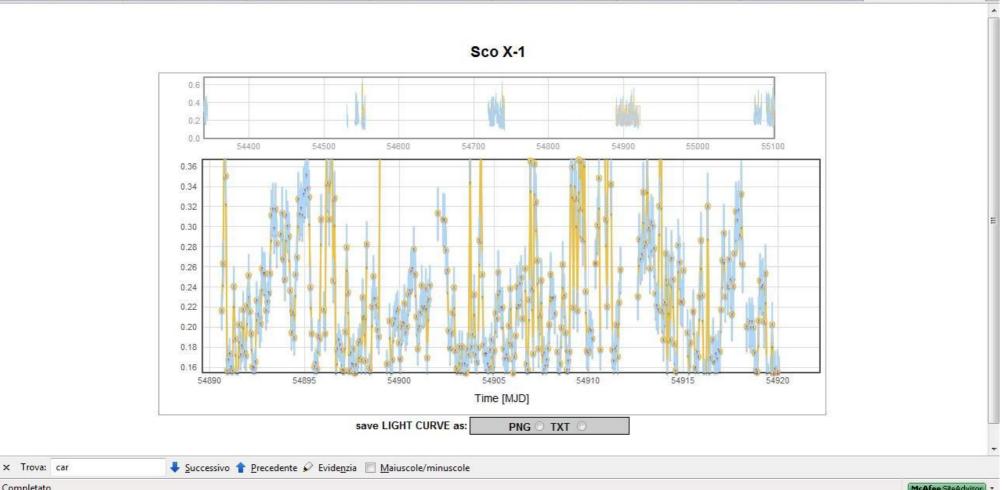
• Cat-1 exposure mostly in the Carina-Crux and in the Cygnus regions, with relatively low exposure at the Galactic center. This explains the relatively small number of sources in the Galactic center region included in this First Catalog.

• With the one-year long integration time scale only sources with "steady" flux values above ~ 20 10⁻⁸ ph cm⁻² s⁻¹ are detected over 4 sigma. Source detections during flaring state and determination of peak fluxes are not included in this Catalog and will be the subject of a forthcoming publication.

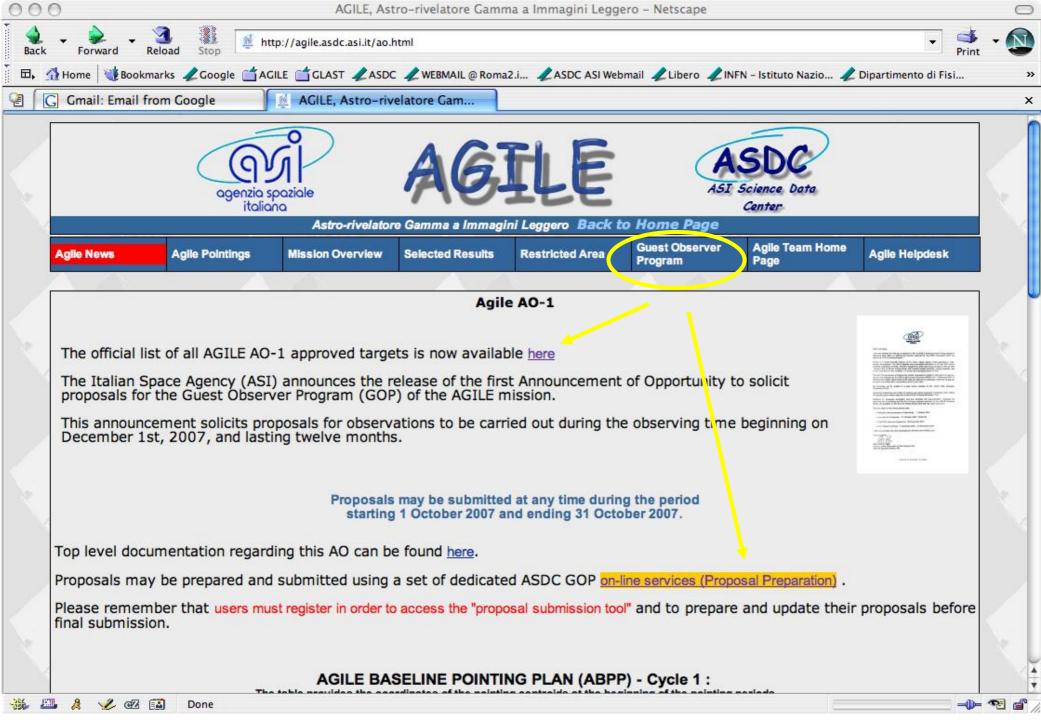
• This should be taken into account when comparing with the results of the Third EGRET Catalog which includes detections over 4 sigma in each of the EGRET viewing periods during its effective 6-year lifetime.

• A variability study of the sources of the First AGILE Catalog over different timescales is in progress (F. Verrecchia et al. 2009).

The X-ray imager SuperAGILE: public source list from interactive pages at ADC:


http://agile.asdc.asi.it/

						GILE Source Webpage updated twice a d					
ilable parameters me gra gdec gdat gexposure gorbi GO	eobs_flux_ferr_flux_	*				NOTE for the proper user of	o <mark>f the data contained on</mark>	this Webpage			Resot TX
Entry number		Light Curve	Target Name	RA (J2000)	Dec (J2000) dd mm ss.d 👻	Latest Observation Time	Flux (cts cm [^] -2 s [^] -1)	Flux error (cts cm^-2 s^-1)	Detection Significance	Exposure (sec)	Orbit number
Subset selection mode: inclusive							1 4 801	• • 553		* * 801	
1 Secol	ASSE Data Explorer	Show	4U 1700-377	17 03 56.8	-37 50 38.4	2009-09-27T16:38:25	0.03	0.0069	4.68	3541	012539
2	ASOC Data Explored	Snow	Ginga 1826-24	18 29 28.0	-23 47 49.2	2009-09-27T16:38:25	0.017	0.0042	4.17	3429	012539
350001	Asso: Data explorer	Show	Sco X-1	16 19 54.9	-15 38 24.0	2009-09-27T16:38:25	0.444	0.0378	34.19	3429	012539
4	Aso: Data Explorer	Show	HETE J1900.1-2455	19 00 08.6	-24 55 12.0	2009-09-27T14:56:15	0.018	0.0042	4.46	3601	012538
<mark>5</mark> 80m1	ASSOC Data Explorer	Show	GX 17+2	18 16 01.4	-14 02 09.5	2009-09-27T14:56:15	0.014	0.0033	4.31	3569	012538
6 00001	4500 Data Explorer	Show	GX 9+1	18 01 32.3	-20 31 44.3	2009-09-27T11:32:14	0.02	0.0045	4.66	3883	012536
7 80001	ASSOC Data Explorer	Show	GRS 1758-258	18 01 12.2	-25 44 34.7	2009-09-27T09:50:19	0.02	0.0042	5.26	3997	012535
8	Asso: Data Explorer	Show	SWIFT J1753.5-0127	17 53 28.3	-01 27 07.1	2009-09-27T06:26:13	0.026	0.0062	4.42	3917	012533
950001	Asoc Data Explorer	Show	4U 1820-303	18 23 40.5	-30 21 39.6	2009-09-26T13:26:14	0.014	0.0036	4.02	3769	012523
10	ASSOC Data Explorer	Show	GX 5-1	18 01 08.1	-25 04 44.4	2009-09-25T05:07:47	0.022	0.0033	7.61	3627	012504


46 X-ray validated sources up to now (18-60 keV)

SuperAGILE detected sources and public light

CUIVES (webpage updated twice a day)

Completato

AGILE AO1: completed

- **Submitted proposals: 29**
- **Approved/P. Approved: 24**
- **Requested Targets: 122**
- **Approved Targets: 100**
- Pulsars: 39
- **AGN: 31**
- **3EG sources: 30**

Cycle-1 GOP Schedule

- SW build GO 1.0 + test dataset: *released on May 22, 2008*
- Cycle-1 data distribution:
- first delivery (17 OBs) on June 5, 2008
- second delivery (3 OB) on July 17, 2008
- last complete data release on Dec 23, 2008

AGILE AO2:

- Submitted/Approved proposals: 15
- 14 PI, 74 co-PI
- **Requested/Approved Targets: 93**
- Pulsars: 21
- AGN: 62
- 3EG sources: 10

AGILE SW & AO2 Data Distribution Schedule

- First public SW build + test dataset: *delivered on May 22, 2009*
- New SW release (4.0) ready: will be delivered on October 6, 2009
- AO2 (+ AO1 reprocessed) GO data packets ready: will be delivered on October 6, 2009

Agile AO2 Approved Targe Modifica Visualizza O			menti ?							
		an a								I from t
Ger C	🏠 🤇 😻 htt	p://agile.asdc	asi.it:8080/pi	roposalAO2_v	iew.php					G • Google
🧕 Più visitati 🌪 Come	iniziare 🚮 Ult	ime notizie 🧧	Tangenzia	li - Infotrafic.	🎯 oo	TO Tele	ematics - m 🎽 A	GILE, Astro-ri	velatore 🎽 ASDC	
¶ Gmail - Paper SA su A&A	: r × 🔯 /	AGILE, Astro-r	ivelatore Gan	n × 🛛 💆 /	AGILE, As	tro-rivela	atore Gam ×	AGILE, Astr	o-rivelatore Gam ×	🛛 🔆 Agile AO2 Approved Targ × 🛛 W Screenshot - Wikipedia
egenda					Α	aile	AO2 Appro	ved Ta	raets	
						3				
Jump to page bottom										
proved Targets Show as	PDF in a new w	indow								
Target Name	RA (J2000)	Dec (J2000)	RA (J2000)	Dec (J2000)	1	b	PI Name	Proposal ID	TargetClass	Title
ê 🔺	2				2	2	2 🔺	2	P 🔺	
3EG J0010+7309	0h 9m 36.72s	73 10' 58.80"	2.403	73.183	119.870	10.560	Diego Torres	57	3EG Sources	AGILE GRID observations of Unidenti ed EGRET sources likely related to superno
JVAS J0010+1724	0h 10m 34.7s	17 24' 18.00"	2.642	17.405	109.233	-44.377	Stefano Vercellone	49	Active Galactic Nuclei	Study of the gamma-ray properties of a sample of high-energy blazar candidate
J0030+0451	0h 30m 27.35s	4 51' 39.59"	7.614	4.861	113.141	-57.611	Andrea Possenti	52	Pulsars	Investigating the gamma-ray properties of a sample of northern radio pulsars
GC 0109+224	1h 12m 5.76s	22 44' 38.39"	18.024	22.744	129.142	-39.879	Alessandro Paggi	55	Active Galactic Nuclei	SSC: the end of the tether?
J0205+6449	2h 5m 37.92s	64 49' 44.39"	31.408	64.829	130.719	3.085	Andrea Possenti	52	Pulsars	Investigating the gamma-ray properties of a sample of northern radio pulsars
PKS 0208-512	2h 10m 46.31s	-51 1' 1.20"	32.693	-51.017	276.101	-61.778	Elena Pian	45	Active Galactic Nuclei	Multiwavelength Variability of Gamma-Ray-Loud Blazars
HB89 0212+735	2h 17m 30.72s	73 49' 33.59"	34.378	73.826	128.927	11.964	Filippo D'Ammando	56	Active Galactic Nuclei	AGILE observation of 4 high-redshift MeV blazars
J0218+4232	2h 18m 6.24s	42 32' 16.79"	34.526	42.538	139.508	-17.527	Andrea Possenti	52	Pulsars	Investigating the gamma-ray properties of a sample of northern radio pulsars
3C 66A	2h 22m 40.8s	43 2' 9.60"	35.667	43.036	140.144	-16.766	Elena Pian	45	Active Galactic Nuclei	Multiwavelength Variability of Gamma-Ray-Loud Blazars
RBS 0315	2h 25m 4.55s	18 46' 48.00"	36.269	18.780	151.786	-38.789	Filippo D'Ammando	56	Active Galactic Nuclei	AGILE observation of 4 high-redshift MeV blazars
1ES 0229+200	2h 32m 48.72s	20 17' 16.80"	38.203	20.288	152.942	-36.607	Alessandro Paggi	55	Active Galactic Nuclei	i SSC: the end of the tether?
AO 0235+164	2h 38m 38.87s	16 36' 57.59"	39.662	16.616	156.771	-39.110	Alessandro Paggi	55	Active Galactic Nuclei	SSC: the end of the tether?
NGC 1358	3h 33m 38.39s	-5 5' 23.99"	53.410	-5.090	190.589	-45.564	Francesco Longo	54	Active Galactic Nuclei	Search for gamma-ray emission from UHECR candidate sources
BEG J0348+3510 (Per OB2)	3h 48m 0.0s	35 12' 0.00"	57.000	35.200	159.031	-15.014	Elena Orlando	58	3EG Sources	Search for gamma-ray emission from star-forming regions
PSR J0358+5413	3h 58m 53.75s	54 13' 11.99"	59.724	54.220	148.190	0.811	Teresa Mineo	48	Pulsars	AGILE-GRID observation of Radio Pulsars
WMAP3 J0403-3604	4h 3m 52.79s	-36 4' 47.99"	60.970	-36.080	237.737	-48.486	Carlotta Pittori	59	Active Galactic Nuclei	Blazar duty cycle from the microwave to gamma-ray slope
WMAP3 J0423-0120	4h 23m 14.40s	-1 20' 24.00"	65.810	-1.340	195.284	-33.144	Carlotta Pittori	59	Active Galactic Nuclei	Blazar duty cycle from the microwave to gamma-ray slope
PKS 0422+004	4h 24m 46.79s	0 36' 7.19"	66.195	0.602	193.586	-31.777	Alessandro Paggi	55	Active Galactic Nuclei	SSC: the end of the tether?
PKS 0521-365	5h 22m 58.8s	-36 27' 32.40"	80.742	-36.459	240.608	-32.716	Elena Pian	45	Active Galactic Nuclei	Multiwavelength Variability of Gamma-Ray-Loud Blazars
J0538+2817	5h 38m 24.95s	28 17' 9.60"	84.604	28.286	179.718	-1.686	Andrea Possenti	52	Pulsars	Investigating the gamma-ray properties of a sample of northern radio pulsars
PKS 0537-441	5h 38m 49.91s	-44 5' 9.59"	84.708	-44.086	250.083	-31.091	Elena Pian	45	Active Galactic Nuclei	i Multiwavelength Variability of Gamma-Ray-Loud Blazars
PKS 0537-286	5h 39m 54.23s	-28 39' 57.60"	84.976	-28.666	232.940	-27.293	Filippo D'Ammando	56	Active Galactic Nuclei	AGILE observation of 4 high-redshift MeV blazars
3EG J0542+2610	5h 42m 0.0s	26 0' 0.00"	85.500	26.000	182.081	-2.222	Diego Torres	57	3EG Sources	AGILE GRID observations of Unidenti ed EGRET sources likely related to superno
PKS 0548-322	5h 50m 40.80s	-32 16' 19.19"	87.670	-32.272	237.566	-26.144	Alessandro Paggi	55	Active Galactic Nuclei	SSC: the end of the tether?
PSR J0614+2229	6h 14m 17.28s	22 30' 36.00"	93.572	22.510	188.786	2.400	Teresa Mineo	48	Pulsars	AGILE-GRID observation of Radio Pulsars
3EG J0631+0642	6h 31m 39 36s	C 441 42 00"	97 914	6.695	204 720	4 220	Diego Torres	57	3EG Sources	AGILE GRID observations of Unidenti ed EGRET sources likely related to superno

Completato

* 10 Agile AO2 Approv...
The AGILE Works...

AGILE Public Data Distribution

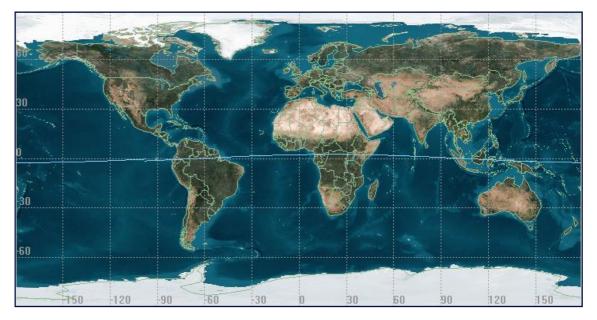
Publication of Cycle-1 data:

- First public delivery (17 OBs): June 5, 2009
- Second public delivery (3 OBs): July 17, 2009
- Publication of a reprocessed Cycle-1 (20 OB) dataset: October, 2009
- Complete Cycle-1 public data release: Dec 23, 2009

ANNOUNCE:

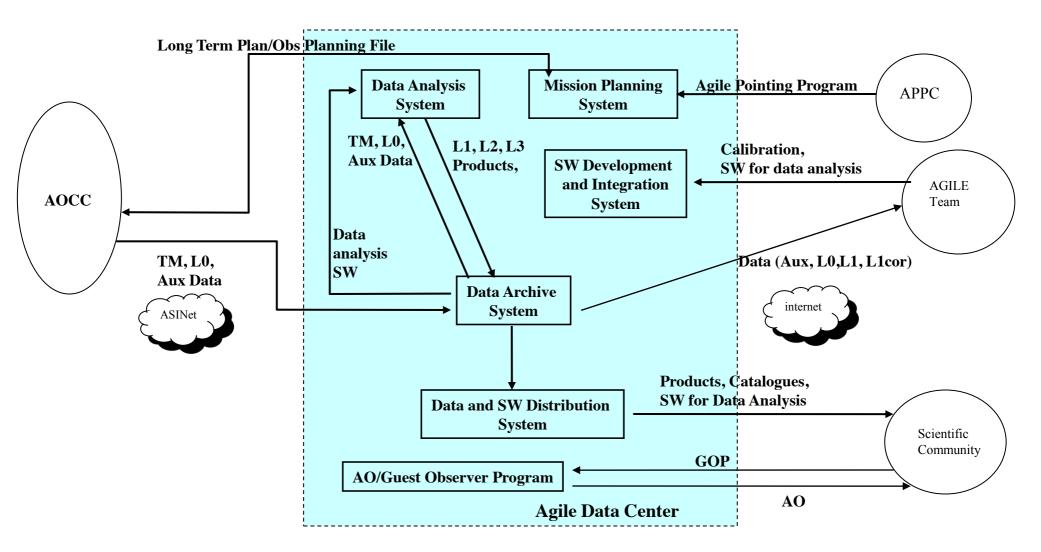
We offer the possibility of a tutorial on AGILE data analysis with the new SW packet (delivery 4.0). There will be two parallel tutorial sessions of 1 hour each: today and tomorrow at 14h30. **Interested participants should sign-up at the secretary desk.**

THANK YOU!

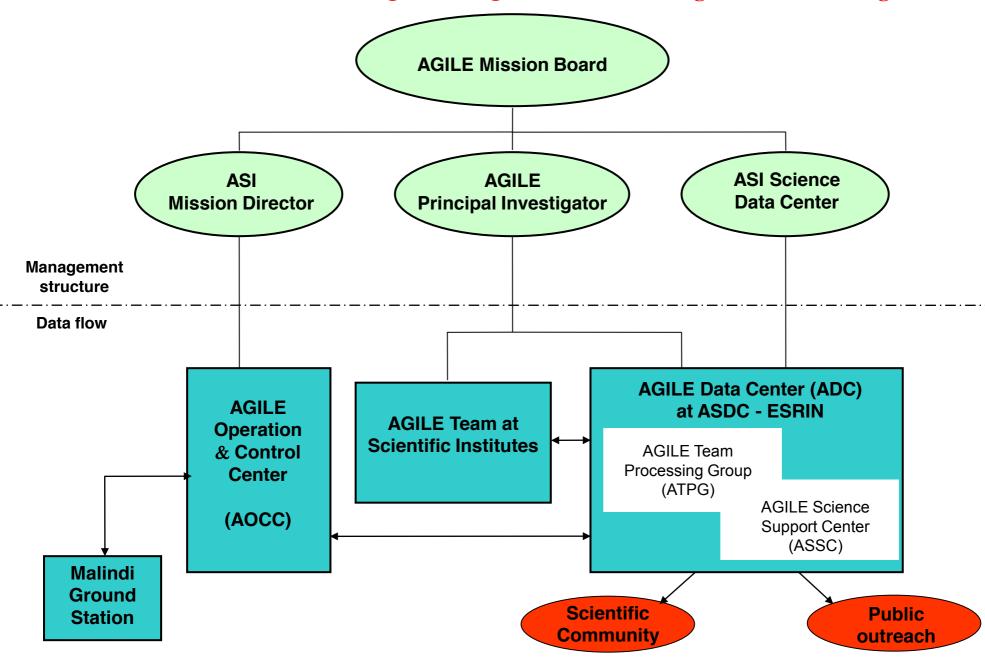

PSLV-C8 launch, 23 Apr. 2007

AGILE orbital parameters

Semi-major axis: 6922.5 km (\pm 0.1 km)Requirement:6928.0 \pm 10 km


Inclination angle: 2.48° (±0.04°) Requirement: < 3°

Eccentricity: $0.002 (\pm 0.0015)$ Requirement: $< 0.1^{\circ}$

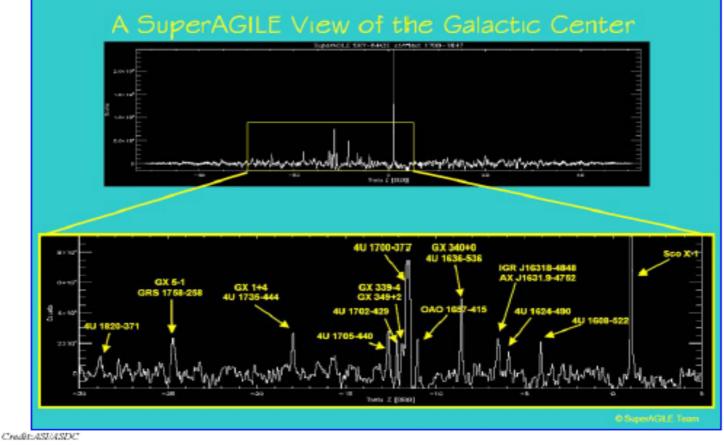


Baseline equatorial orbit: 550 Km, 3° inclination

AGILE Data Center

AGILE data flow and Ground Segment organization (from Agile Science Management Plan)

Table 3:	AGILE	Scientific	Performance
----------	-------	------------	-------------


Gamma-ray Imaging Detector (GRID)		
Energy Range	30 MeV – 50 GeV	
Field of view	$\sim 3~{ m sr}$	
Sensitivity at 100 MeV (ph $cm^{-2} s^{-1} MeV^{-1}$)	6×10^{-9}	$(5\sigma \text{ in } 10^6 \text{ s})$
Sensitivity at 1 GeV (ph cm ⁻² s ⁻¹ MeV ⁻¹)	4×10^{-11}	$(5\sigma \text{ in } 10^6 \text{ s})$
Angular Resolution at 1 GeV	36 arcmin	(68% cont. radius)
Source Location Accuracy	\sim 5–20 arcmin	S/N~10
Energy Resolution	$\Delta E/E \sim 1$	at 300 MeV
Absolute Time Resolution	$\sim 1\mu s$	
Deadtime	$\sim 200~\mu{ m s}$	
Hard X-ray Imaging Detector (Super-AGILE)		
Energy Range	10 - 40 keV	
Field of view	$107^{\circ} \times 68^{\circ}$	FW at Zero Sens.
Sensitivity (at 15 keV)	$\sim 5 \text{ mCrab}$	(5ø in 1 day)
Angular Resolution (pixel size)	\sim 6 arcmin	~ -
Source Location Accuracy	\sim 2-3 arcmin	$S/N \sim 10$
Energy Resolution	$\Delta E < 4 \text{ keV}$	
Absolute Time Resolution	$\sim4\mu s$	
Deadtime (for each of the 16 readout units)	$\sim4\mu s$	
Mini-Calorimeter		
Energy Range	0.3 - 200 MeV	
Energy Resolution	$\sim 1 \text{ MeV}$	above 1 MeV
Absolute Time Resolution	$\sim 3~\mu s$	
Deadtime (for each of the 30 CsI bars)	$\sim 20\mu s$	

AGILE name	RA (J2000.0) (hh mm ss)	Dec (J2000.0) (dd mm ss)	LII (deg)	BII (deg)	"Pos. Error (95%) (deg)	sqrt(TS)	^b Mean Ring Exp (×10 ⁸ cm ² s)	^c Mean Flux & Error (×10 ⁻⁸ ph cm ⁻² s ⁻¹)	Classification	Confirmed Counterp.	Possible Counterp. & Other Names
1AGL J0006+7311	00 06 34.2	+73 11 06.6	119.65	10.6	0.63	5.1	3.01	23 ± 5	GammaPulsar*	CTA1	3EGJ0010+7309
1AGL J0242+6111	02 42 13.6	+61 11 06.7	135.88	1.13	0.64	5.3	1.17	54 ± 12	HMXRB	LSI+61303	3EGJ0241+6103
1AGL J0535+2205	05 35 05.9	+22 05 41.7	184.56	-5.63	0.09	47.2	2.79	220 ± 15	Pulsar	Crab	3EGJ0534+2200
1AGL J0538-4424	05 38 29.6	-44 24 17.8	250.44	-31.2	0.5	5.9	0.81	43 ± 10	Blazar-BLLac	PKS0537-441	3EGJ0540-4402 BZBJ0538-4405
1AGL J0617+2236	06 17 21.7	+22 36 14.2	189.04	3.07	0.27	9.9	2.79	69 ± 9	Unclassified	_	3EGJ0617+2238 IC443 PSRJ0614+2229
1AGL J0634+1748	06 34 15.8	+17 48 27.7	195.14	4.36	0.05	63	2.79	320 ± 10	Pulsar	Geminga	3EGJ0633+1751
1AGL J0657+4554	06 57 29.2	+45 54 14.5	170.73	20.11	0.55	5.8	1.98	31 ± 6	Blazar	_	BZUJ0654+4514 \$40650+45
1AGL J0714+3340	07 14 29.4	+33 40 37.3	184.12	19.1	0.85	4.2	2.57	18 ± 5	Blazar	_	BZUJ0719+3307 GB20716+332
1AGL J0722+7125	07 22 22.9	+71 25 31.1	143.89	28.06	0.37	10.9	1.39	68 ± 9	Blazar-BLLac	S50716+714	3EGJ0721+7120 BZBJ0721+7120
1AGL J0835-4509	08 35 13.3	-45 09 09.0	263.52	-2.79	0.09	41.7	0.81	780 ± 32	Pulsar	VelaPSR	3EGJ0834-4511
1AGL J1022-5822	10 22 08.8	-58 22 17.0	284.39	-0.98	0.36	10.1	4.85	59 ± 7	Unclassified	(C)	3EGJ1013-5915 PSRJ1016-5857
1AGL J1043-5931	10 43 24.7	-59 31 44.7	287.34	-0.59	0.68	5.2	4.85	26 ± 6	Unclassified	(C)	3EGJ1048-5840 EtaCar PSRJ1048-5937
1AGL J1058-5239	10 58 31.1	-52 39 47.5	286.15	6.49	0.30	8.7	4.85	29 ± 4	Unclassified		3EG J1058-5234 PSRJ1057-5226
1AGL J1104+3754	11 04 38.5	+37 54 33.6	180.48	65.16	0.66	4.7	0.51	42 ± 13	Blazar-BLLac	Mkn421	3EGJ1104+3809 BZBJ1104+3812
1AGL J1108-6103	11 08 43.6	-61 03 54.3	290.83	-0.63	0.57	6.1	4.85	30 ± 6	Unclassified	_	3EGJ1102-6103 PSRJ1119-6127
1AGL J1222+2851	12 22 39.7	+28 51 02.3	196.09	83.42	0.74	4.7	0.50	38 ± 11	Blazar-BLLac	WComae	3EGJ1222+2841 BZBJ1221+2813 ON +231
1AGL J1228+0142	12 28 59.5	+01 42 41.3	290.04	64.02	0.71	4.7	1.98	24 ± 6	Blazar-FSRQ	3C273	3EGJ1229+0210 BZQJ1229+0203
1AGL J1238+0406	12 38 31.0	+04 06 14.2	294.74	66.77	1.23	4.7	1.98	25 ± 6	Blazar-FSRQ	_	3EGJ1236+0457 BZQJ1239+0443
1AGL J1256-0549	12 56 33.1	-05 49 42.6	305.27	57.02	0.32	10.2	1.98	65 ± 9	Blazar-FSRQ	3C279	3EGJ1255-0549 BZQJ1256-0547
1AGL J1412-6149	14 12 06.1	-61 49 32.5	312.3	-0.43	0.44	6.3	5.44	43 ± 7	Unclassified	(C)	3EGJ1410-6147 PSRJ1410-6132
					AGILE	E First	Source Cata	alogue •	arXiv:0902	2.2959	G312.4-0.4

AOILE name	RA (J2000.0) (lih mm ss)	Dec (J2000.0) (dd mm ss)	LII (deg)	BII) (deg)	"Fes. Error (95%) (deg)	sqrt(TS)	^b Mean Ring Exp (×10 ⁶ cm ² s)	"Mean Flux & Error (×10 ⁻⁸ ph em ⁻² s ⁻¹)	Classification	Confirmed Counterp.	Possible Counterp. & Other Names
1AOL J1419-6055	14 19 51-2	-60 55 11.2	313.47	0.13	0.31	7.5	5.44	52 ± 7	Unclassified	(C)	3E0J1420-6038 PSRJ1420-6048
1AOL J1506-5859	15 06 01.5	-58 59 13.5	319.52	-0.52	0.48	6.9	5.44	41 ± 7	Unclassified	-	PSRJ1509-5850
1AOL J1511-0908	15 11 38.5	-09 08 12.8	350.97	40.31	0.33	11.2	0.39	220 ± 32	Blazar-F8RQ	PK81510-089	3E0J1512-0849 BZQJ1512-0905
1AOL J1624-4946	162426.9	-49 46 51.9	334.09	-0.25	0.58	5.7	2.18	67 ± 13	Unclassified	-	PSRJ1623-4949
1AOL J1639-4702	16 39 05.5	-47 02 28.2	337.75	-0.15	0.53	6.4	2.18	76 ± 13	Unclassified	_	3E0J1639-4702 PSRJ1637-4642
1AOL J1709-4428	17 09 12.6	-44 28 44.5	343.07	-2.64	0.20	13.8	2.18	120 ± 11	Pulsar	PSRJ1709-4419	3E0J1710-4439
1AOL J1736-3235	17 36 19.9	-32 35 00.8	355.85	-0.24	0.59	5.1	1.56	69 ± 15	Unclassified	(C)	3E0J1734-3232
1AOL J1746-3017	17 46 01.5	-30 17 23.7	358.89	-0.78	0.68	4.4	1.56	66 ± 16	Unclassified	(C)	3E0J1744-3011
1AOL J1803-2255	18 03 11.8	-22 55 00.6	7.19	-0.36	0.49	7.6	1.56	110 ± 16	Unclassified	(C)	3E0J1800-2338 PSRJ1803-2306
1AOL J1824-1414	18 24 35 2	-14 14 30.9	17.23	-0.65	0.8	6.4	1.56	90 ± 16	Unclassified	_	3E0J1823-1314 LS 5039 PSRJ1826-1334
1AOL J1836+5923	18 36 14.8	+59 23 30.4	88.84	24.99	0.17	15.6	5.52	45 ± 4	Unclassified	_	3E0J1835+5918 BZBJ1841+5906 \$41834+61
1AOL J1846+6714	18 46 19.6	+67 14 17.4	97.59	25.35	0.43	7.0	5.52	20 ± 4	Blazar-FSRQ	_	BZQJ1849+6705 4C66.20
1AOL J1857+0136	18 57 10.2	+01 36 42.6	35.02	-0.54	0.34	10.2	3.06	130 ± 14	Unclassified	_	3E0J1856+0114 PSRJ1856+0113
1AOL J1908+0613	19 08 11.5	+06 13 29 3	40.38	-0.87	0.49	7.2	3.06	78 ± 12	Unclassified	_	3E0J1903+0550 PSRJ1905+0616
1AOL J2021+3652	20 21 25.3	+36 52 32.6	75.28	0.07	0.19	14.2	8.31	65 ± 5	Pulsar	PSRJ2021+3651	3E0J2021+3716
1AGL J2022+4032	20 22 08.5	+40 32 13.4	78.37	2.04	0.12	23.4	8.31	120 ± 7	Unclassified	_	3E0J2020+4017 SNR Gamma Cygni
1AOL J2026-0732	20 26 30.7	-07 32 45 3	37.05	-24.55	0.53	69	3.06	39 ± 7	Blazar-FSRQ	_	3E0J2025-0744 BZQJ2025-0735 PK82023-07
1AOL J2032+4102	20 32 27.7	+41 02 00.0	79.91	0.74	0.41	6.8	8.31	37 ± 6	Unclassified	_	3EQJ033+4118 CygX-3
1AOL J2231+6109	223107.1	+61 09 46.7	106.82	2.76	0.29	8.4	6.26	32 ± 5	Pulsar	PSRJ2229+6114	3E0J2227+6122
1AOL J2254+1602	22 54 10.3	+16 02 32.6	86.09	-38.3	0.17	23.0	1.16	200 ± 14	Blazar-FSRQ	30454.3	3E0J2254+1601 BZQJ2253+1608

The X-ray imager SuperAGILE:

Grand Central Scan

Mysterious beasts lurk at the center of the Milky Way. They require new and varied methods to be monitored - no one knows when they will act up. A new observatory run by the Agenzia Spaziale Italiana called AGILE is one new tool in the astronomer's toolbox. AGILE (*Astro-rivelatore Gamma a Immagini LEggero*, which roughly translates as "Star imaging detector in Gamma-Ray Light") was <u>launched</u> on April 23, 2007 and is already returning important science during its check-out phase. The image above is a scan by the X-ray monitor on AGILE, called Super-AGILE (which roughly translates as "Above-AGILE"), dedicated to monitoring hard X-ray sources with high sensitivity. This scan, performed shortly after the launch of AGILE, identifies more than a dozen high energy sources (in the range 20-60 keV) in the Galactic center.

AGILE Cycle-2 Baseline Pointing Plan: December 1, 2008 - November 30, 2009

Pointing number	Start date	End date	Pointing name	LII	B II	weeks
1	01 Dec.08	20 Dec.08	Cygnus Field 4	82.7	-10.1	3
2	20 Dec.08	15 Gen.09	Cygnus Field 5	95.7	-10.2	3.5
3	15 Gen.09	28 Feb.09	Cygnus Field 6	105.1	10.5	6
4	28 Feb.09	25 Mar.09	Gal. Center 4	350.5	12.7	4
5	25 Mar.09	01 Apr.09	Crab Field	190.6	3.3	1
6	01 Apr.09	15 Apr.09	Aquila Field 1	15.0	-8.8	2
7	15 Apr.09	30 Apr.09	Aquila Field 2	51.1	0.6	2
8	30 Apr.09	15 Mag.09	Cygnus Field 7	66.8	0.0	2
9	15 Mag.09	31 Mag.09	Vela Field 1	256.6	0.8	2
10	31 Mag.09	15 Jun.09	Virgo Field 1	237.0	59.4	2
11	15 Jun.09	25 Jun.09	Cygnus Field 8	92.8	-10.0	1.5
12	25 Jun.09	15 Jul.09	Cygnus Field 9	99.7	-20.1	4
13	15 Jul.09	12 Aug.09	Cygnus Field 10	112.2	9.6	4
14	12 Aug.09	31 Aug.09	Vela Field 2	307.2	0.3	3.5
15	31 Aug.09	10 Sep.09	Norma Field 1	343.6	10.3	2
16	10 Sep.09	22 Sep.09	Gal. Center 5	0.3	10.5	2
17	22 Sep.09	30 Sep.09	Crab Field 2	187.0	-0.8	1
18	30 Sep.09	15 Oct.09	Aquila Field 3	10.6	-7.3	2
19	15 Oct.0-9	31 Oct.09	Aquila Field 4	60.1	10.4	2
20	31 Oct.0-9	30 Nov.09	Cygnus Field 11	65.1	0.2	4